Elsevier Editorial System(tm) for Applied Catalysis A Manuscript Draft

Manuscript Number: APCATA-D-08-00757R1

Title: Development of metal cation compound-loaded S-doped TiO2 photocatalysts having a rutile phase under visible light

Article Type: Research Paper

Keywords: S-doped TiO2; Loading of metal ion compounds; Degradation of acetaldehyde; Improvement of charge separation

Corresponding Author: Dr. Teruhisa Ohno,

Corresponding Author's Institution:

First Author: Teruhisa Ohno, PhD

Order of Authors: Teruhisa Ohno, PhD; Naoya Murakamai, PhD; Toshiki Tsubota, PhD; Hitoshi Nishimura, MS

Graphical abstract : Development of metal cation compound-loaded S-doped TiO₂ photocatalysts having a rutile phase under visible light Teruhisa Ohno,* Naoya Murakami, Toshiki Tsubota, and Hitoshi Nishimura Department of Material Science, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan

Rutile S-doped TiO, loaded with metal ion compounds (Fe^{*}, Rh^{*}, Cu², Co⁵, Ni², Cr⁵) have been prepared (S-doped TiO, M^a). The metal ions were adsorbed on the surfaces of S-doped TiO, nanoparticles. The photocatalytic activities of S-doped TiO, for oxidation of acetaldehyde in gas phase were drastically improved after adsorbing treatment of metal ions under a wide range of incident light wavelengths.

Development of metal cation compound-loaded S-doped TiO₂ photocatalysts having a rutile phase under visible light Teruhisa Ohno,* Naoya Murakami, Toshiki Tsubota, and Hitoshi Nishimura Department of Material Science, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan

To whom correspondence should be addressed. Fax: +81-93-884-3318. E-mail: tohno@che.kyutech.ac.jp

Abstract

We have synthesized S (S^{4+})-doped TiO₂ photocatalysts having a rutile phase. Rutile S-doped TiO₂ photocatalysts loaded with metal ion compounds (Fe³⁺, Rh³⁺, Cu²⁺, Co³⁺, Ni²⁺, Cr³⁺) have also been prepared (S-doped TiO₂-Mⁿ⁺). The metal ions were adsorbed on the surfaces of S-doped TiO₂ nanoparticles by impregnation methods (IM) or photodeposition methods (PH). The photocatalytic activities of S-doped TiO₂ for oxidation of acetaldehyde in gas phase were drastically improved after adsorbing treatment of metal ions under a wide range of incident light wavelengths. Under photoirradiation at wavelengths longer than 350 nm or 420 nm, S-doped $TiO_2-Cu^{2+}(PH)$ show the highest level of activity among the metal ions. S-doped TiO₂-Fe³⁺(IM) show the highest level of activity for oxidation of acetaldehyde in gas phase compared to the activity levels of S-doped TiO₂ with loading of other metal ions such as Rh³⁺, Cu²⁺ Co³⁺, Ni²⁺, and Cr³⁺ under a wide range of incident light wavelengths. The optimum amount of metal ion compound nanoparticles adsorbed on S-doped TiO₂ was 0.1 wt%. In order to elucidate the role of metal ions adsorbed on the surface of S-doped TiO₂, we measured the double beam photoacoustic spectra (DB-PA). The amount of Ti^{3+} generated as a result of the reaction between Ti^{4+} and photoexcited electrons was analyzed by this spectroscopy. The relationship between the reaction rate of photocatalytic oxidation of acetaldehyde on S-doped TiO_2 adsorbed with metal ions and the charge separation between photoexcited electrons and holes is discussed.

Keywords: S-doped TiO_2 ; Loading of metal ions compounds; Degradation of acetaldehyde; Improvement of charge separation

1. Introduction

Environmental pollution and destruction on a global scale are issues of increasing concern in today's society. There is a need for effective catalysts for degradation of pollutants. Titanium dioxide (TiO₂)-mediated heterogeneous photocatalysis has attracted much attention because of its potential applications to decomposition of pollutants in water and air. [1,2] In these applications, anatase TiO₂ powders consisting of particles with large surface areas are used as photocatalysts. These powders are useful for absorption of compounds included in the reaction system at low concentrations. In contrast to the case of anatase TiO₂ photocatalysts, the oxidation of water, which is difficult to oxidize, proceeds efficiently on large rutile TiO₂ particles. [3] Anatase TiO₂ photocatalysts do not have photocatalytic activity for oxidation of water.

