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Abstract. In our previous study, task segmentation was done by mnSOM, using prior
information that winner modules corresponding to subsequences in the same class share
the same label. Since this prior informatiom is not available in real situation, segmenta-
tion thus obtained should be regarded as the upper bound for the performance, not as a
candidate for performance comparison. Present paper proposes to do task segmentation
by applying various clustering methods to the resulting mnSOM, without using the above
prior information. Firstly, we use the conventional hierarchical clustering. It assumes
that the distances between any pair of modules are provided with precision, but this is not
the case in mnSOM. Secondly, we used a clustering method based on only the distance
between spatially adjacent modules with modification by their temporal contiguity. In the
robotic field 1, the segmentation performance by the hierarchical clustering is very close
to the upper bound for novel data. In the robotic field 2, the segmentation performance by
clustering with the spatio-temporal contiguity is very close to the upper bound for novel
data. Therefore, the proposed methods demonstrated their effectiveness in segmentation.
Keywords: mnSOM, Task segmentation, Clustering, Mobile robot, Temporal contigu-
ity, Spatio-temporal contiguity.

1. Introduction. Task segmentation in navigation of a mobile robot based on sensory
signals is important for realizing efficient navigation, hence attracted wide attention. Tani
and Nolfi [10] proposed 2-level hierarchical mixture of recurrent experts (MRE), which
is an extension of the network architecture proposed by Jacobs et al.[3]. Wolpert and
Kawato [12] proposed MOSAIC architecture for motor control with a responsibility signal
to each module provided by the soft-max function.

In the conventional competitive learning, only a winner module or unit is highlighted,
accordingly the degree of similarity between modules or units and interpolation among
them are not taken into account. There are two types of “interpolation:” one is creating
an output by interpolating outputs of multiple modules, and the other is creating a module
by interpolating multiple modules. Let the former be called “output interpolation” and
the latter be called “module interpolation.” Our study here focuses on the latter.
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The soft-max function [12] is an improvement over the conventional competitive learning
in that the output interpolation is possible based on the responsibility signals. Similar-
ity between modules, however, is not explicitly represented. Furthermore, the soft-max
function and segmentation do not generally coexist; only when the soft-max function is
asymptotically equivalent to winner-take-all, segmentation is possible at the sacrifice of
interpolation.

Self Organizing Maps (SOM)[4] is a popular method for classification and visualization
of data, and is capable of topology preservation. The resulting topological maps demon-
strate the unit interpolation among neighboring units on a competitive layer of SOM. In
contrast to SOM with a vector unit as its element, a modular network SOM (mnSOM)
uses a function module as its element to increase its representation and learning capability
[2]. Owing to competitive learning among function modules, mnSOM is capable of seg-
mentation. Owing to topographic mapping of function modules on a competitive layer,
neighboring function modules tend to have similar characteristics. Hence, interpolation
among function modules becomes possible. Simultaneous realization of segmentation and
interpolation is unique and unparalleled characteristics of mnSOM. mnSOM has also an
advantage of computational stability in contrast to competitive learning due to careful
assignment of learning rates to modules and classes.

We proposed to use mnSOM for task segmentation in navigation of a mobile robot [6][7].
In case of a mobile robot, however, the standard mnSOM is not applicable as it is, because
it is based on the assumption that class labels are known a priori. In a mobile robot, only
an unlabeled sequence of data is available. Hence, we proposed to decompose it into
many subsequences, supposing that a class label does not change within a subsequence.
Accordingly, training of mnSOM is done for each subsequence in contrast to that for each
class in the standard mnSOM.

Although the conventional competitive learning can handle unlabeled sequence of data,
mnSOM cannot handle them as will be shown later. Therefore, our previous studies
[6][7] assumed availability of prior information that winner modules corresponding to
subsequences in the same class share the same label. Since the above prior information
is not available in real situation and is unrealistic, we propose to do task segmentation
by clustering the resulting modules in mnSOM without using the above unrealistic prior
information. Firstly, the conventional hierarchical clustering is applied. It assumes that
the distances between any pair of modules are provided with precision. However, since
mnSOM training adopts neighborhood learning as in SOM, the distance between a pair
of far apart modules tends to be meaningless. Secondly, we use a clustering method based
on the distance between only the spatially adjacent modules with modification by their
temporal contiguity. This is what we call a clustering with spatio-temporal contiguity.

