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Abstract

In this paper, we investigate isomorphic factorizations of the Kronecker product
graphs. Using these relations, it is shown that (1) the Kronecker product of the
d-out-regular digraph and the complete symmetric digraph is factorized into the
line digraph, (2) the Kronecker product of the Kautz digraph and the de Bruijn
digraph is factorized into the Kautz digraph, (3) the Kronecker product of binary
generalized de Bruijn digraphs is factorized into the binary generalized de Bruijn
digraph.

Key words: interconnection networks, isomorphic factorization, Kronecker
product, line digraphs.

1 Introduction

The de Bruijn digraph and the Kautz digraph have been noted as a model
for interconnection networks for massively parallel computers because of their
good properties such as small diameter, high connectivity and easy routing
(see [2]).

Isomorphic factorizations of graphs or digraphs has been extensively studied
by Harary et al. [4–6]. In their studies, while directed graphs were pointed out
to be objects of research, only very simple digraphs have been treated [5]. In
[8,9], it was shown that de Bruijn digraphs and Kautz digraphs were nice ob-
jects for isomorphic factorization of directed graphs. In [8], they investigated
several relations among the Kronecker product, line digraphs, and isomorphic
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factorizations, which offer tools for algebraic manipulation of digraphs. In this
paper, based on such tools, we show several results on isomorphic factoriza-
tions. First, the Kronecker product of the d-out-regular digraph and the com-
plete symmetric digraph is factorized into the line digraph of d-out-regular
digraph. Secondly, the Kronecker product of the Kautz digraph and the de
Bruijn digraph is factorized into the Kautz digraph. Thirdly, the Kronecker
product of binary generalized de Bruijn digraphs is factorized into the binary
generalized de Bruijn digraph.

The paper is organized as follows. In Section 2, we give terminology and known
results. Section 3 is devoted to some results on isomorphic factorizations of
Kronecker product of graphs. Section 3 is constructed by three subsections,
Subsection 3.1 shows the result on the line digraph of the d-out-regular di-
graph. In subsection 3.2 and 3.3, we consider the isomorphic factorization of
specific graph class, namely, the Kautz digraph and the binary generalized de
Bruijn digraph. Final remarks in Section 4 conclude the paper.

2 Preliminaries

Let G be a digraph. The vertex set of G and the arc set of G are denoted by
V (G) and A(G), respectively. For H ⊆ A(G), the edge induced subdigraph 〈H〉
is a subdigraph of G whose vertex set consists of those vertices of G incident
with at least one edge of H and whose edge set is H. The complete digraph of
order n is a digraph such that every vertex is adjacent to all vertices (including
itself). We denote this graph by K+

n . The complete symmetric digraph K∗
n of

order n is obtained from K+
n by removing all selfloops. The set of vertices of

G adjacent from v is denoted by Γo(v), and the arc set Ao(v) is defined by
Ao(v) = {(v, w)|w ∈ Γo(v)}. For all vertices v, G is d-out-regular if |Γo(v)| =
d. A factor of G is a spanning subdigraph of G, that is, a subdigraph of G whose
vertex set is equal to V (G). If H ∼= H0

∼= H1
∼= · · · ∼= Hn are pairwise arc-

disjoint factors of G such that A(G) =
⋃n

i=0 A(Hi), then G has an isomorphic
factorization into H and H is said to divide G and we denote it by H |G. Let
G1, G2 be digraphs. A digraph G1 is isomorphic to a digraph G2 if there exists a
one-to-one mapping φ, called an isomorphism, from V (G1) to V (G2) such that
φ preserves adjacency and nonadjacency; that is, (u, v) ∈ A(G1) if and only
if (φ(u), φ(v)) ∈ A(G2). An automorphism of a digraph G is a permutation
α on V (G) such that (u, v) is an arc of G if and only if (α(u), α(v)) is an
arc of G. Let G, H be digraphs. The Kronecker product of G and H, denoted
by G ⊗ H, is a digraph with the vertex set V (G) × V (H) and the arc set
{((u, v), (w, x))|(u, w) ∈ A(G) and (v, x) ∈ A(H)}. Let G be a digraph. The
line digraph L(G) of G is a digraph whose vertex set V (L(G)) is the arc set
A(G) of G. In L(G), a vertex (u, v) is adjacent to (x, y) if and only if v = x. We
can say that L(G) is obtained from G by applying the line digraph operation
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L. Then Lm(G) denotes the digraph obtained from G by applying the line
digraph operation m times.