Since the discovery of photoelectrochemical splitting of water on titanium dioxide (TiO_2) electrodes, [4] semiconductor-based photocatalysis has received much attention. [5-17] Most of these investigations have been carried out under UV light because a TiO_2 photocatalyst shows relatively high levels of activity and chemical

stability under UV light which exceeds the band-gap energy of 3.0 or 3.2 eV in the rutile or anatase crystalline phase, respectively.

Although TiO₂, one of the most promising photocatalysts, is now used in various practical applications, [1, 2] only a small UV fraction of solar light, about 2-3%, can be utilized because of such a large band gap of 3.2 eV. The development of photocatalysts that show a high level of activity under visible light irradiation is needed in order to utilize sunlight or rays from artificial sources more effectively in photocatalytic reactions. In the past, transition metal ions have been used as dopants to red-shift the absorption edge of TiO₂ and SrTiO₃ to a visible light region. [18-30] For this purpose, reduced forms of TiO_x photocatalysts [31, 32] have also been investigated.

Treatment of TiO₂ powder with hydrogen peroxide [33] or chelating agents [34] allows some photocatalytic reactions to proceed under visible light. However, most of these catalysts do not show long-term stability or do not have sufficiently high levels of activity for a wide range of applications. Asahi et al. [35] reported that N-doped TiO_2 shows photoabsorption at wavelengths longer than 400 nm. It has also been reported that N-doped TiO_2 has photocatalytic activity under visible light. Recently, Umebayashi

et al. have succeeded in synthesizing TiO₂ doped with S anions. [36] Kahn et al. [37] reported that C-doped TiO₂ was obtained as a result of a chemical modification of TiO₂ by controlled combustion of titanium metal in a natural gas flame. These compounds absorb visible light. These findings are supported by the results of theoretical calculations using full-potential linearized augmented plane wave formalism (F-LAPW method). However, the absorption spectra of these compounds in the visible region are relatively small. It should also be noted that dopants such as N and C are incorporated as anions and replaced by oxygen in the lattice of TiO_2 . Other techniques for synthesizing TiO₂ photocatalysts showing relatively high levels of activity under visible light have also been developed recently. [38, 39] We have also developed and reported the synthesis of S-cation-doped TiO₂ having anatase or rutile phase and Fe₂O₃ nanoparticles loaded on the surfaces of S-doped and N-doped TiO₂. [40-43]

We have succeeded in preparing S-doped and N-doped TiO_2 loaded with Fe_2O_3 nanoparticles having an anatase phase in order to enhance the charge separation between electrons and holes, resulting in improvement in photocatalytic activity for oxidation of organic compounds under the condition of visible light irradiation. [44] In this paper, we report photocatalytic activities of S-doped TiO₂ loaded with several kinds of metal ion compounds having rutile phase for oxidation of acetaldehyde in gas phase. In addition, the relationship between photocatalytic activities of S-doped TiO₂ loaded with metal ion compounds and the kind of metal ions will be discussed in order to elucidate of the role of metal ions under a wide range of photoirradiation by using double beam photoacoustic spectroscopy. [45]

2. Experimental

2.1. Materials and Instruments

TiO₂ powder having a rutile crystal structure was obtained from TAYCA (MT-150A). The content of anatase and the relative surface area of MT-150A particles were 0% and 88.0 m²/g, respectively. Thiourea was obtained from Tokyo Chemical Industry Co. Ltd. Thiourea and urea were obtained from Tokyo Chemical Industry Co., Ltd. Other chemicals were obtained from commercial sources as guaranteed reagents and were used without further purification. The crystal structures of TiO₂ powders were

determined from X-ray diffraction (XRD) patterns measured with an X-ray diffractometer (Philips, X'Pert-MRD) with Cu target K α -rays ($\lambda = 1.5405$ Å). The relative surface areas of the powders were determined by using a surface area analyzer (Micromeritics, FlowSorb II 2300). The absorption and diffuse reflection spectra were measured using a Shimadzu UV-2500PC spectrophotometer. X-ray photoelectron spectra (XPS) of the TiO₂ powders were measured using a JEOL JPS90SX photoelectron spectrometer with an Al K α source (1486.6 eV). The shift of binding energy due to relative surface charging was corrected using the C 1s level at 285 eV as an internal standard. The XPS peaks were assumed to have Gaussian line shapes and were resolved into components by a non-linear least-squares procedure after proper subtraction of the baseline. DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) was used to analyze the nature of the adsorbed species on the photocatalyst. The system consisted of an FTIR spectrometer (Jasco FT/IR-4200) equipped with a DRIFTS cell (Jasco DR-81 Diffuse Reflectance Attachment).