2. Task Segmentation and Clustering.

2.1. Task Segmentation using mnSOM.

2.1.1. Data Segmentation. Task segmentation, here, is to partition the entire movement
of a robot from a start position to an end position into a sequence of primitive movements
such as a forward movement or a right turn movement. Experiments are carried out using
a Khepera II mobile robot. It has 8 infra-red (IR) proximity sensors for acquisition of
information on the environment, and 2 separately controlled DC motors.
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Robot movement is determined by wall following. In case of the robotic field in Figure
1.(a), task segmentation and environmental segmentation are similar with the exception of
locally zigzag movement. Generally speaking, forward movement corresponds to straight
corridor in a robotic field, right turn movement corresponds to L-shaped corner, and so
forth. In contrast to this, in the robotic field in Figure 1.(b), task segmentation and
environmental segmentation are different, particularly at T-junctions.

Figure 1. (a) Robotic Field 1 (b) Robotic Field 2 (c) Data from the
Robotic Field 1 (d) Example of data division in Robotic Field 1

Figure 1.(c) illustrates an example sequence of sensory-motor signals during movement
in the robotic field 1. For later evaluation of training and test results, the whole dataset
are manually segmented into 9 sequences based on motor commands as in Figure 1.(c).
Sequences 1, 3, 5, 7 and 9 correspond to a class of forward movements, sequences 2 and
4 correspond to a class of left turns, and sequences 6 and 8 correspond to a class of right
turns.

The whole dataset is split into subsequences with the uniform length of 20 as in Figure
1.(d) [6][7]. Figure 1.(d) and Figure 1.(a)provide approximate spatial segmentation of
robotic field 1. Each subsequence has its own label. As a consequence of uniform splitting,
some subsequences stretch over two consecutive sequences (e.g., a forward movement
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sequence followed by a left turn sequence). They are called “transition” subsequences,
and constitute virtual classes.

Figure 2. Array of modules in mnSOM and the function module as its
element. The function module here is a fully connected RNN.

2.1.2. The modified mnSOM. The standard mnSOM deals with labeled data. In mobile
robots, only a sequence of unlabeled data is available. Hence, we proposed to decompose
it into subsequences [6][7]. Accordingly, training of mnSOM is done for each subsequence
in contrast to that for each class in the standard mnSOM.

To deal with dynamical systems, recurrent neural networks (RNN) are employed as
function modules in mnSOM [2]. Figure 2. illustrates the architecture of mnSOM and
the function module as its element. Each mnSOM module is trained using backpropaga-
tion through time (BPTT) [11]. Accordingly, connection weights of module k, w(k), are
modified by [2],
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where r(k, v∗

i ) stands for the distance between module k and the winner module v∗

i , φ is
a neighborhood function, σmin is the minimum neighborhood size, σmax is the maximum
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neighborhood size, and λ is a neighborhood decay rate. These learning rates contribute
to improvement of computational stability. mnSOM terminates when connection weights
converge and the resulting mnSOM becomes stable.

2.2. Difficulty in the standard mnSOM. Figure 3.(a) illustrates the resulting map by
the standard mnSOM. No information is available on the relation between modules with
different colors. It indicates that segmentation based on Figure 3.(a) generates 23 classes,
which is meaningless. Because of this, our previous studies [6][7] assumed availability of
prior information that winner modules corresponding to subsequences in the same class
share the same label. However, the prior class information is unavailable in real situation
and is unrealistic.

Figure 3. The resulting mnSOM with each color representing a data class.
(a)Segmentation by the standard mnSOM. The resulting number of classes
is 23, and is too large. (b) Segmentation by mnSOM with the assumption
that winner modules corresponding to subsequences in the same class share
the same label.

2.3. Clustering. In this paper, we propose to do segmentation using clustering methods
based on the distance between modules in the resulting mnSOM. In contrast to SOM, the
definition of the distance between modules is problematic, because the distance depends
on input to these modules.

2.3.1. Hierarchical Clustering. A procedure of hierarchical clustering [1] is the following.

1. Let each module form a separate cluster.
2. Merge two clusters with the minimum distance.
3. Recalculate the distance between clusters.
4. Repeat steps 2 and 3 until the minimum distance between clusters exceeds a given

threshold or the number of clusters reaches a given number of clusters.
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An essential issue in clustering is how we define the distance between modules. Suppose

mi = arg mink MSE(k, i) (5)

where MSE(k, i) stands for the mean square error of module i given input subsequence
k. We propose to define the distance between modules i and j by:

dij =
√

(MSE(mi, j) − MSE(mi, i))2 + (MSE(mj , i) − MSE(mj , j))2) (6)

The inclusion of only the subsequences m and n in the definition is to prevent the distance
from being blurred by many less relevant subsequences.