2.2. Preparation of rutile S-doped TiO_2 powders loaded with metal ion compound

nanoparticles

The S-doped TiO₂ powders used as starting materials were synthesized by previously reported methods. [40-44, 46]

An appropriate amount of metal chloride salts (FeCl₃, RhCl₃, CuCl₂, CoCl₃, NiCl₂, CrCl₃) was dissolved in deionized water (300 ml). Three g of the doped TiO₂ powder was suspended in an aqueous solution of each metal chloride salt, and each solution was stirred vigorously for 2 h. After filtration of the solution, the amount of metal ion compounds (Fe³⁺, Rh³⁺, Cu²⁺, Co³⁺, Ni²⁺, Cr³⁺) that remained in the solution was determined by UV absorption spectra to estimate the amount of metal oxide compounds loaded on the doped TiO₂ powder. Determination of metal ions in aqueous solution was done by ICP. The residue was washed with deionized water several times until the pH value of the filtrate became neutral. The powders were dried under reduced pressure at 60 °C for 12 h.

2.3. Photocatalytic degradation of acetaldehyde, formic acid, or acetic acid on doped TiO₂ in gas phase The photocatalytic activities of S-doped TiO₂ adsorbed with metal ions were evaluated by measuring the change in concentration of acetaldehyde and evolved CO₂ as a function of irradiation time. A Tedlar bag (AS ONE Co. Ltd.) with a volume of 125 cm^3was used as the photo-reactor vessel. One hundred mg of the TiO₂ powder was spread evenly on the bottom of a glass dish (area: 9.6 cm² = irradiation area), and this was placed in the reaction vessel described above.

Five hundred ppmv of acetaldehyde, formic acid, or acetic acid was prepared in the vessel by injection of saturated gaseous acetaldehyde. The irradiations were conducted at room temperature after equilibrium between the gaseous and adsorbed acetaldehyde had been reached (as ascertained by monitoring the concentration chromatographically about every 30 min). A 500-W Xe lamp (USHIO Co. Ltd., SX-UI501XQ) was used as a light source. To limit the irradiation wavelengths, the light beam was passed through a UV-35, L-42 or Y-47 filter (Kenko Co.) to cut off wavelengths shorter than 350, 420 or 470 nm, respectively. Fine stainless meshes were used as neutral density filters to adjust the irradiation intensity (12.7 mW cm⁻²). After the irradiation was started, the decrease in acetaldehyde concentration was measured using a gas chromatograph (Shimadzu Model GC-8A, FID detector) equipped with an FEG-20M 20% Celite 545 packed glass column using CR-8A CHROMATOPAC for data processing. At the same time, the amount of gaseous carbon dioxide that evolved was analyzed using a gas chromatograph (Shimadzu Model GC-9A, FID detector) equipped with a TCP 20% Uniport R packed column and a methanizer (GL Sciences, MT-221) operated at a temperature of 375°C. A CR-8A CHROMATOPAC was used for data processing.

2.4. Double-beam photoacoustic (DB-PA) spectroscopic measurement

In order to elucidate the role of metal ion compounds loaded on S-doped TiO₂, we measured the DB-PA spectra of S-doped TiO₂ having rutile phase and of metal ions-adsorbed S-doped TiO₂ having rutile phase. A gas-exchangeable photoacoustic (PA) cell equipped with two valves for gas flow was used, and a TiO₂ sample was placed in the cell. The atmosphere was controlled by a flow of artificial air or N₂ containing ethanol vapor (air + EtOH, N₂ + EtOH), and the measurements were conducted after shutting off the valves, i.e., in a closed system at room temperature. Light-emitting diodes (LED) emitting light at 625 nm (Luxeon LXHL-ND98) were used as probe lights, and their output intensities were modulated by a digital function generator (NF DF1905) at 80 Hz. In addition to the modulated light, a UV-LED (Nichia NCCU033, emitting light at 365 nm, 2.5 mW cm⁻²) and a blue-LED (Luxeon LXHL-NB98, emitting light at 470 nm, 8.1 mW cm⁻²) were also used as simultaneous continuous irradiation sources for photoexcitation of Mⁿ⁺/TiO₂. The PA signal acquired by a condenser microphone buried in the cell was amplified and monitored by a digital lock-in amplifier (NF LI5640). Detailed setups for the double-beam photoacoustic (DB-PA) spectroscopic measurements have been reported. [13]

3. Results and discussion

3.1 Characterization of TiO_2 loaded with metal ions

Figure 1 shows diffuse refraction spectra of bare TiO_2 and of metal ion-adsorbed S-doped TiO_2 samples. All of the metal ion-adsorbed S-doped TiO_2 samples showed a red shift of the absorption edge, but absorption in the visible region depended on the kind of metal ion ($Rh^{3+} > Fe^{3+} > Cr^{3+} \sim Ni^{2+} > Cu^{2+}$ at 430 nm).

The chemical state of the metal atoms adsorbed on S-doped TiO_2 was assigned as follows by XPS spectra: Rh, Ge, Cr = 3+. Cu, Ni, Co = 2+.

3.2 Photocatalytic reaction of metal ion-adsorbed TiO₂ samples under photoirradiation

Figure 2 shows the time course of CO_2 evolution as a result of acetaldehyde decomposition under photoirradiation at wavelengths longer than 350 nm. S-doped TiO₂ adsorbed with metal ions showed a higher level of photocatalytic activity than that of S-doped TiO₂ without metal loading. Photoexcited electrons were efficiently trapped by metal ions acting as electron acceptors adsorbed on the surfaces of S-doped TiO₂ particles, resulting in charge separation. [43,44] Consequently, isolated holes efficiently oxidized organic compounds adsorbed on the S-doped TiO₂ surface. Moreover, the activity depended on the kind of metal ion ($Fe^{3+} > Rh^{3+} > Cu^{2+} > Ni^{2+} > Co^{2+} > Cr^{3+}$), and the order of their photocatalytic activity was related to the order of redox potential $(Fe^{3+}/Fe^{2+} = 0.771 \text{ V}, Rh^{3+}/Rh = 0.758 \text{ V}, Cu^{2+}/Cu^{+} = 0.159 \text{ V}, Ni^{2+}/Ni = -0.257 \text{ V}, Co^{2+}/Ni^{2+}/N$ Co =-0.272 V, Cr^{3+}/Cr^{2+} = -0.424 V vs. SHE). These results suggest that metal ions with more positive redox potentials are effective photoexcited electron acceptors for enhancement of photocatalytic activity.

Complete decomposition of acetaldehyde was observed over S-doped TiO_2 - Fe^{3+} after photoirradiation for 25 h, as shown in Fig. 2. The photocatalytic activity level of S-doped TiO_2 - Fe^{3+} was 3-times higher than that of S-doped TiO_2 without treatment of Fe^{3+} . When the total decomposition of 1-mol acetaldehyde is written as a reaction involving ten holes (eq. 1), this suggests that 26 µmol of excited electrons was consumed by Fe^{3+} on the TiO₂ surface, the amount of which was 18 µmol.

$$CH_3CHO + 3H_2O + 10h^+ \rightarrow 2CO_2 + 10H^+$$
 (1)

Thus, turnover number of Fe^{3+} was more than ca. 1.5. This means that Fe^{2+} reduced by excited electrons can be recovered to Fe^{3+} by reacting with oxygen species (OS) [43,44]. Therefore, the rate of the recovering process is important for the enhancement of photocatalytic activity in a long reaction.

Figure 3 shows the CO₂ evolution over S-doped TiO_2-M^{n+} as a function of irradiation time under visible light irradiation at wavelengths longer than 440 nm. The photocatalytic activity level of Fe³⁺-adsorbed S-doped TiO₂ was about 7 times higher than that of pure S-doped TiO₂. However, CO₂ evolution for most of the samples

showed a saturation tendency before reaching 1000-ppm CO_2 under photoirradiation for 25 h.

Nimlos et al. reported a reaction scheme for oxidation of acetaldehyde on TiO_2 photocatalysts. [47] CO₂ was directly evolved by the reaction between acetaldehyde and OH radials generated photocatalytically. [47] According to a previous report [47], we assumed that reactions by two pathways occur: direct oxidation of acetaldehyde to CO₂ (2) and evolution of CO₂ by oxidation of acetaldehyde via acetic acid (3), (4).

$$2CH_3CHO + 2OH + O_2 \rightarrow 2CH_3 + 2CO_2 + 2H_2O$$

$$\tag{2}$$

$$CH_{3}CHO + OH + O_{2} \rightarrow CH_{3}COOH + HOO'$$
(3)

$$CH_{3}COOH + h^{+} \rightarrow CO_{2} + CH_{3}^{\bullet} + H^{+}$$
(4)

Under visible light irradiation, evolution of CO_2 via route (2) proceeded efficiently over S-doped TiO₂-Mⁿ⁺. At the same time, acetic acid was accumulated on the surface of S-doped TiO₂ according to route (3). As discussed above, acetic acid was thought to be hard to decompose on S-doped TiO₂ even when adsorbed with Fe³⁺ ions, especially under visible light irradiation. Therefore, these saturation tendencies are due to accumulation of intermediate species that were not easily decomposed, e.g., acetic acid [44].