We then define the distance between clusters I and J . Suppose that the cluster I is
composed of modules, MI1...MIRI

, and the cluster J is composed of modules, MJ1...MJRJ
.

The distance between these two clusters is defined by,

DIJ =
1

RIRJ

RI
∑

i=1

RJ
∑

j=1

dij (7)

where dij is the distance between two individual modules i and j as in Eq.(7).

2.3.2. Clustering with spatial contiguity. In mnSOM the neighboring area shrinks as learn-
ing proceeds. This suggests that the distance between modules are meaningful only within
neighboring modules. On the other hand, hierarchical clustering assumes that the distance
between any pair of modules is meaningfully given. Considering this issue, we propose
the following clustering method with spatial contiguity.

1. Calculate the distance between any pair of adjacent modules. For module (i,j),
adjacent modules are (i,j-1), (i,j+1), (i-1,j) and (i+1,j).

2. Rank order distances between adjacent modules in increasing order.
3. Merge a pair of adjacent modules with the minimum distance.
4. Calculate the number of clusters formed by the merger.
5. Repeat steps 3 and 4 until the predefined number of clusters is obtained.

2.3.3. Clustering with spatio-temporal contiguity. In mobile robot data, temporally con-
tiguous subsequences tend to have the same label. Accordingly, winner modules corre-
sponding to temporally contiguous subsequences tend to have the same label. To take
the temporal contiguity into account, we propose to modify Eq.(6) as follows,

dij =
√

(MSE(mi, j) − MSE(mi, i))2 + (MSE(mj , i) − MSE(mj , j))2

∗

(

1 − exp

(

−
|mi − mj|

τ

))

(8)

where τ is a time constant for temporal contiguity, and mi and mj are subsequence
numbers. In contrast to Eq. (6), the second term on the right-hand side of Eq. (8)
reduces the distance between modules by taking into consideration the temporal contiguity
of the corresponding subsequences. This modified definition of the distance is expected
to provide the same label to temporally contiguous subsequences.
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3. Experimental Results.

3.1. Task Segmentation. mnSOM modules learn internal models of nonlinear dynamics
of robot-environment interaction by minimizing mean prediction error of sensory-motor
signals at the next time step, given the past sensory-motor signals. After training, the
resulting mnSOM provides a label to each module by a procedure in [6][7] taking advantage
of prior information, that winner modules corresponding to subsequences in the same class
share the same label. Given a subsequence, either experienced or novel, one of the modules
becomes a winner. The label of the winner module provides task segmentation for each
subsequence.

Figure 4. Resulting Task Map: (a) for robotic field 1, (b) for robotic field
2. Labels “F”, “L”, “R”, “L/F”, and “R/F”stand for forward movement,
left turn, right turn, the transition between forward movement and left turn,
and the transition between forward movement and right turn, respectively.

Figure 4. depicts the resulting task maps for robotic field 1 and robotic field 2. To
evaluate the segmentation performance of the task map, training datasets as well as novel
dataset are given to them.

Figure 5. illustrates the resulting labels for test subsequences for robotic field 1 and
robotic field 2. The numbers written in the mnSOM module are subsequence numbers as-
signed by the corresponding mnSOM module. Figure 5.(a) and Figure 1.(d) gives approx-
imate relationship between location of the robot and the corresponding winner module.
It is to be noted that the result should not be regarded as a candidate for performance
comparison, because it uses unrealistic prior information which is not available in real
situation. The result, therefore, should be regarded as the upper bound for segmentation
performance.

3.2. Clustering. We propose to do task segmentation by applying various clustering
methods to the resulting mnSOM without using prior information that winner modules
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Figure 5. Resulting labels for novel subsequences based on mnSOM (a)
for robotic field 1, (b) for robotic field 2.

corresponding to subsequences in the same class share the same label. Figure 6. illustrates
the resulting segmentation of novel dataset by hierarchical clustering for robotic field 1
and robotic field 2. The task maps in Figure 6 are similar to those by mnSOM in Figure
4 to some extent.