3.3. DB-PA spectra of S-doped TiO_2 loaded with metal ions under UV irradiation

The behavior of electron migration on TiO₂ particles under UV irradiation was observed using DB-PA spectroscopy. The PA intensity indicates the amount of Ti³⁺ ions generated by photoexcited electrons [18,19]. If the photoexcited electrons do not transfer to molecules such as O₂ molecules adsorbed on the surface of TiO₂, the electrons are trapped at Ti^{4+} sites in TiO_2 and reduce Ti^{4+} ions to Ti^{3+} ions in the bulk of TiO_2 or on the surface of TiO₂, resulting in an increase in PA intensity. PA measurements were carried out under aerated conditions in order to estimate the reactivity of electrons in S-doped TiO_2-M^{n+} particles. Figure 4 shows the time-course curves of PA signals of S-doped TiO₂ and S-doped TiO₂-Mⁿ⁺ particles under UV irradiation in the presence of air + EtOH. The PA intensity of all samples showed an increase under UV irradiation because Ti³⁺ species were generated by accumulation of electrons on TiO₂, as a counterpart of the hole consumption by EtOH (eq. 2)

$$Ti^{4+} + e^{-} -> Ti^{3+}$$
 (rate k_2) (5)

$$M^{n^+} + e^- \to M^{(n-1)^+}$$
 (rate k_3) (6)

$$\mathbf{M}^{(n-1)^{+}} + \mathbf{OS} \longrightarrow \mathbf{M}^{n+} + \mathbf{OS}^{-\bullet} \qquad (\text{rate } k_4) \tag{7}$$

After prolonged UV irradiation, the PA intensity leveled off because the reduction of Ti⁴⁺ by photoexcited electrons and the oxidation of Ti³⁺ by atmospheric oxygen reached equilibrium. The equilibrium values of the PA intensity of S-doped TiO₂- Mⁿ⁺ samples were greatly decreased compared to those of S-doped TiO₂ without adsorbing any metal ions. These results suggested that metal ions adsorbed on S-doped TiO₂ played an efficient role as electron acceptors (eq. 3). In addition, the electrons accumulated in metal ions efficiently transfer to atmospheric oxygen. However, only tiny differences in PA signal were observed among Rh, Cu, Cr, and Fe ions in DB-PA measurements (Fig. 4), though an appreciable difference was seen in photocatalytic evaluation (Fig. 3). DB-PA experiments were carried out in the presence of EtOH instead of acetaldehyde under UV irradiation. Therefore, the difference in activity improvements by metal ions for oxidation of EtOH is guite small because EtOH is more easily oxidized compared to acetaldehyde. Acetic acid, which is difficult to oxidize, is accumulated as an intermediate compound during oxidation of acetaldehyde. [44] These results suggest that the reoxidation rate of $M^{(n-1)+}$ ions is much faster than the photoexcited electron capturing rate by M^{n+} ions adsorbed on S-doped TiO₂ ($k_3 > k_4$).

Only small PA intensity differences between pure S-doped TiO_2 and S-doped TiO_2 adsorbed with Co, Cr, or Ni ions were observed as shown in Fig. 4. One possible reason for this is that the rate of electron transfer from $M^{(n-1)+}$ ions to OS is quite slow. Therefore, most of the metal ions adsorbed on S-doped TiO_2 were reduced very quickly by trapping photoexcited electrons. Under this condition, the behavior of PA intensity is thought to approach the level of bare S-doped TiO_2 .

3.4. DB-PA spectra of S-doped TiO₂ loaded with metal ions under VIS irradiation

Figure 5 shows PA signals of S-doped TiO₂ and S-doped TiO₂- M^{n+} as a function of irradiation time under visible light irradiation in the presence of N₂ + EtOH. PA measurements were carried out under deaerated conditions in order to estimate the accumulations of electrons in TiO₂ particles. The PA signal of S-doped TiO₂- M^{n+} increased even under photoirradiation of ca. 470 nm and was much larger than that of S-doped TiO₂. These results suggest that metal ions absorbed visible light of ca. 470 nm to generate excited states. The excited states of metal ions injected electrons into the S-doped TiO₂, resulting in reduction of Ti⁴⁺ to Ti³⁺. In addition, photoexcitation of metal ions adsorbed on the outside surface of S-doped TiO₂ occurred preferentially compared to that of S-doped TiO₂ under visible light irradiation. The mechanism of Ti³⁺ generation can be explained in detail as follows: (1) photoexcited metal ions injected electrons into TiO₂ and the metal ions reached an oxidized state $(M^{(n+1)+})$; (2) the injected electrons reduced Ti⁴⁺ to Ti³⁺; and (3) the oxidized state of metal ions $(M^{(n+1)+})$ resulted in oxidation of EtOH to recover the initial state of metal ions (M^{n+1}) .

The amount **s** of injected electrons estimated from DB-PA measurements (Ni²⁺ > Rh³⁺ > Cu²⁺ > Fe³⁺ > Cr³⁺ > Co²⁺) did not show any relationship with photocatalytic activity as shown in Fig. 3 (Fe³⁺ > Rh³⁺ > Cu²⁺ \approx Ni²⁺ \approx Co²⁺ \approx Cr³⁺). They also have no relationship with photoabsorption properties as shown in Fig. 1 (Rh³⁺ > Fe³⁺ Cu²⁺ \approx Ni²⁺ \approx Co²⁺ at 470 nm). The excited states of metal ions resulted in injection of electrons into S-doped TiO₂ during visible light irradiation. The oxidized metal ions oxidize acetaldehyde to recover the initial state of metal ions. At the same time, electrons injected by metal ions in the excited states were transferred to the ground state of metal

ions adsorbed on the dark sites of S-doped TiO₂. In addition, the electrons accumulated in metal ions transferred to OS, resulting in recovery of the initial state of metal ions. However, the efficiency of transfer of accumulated electrons in S-doped TiO₂ to OS via metal ions adsorbed on the surface of S-doped TiO_2 is dependent on the kind of metal ion. When the efficiency is low, the PA intensity, which reflects the electrons accumulated in TiO₂, remains high. PA intensity is reduced to a rather low level if the electrons in metal ions efficiently transfer to OS. In order to elucidate the behavior of electrons in metal ions, DB-PA measurements were also carried out under aerated conditions. Under these conditions, the efficiency of transfer of accumulated electrons in S-doped TiO₂ to oxygen via metal ions on S-doped TiO_2 was evaluated, and the results are shown in Fig. 6. Among the metal ions, PA intensity values of Fe and Rh drastically decreased because the electrons accumulated in metal ions efficiently transfer to oxygen, while no PA intensity change was observed in the case of Ni ions. This indicates that Fe and Rh ions play two roles, as a photosensitizer and as an electron acceptor; they worked as an electron capturer and an electron releaser to oxygen. On the other hand, Ni ions act only as a photosensitizer, resulting in accumulation of photoexcited electrons in S-doped TiO₂.

Under this condition, the photocatalytic reaction is gradually slowed down, as shown in Fig. 3.

A typical reaction mechanism for degradation of organic compounds over S-doped TiO_2 adsorbed with metal cations under UV or VIS light irradiation is shown in Scheme 1.

Conclusions

We successfully developed visible light-sensitive rutile S-doped TiO₂ adsorbed with metal ions. Diffuse reflectance spectra showed that the absorption edge of S-doped TiO₂ was shifted to a longer wavelength after doping treatment. Photoabsorption of S-doped TiO₂ in the visible region increased with adsorbing treatment of metal ions on S-doped TiO₂ due to absorption in the visible region of metal ion complexes. S-doped TiO₂ having rutile phase showed a photocatalytic activity for oxidation of acetaldehyde under a wide range of irradiation light including UV and VIS light. The photocatalytic activity of S-doped TiO₂ adsorbed with metal ions was remarkably improved. The improvement of photocatalytic activity is dependent on the kind of metal ion. Under UV light irradiation at wavelengths longer than 350 nm, Fe-adsorbed S-doped TiO₂ showed the highest level of photocatalytic activity because Fe³⁺ ions adsorbed on S-doped TiO₂ efficiently trapped the photoexcited electrons, resulting in an increase in efficiency of charge separation. The order of efficiency of metal ions for photocatalytic activity improvement is as follows: $Fe^{3+} > Rh^{3+} > Cu^{2+} > Ni^{2+} > Co^{2+} > Cr^{3+}$. The tendency is related to their redox potentials ($Fe^{3+}/Fe^{2+} = 0.771$ V, $Rh^{3+}/$ Rh = 0.758 V, $Cu^{2+}/Cu^{+} = 0.159$ V, $Ni^{2+}/Ni = -0.257$ V, $Co^{2+}/$ Co = -0.272 V, $Cr^{3+}/Cr^{2+} = -0.424$ V vs. SHE).