Figures 7 and 8 indicate that proper value of τ shifts some winner modules correspond-
ing to adjacent subsequences (e.g. subsequence 16 and 17 in Figure 8) into the same
cluster, and changes cluster boundary.

Table 1 gives summary of segmentation performance by various clustering methods in
addition to the upper bound for the segmentation performance. It is the correct segmen-
tation rate by mnSOM using prior information. Since this prior information is unavailable
in real situation, this should be regarded as the upper bound for the segmentation per-
formance, not as a candidate for performance comparison.

In clustering with spatio-temporal contiguity, the performance of clustering depends
on the time constant parameter, τ , in Eq. (9). τ=0 corresponds to clustering with
spatial contiguity and positive values of τ correspond to clustering with spatio-temporal
contiguity. Table 1 indicates that the performance is the best at τ=7 for the robotic
field 1, while the performance is the best at τ=19 for robotic field 2. In robotic field 1,
the performance of the hierarchical clustering is superior to that of clustering with spatio-
temporal contiguity. In robotic field 2, the performance of clustering with spatio-temporal
contiguity is superior to that of the hierarchical clustering. The reason for this is left for
future study.

4. Conclusions and Discussions. In this paper we proposed to apply various clustering
methods to the resulting mnSOM for task segmentation. This is to get rid of the unrealistic
prior information that winner modules corresponding to subsequences in the same class
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Figure 6. The Resulting Segmentation for novel subsequences by Hierar-
chical Clustering: (a) robotic field 1, (b) robotic field 2.

Table 1. Correct Segmentation rate (%) by various Clustering Methods.
”upper bound” stands for the correct segmentation rate by mnSOM with
prior information. “Tr1”, “Tr2”, “Tr3”, “Tr4” stand for training dataset
1, 2, 3 and 4, respectively. “Ave” stands for the average over 4 datasets.
“Novel” stands for novel dataset.

Robotic Data- upper Hierar- Spatio-temporal contiguity
Field set bound chical τ ≈0 τ=2 τ=7 τ=11 τ=15 τ=19

Tr1 94.4 85.71 86.9 86.9 88.1 78.6 67.9 67.9
Tr2 96.4 85.71 82.1 82.1 84.5 67.9 66.7 52.4

1 Tr3 94.0 91.67 78.6 78.6 83.3 71.4 75.0 54.8
Tr4 100 90.48 80.9 80.9 83.3 63.1 65.5 53.6
Ave 96.2 88.4 82.1 82.1 84.8 70.3 68.8 57.1

Novel 94.0 92.9 83.3 83.3 86.9 82.1 70.2 67.9
Tr1 97.6 88.7 86.3 86.3 94.4 91.1 91.1 93.6
Tr2 96.0 88.7 83.1 83.1 86.3 86.3 86.3 91.1

2 Tr3 99.2 85.5 91.1 91.1 92.3 92.7 92.7 90.3
Tr4 98.4 91.1 87.1 87.1 89.5 89.5 89.5 89.5
Ave 97.8 88.5 86.9 86.9 90.6 89.9 89.9 91.1

Novel 95.2 92.7 80.6 80.6 87.9 87.9 87.9 93.6

share the same label. Since this prior information is not available in real situation, this
should be regarded as the upper bound for segmentation performance, not as a candidate
for performance comparison.
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Figure 7. Resulting Segmentation by Clustering with Spatio-temporal
Contiguity for Robotic Field 1, (a) τ=2, (b) τ=7

Figure 8. Resulting Segmentation by Clustering with Spatio-temporal
Contiguity for Robotic Field 2, (a) τ=2, (b) τ=19. Subsequences 16 and 17
(circled) which are in different clusters in (a) move into the same cluster in
(b)
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Firstly, we proposed to use the conventional hierarchical clustering. This supposes that
the distances between any pairs of modules are provided with precision, but this is not
the case in mnSOM. Secondly, we proposed to use a clustering method based on the
distance between only the spatially adjacent modules with modification by their temporal
contiguity.

In the robotic field 1, the segmentation performance by the hierarchical clustering is
very close to the upper bound for novel data. In the robotic field 2, the segmentation
performance by clustering with the spatio-temporal contiguity is very close to the upper
bound for novel data. Therefore, the proposed methods demonstrated their effectiveness
of segmentation. However, segmentation performance for training data is significantly
lower than the upper bound. The improvement of this is left for future study.
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