On the other hand, under visible light irradiation at wavelengths longer than 420 nm, Fe-adsorbed S-doped TiO₂ also showed the highest level of photocatalytic activity because the excited state of Fe^{3+} ions resulted in efficient injection of S-doped TiO₂. In addition, electrons injected into S-doped TiO₂ were quickly trapped by Fe^{3+} , and the trapped electrons efficiently transferred to OS such as oxygen under aerated conditions.

Acknowledgement

This work was partly supported by a Grant-in-Aid for Scientific Research from the New Energy and Industrial Technology Development Organization, Japan. This work was also partly supported by a grant of Knowledge Cluster Initiative implemented by the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

References

- [1] M. R. Hoffman, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 95 (1995) 69-96.
- [2] F. Soana, M. Strini, L. Cermenati, A. Albini, J. Chem. Soc. Perkin Trans. 2 2000(2000) 699-704.
- [3] T. Ohno, D. Haga, K. Fujihara, K. Kaizaki, M. Matumura, J. Phys. Chem. B 101 (1997) 6415-6419.
- [4] A. Fujishima, K. Honda, Nature 238 (1972) 37-38.
- [5] A. Fujishima, T. N. Rao, D. A. Truk, Electrochimica acta 45 (2000)4683-4690.
- [6] L. Cao, F. Spiess, A. Huang, S. L. Suib, T. N. Obee, S. O. Hay, J. D. Freihaut, J.Phys. Chem. 103 (1999) 2912-2917.
- [7] E. J. Wolfrum, J. Huang, D. M. Blake, P. C. Maness, Z. Huang, J. Fiest, W. A. Jacoby, Environ. Sci. Technol. 36 (2002) 3412-3419.
- [8] J. Theurich, D. W. Bahnemann, R. Vogel, F. E. Dhamed, G. Alhakimi, I. Rajab, Res. Chem. Intermed. 23 (1997) 247-274.

[9] S. Yanagida, Y. Ishimaru, Y. Miyake, T. Shiragami, C. Pac, K. Hashimoto, T. Sakata, J. Phys. Chem. 93 (1989) 2576-2582.

[10] B. Ohtani, J. Kawaguchi, M. Kozawa, S. Nishimoto, T. Inui, J. Chem. Soc.,Faraday Trans. 91 (1995) 1103-1109.

[11] T. Ohno, T. Kigoshi, K. Nakabeta, M. Matsumura, Chem. Lett. (1998) 877-878.

[12] T. Ohno, K. Nakabeya, M. Matsumura, J. Catal. 176 (1998) 76-81.

- [13] R. W. Matthews, J. Phys. Chem. 91 (1987) 3328-3333.
- [14] M. Fujihira, Y. Satoh, T. Osa, Nature 293 (1981) 206-208.
- [15] M. Dusi, C. A. Muller, T. Mallat, A. Baiker, Chem. Commun. (1999) 197-198.
- [16] T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Appl. Catal. A, Gen. 244(2003) 383-391.
- [17] T. Ohno, T. Mitsui, M. Matsumura, J. Photochem. Photobiol. A, Chem. 160,(2003) 3-9.
- [18] M. Anpo, Y. Ichihashi, M. Takauchi, H. Yamashita, Res. Chem. Intermed. 24 (1998) 143-149.
- [19] N. ZhanpeisovM. Anpo, M. Theoret. Chem. Acc. 114 (2005) 235-241.

- [20] J. Zhu, F. Chen, H, Zhang, H. Chen, M. Anpo, J. Photochem. Photobiol. A, Chem.180 (2006) 196-204.
- [21] A. Kudo, K. Domen, K. Maruya, T. Ohnishi, Chem. Phys. Lett. 113 (1987)517-519.
- [22] K. Sayama, H. Arakawa, J. Photochem. Photobiol. A, Chem. 94 (1996) 67-76.
- [23] K. Domen, A. Kudo, T. Ohnishi, N. Kosugi, H. Kuroda, J. Phys. Chem. 90 (1986)292-295.
- [24] J. M. Lehn, J. P. Sauvage, R. Sissel, L. Hilaire, Isr. J. Chem. 22 (1982) 168-173.
- [25] Y. Sakata, T. Yamamoto, T. Okazaki, H. Imamura, S. Tsuchiya, Chem. Lett. 1998 (1998) 1253-1254.
- [26] H. Kato, A. Kudo, J. Phys. Chem. B. 106 (2002) 5029-5034.
- [27] T. Ishii, H. Kato, A. Kudo, J. Photochem. Photobiol. A, Chem. 163 (2004) 181-186.
- [28] T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura, J. Photochem.Photobiol. A, Chem. 127 (1999) 107-110.
- [29] R. Konta, T. Ishii, A. Kudo, J. Phys. Chem. B, 108 (2004) 8992-8995.
- [30] W. Choi, A. Termin, M. R. Hoffmann, J. Phys. Chem. 98 (1997) 13669-13679.

- [31] B. W. Faughnan, Phys. Rev. B. 4 (1971) 3623-3635.
- [32] E. E. Krasovskii, W. Schottke, Phys. Rev. B. 60 (1999) R16261-R16254.
- [33] T. Ohno, Y. Masaki, S. Hirayama, M. Matsumura, J. Catal. 204 (2001) 163-168.
- [34] S. Ikeda, C. Abe, T. Torimoto, B. Ohtani, Electrochemistry 70 (2002) 442-445.
- [35] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269-271.
- [36] T. Umebayashi, T. Yamaki, H. Ito, K. Asai, Appl. Phys. Lett. 81 (2002) 454-456.
- [37] S. U. M. Khan, M. Al-Shahry, W. B. Ingler Jr., Science 297 (2002) 2243-2245.
- [38] M. Anpo, M. Takeuchi, J. Catal. 216 (2003) 505-516.
- [39] A. Fuerte, M. D. Hern'andez-Alonso, A. J. Maira, A. Mart'inez-Arias, M.
- Fern'andez-Garc'1a, J. C. Conesa, J. Soria, G. Munuera, J. Catal. 212 (2002) 1-9.
- [40] T. Ohno, T. Mitsui, M. Matsumura, Chem. Lett 32 (2003) 364-365.
- [41] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Appl.Catal. A., Gen. 265 (2004) 115-121.
- [42] T. Ohno, T. Tsubota, M. Toyofuku, R. Inaba, Catal. Lett. 98 (2004) 255-258.
- [43] T. Ohno, Z. Miyamoto, K. Nishijima, H. Kanemitsu, F. Xueyuan, Appl. Catal.A, Gen. 302 (2006) 62-68.

[44] K. Nishijima, B. Ohtani, X. Yan, T. Kamai, T. Chiyoya, N. Murakami, T. Ohno,Chem. Phys. 339 (2007) 64-72.

[45] N. Murakami, O.O.P. Mahaney, R. Abe, T. Torimoto, B. Ohtani, J. Phys. Chem. C, 111 (2007) 11927-11935.

[46] Y. Nosaka, M. Matsushita, J. Nishino, AY Nosaka, Sci. Tech. Adv. Mater. 6(2005) 143-148.

[47] M. R. Nimlos, E. J. Wolfrum, M. K. Brewer, J. A. Fennell, and G. Bintner, Environ.Sci. Technol., 30 (1996) 3102-3110.

Figure 1. Diffuse reflectance spectra of pure TiO_2 having rutile phase, S-doped TiO_2 and S-doped TiO_2 samples adsorbed with metal ions (a); and magnified version of Figure 1 (a) at the range between 0 and 0.4 in absorbance (b).

Figure 2. Amount of CO_2 evolved by oxidation of acetaldehyde over pure S-doped TiO_2 and S-doped TNT samples loaded with metal ions as a function of photoirradiation time under UV light irradiation at wavelengths longer than 350 nm.

Figure 3. Amount of CO_2 evolved by oxidation of acetaldehyde over pure S-doped TiO_2 and S-doped TiO_2 samples adsorbed with metal ions as a function of photoirradiation time under VIS light irradiation at wavelengths longer than 440 nm.

Figure 4. PA spectra of pure S-doped TiO_2 and S-doped TiO_2 samples adsorbed with metal ions at the incident light of center wavelength at 365 nm under aerated conditions.

Figure 5. PA spectra of pure S-doped TiO_2 and S-doped TiO_2 samples adsorbed with metal ions at the incident light of center wavelength at 470 nm under nitrogen atmosphere.

Figure 6. PA spectra of pure S-doped TiO_2 and S-doped TiO_2 samples adsorbed with metal ions at the incident light of center wavelength at 470 nm under aerated conditions.

Scheme 1. Reaction mechanism for degradation of organic compounds over S-doped TiO_2 adsorbed with metal cations under UV or VIS light irradiation.

Figure 1. T. Ohno et al.

Fig. 3. T. Ohno et al.

Fig. 4. T. Ohno et al.

Fig. 5. T. Ohno et al.

Fig. 6. T. Ohno et al.

Scheme 1. T. Ohno et al.