Lemma 1 If G is a d-out-regular digraph, then L(G) is a d-out-regular di-
graph.

PROOF. Let (u, v) ∈ A(G) and Γo(v) = {v0, v1, . . . , vd−1}. Then, (u, v) ∈
V (L(G)) is adjacent to the vertices {(v, v0), (v, v1), . . . , (v, vd−1)}. Since |Γo((u, v))| =
d , L(G) is d-out-regular. 2

Shibata et al. [8] showed useful relationships among the Kronecker product,
the line digraph operation and the isomorphic factorization.

Proposition 2 [8] Let G, G′, H and H ′ be digraphs such that G′ |G and
H ′ |H. Then,

G′ ⊗ H ′ |G ⊗ H.

Proposition 3 [8] Let G, H be digraphs. Then

L(G ⊗ H) ∼= L(G) ⊗ L(H).

Let Zd be a set of integer {0, 1, . . . , d − 1}. Symbols 	d and ⊕d are used
to indicate the modulo d subtraction and addition, respectively.The d-ary
n-dimensional de Bruijn digraph B(d, n) is a digraph with the vertex set
{x0x1 · · ·xn−1|xi ∈ Zd , 0 ≤ i ≤ n − 1} and the arc set defined as follows:
there exists an arc from vertex v0v1 · · · vn−1 to u0u1 · · ·un−1 if and only if
vi+1 = ui, 0 ≤ i ≤ n − 2. The de Bruijn digraph B(d, n) can be defined by
using the line digraph operations as follows:

B(d, n) = Ln−1(K+
d ).

The d-ary n-dimensional Kautz digraph K(d, n) is a digraph with the vertex
set {x0x1 · · ·xn−1|xi ∈ Zd+1 , xi 6= xi+1 , 0 ≤ i ≤ n−1} and the arc set defined
as follows: there exists an arc from vertex v0v1 · · · vn−1 to u0u1 · · ·un−1 if and
only if vi+1 = ui, 0 ≤ i ≤ n− 2. The Kautz digraph K(d, n) can be defined by
using the line digraph operations as follows:

K(d, n) = Ln−1(K∗
d+1).

The d-ary n-dimensional generalized de Bruijn digraph GB(n, d) is a digraph
with the vertex set Zn. The vertex x is adjacent to the vertices y ≡ dx + a
(mod n) where 0 ≤ a ≤ d − 1. The d-ary n-dimensional generalized Kautz
digraph GI(n, d) is a digraph with the vertex set Zn. The vertex x is adjacent
to the vertices y ≡ −dx − a (mod n) where 1 ≤ a ≤ d.
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On other terminology and notation, we refer to [3].

In [8] and [9], several results on isomorphic factorization of de Bruijn digraphs
have been shown.

Lemma 4 On isomorphic factorizations related to the de Bruijn digraph, fol-
lowing statements hold.

(1) [9] B(d, D1 + D2) |B(d, D1) ⊗ B(d, D2).
(2) [8] B(d1, D) ⊗ B(d2, D) ∼= B(d1d2, D).

In section 3, we show several further results on isomorphic factorizations of
digraphs.

3 Isomorphic factorizations of Kronecker product of digraphs

3.1 Isomorphic factorization into line digraphs

In this section, we treat results on line digraphs of d-out-regular digraphs.

Theorem 5 Let d be a positive integer and G a d-out-regular digraph. Then

L(G) |G ⊗ K+
d .

PROOF. Let Ao(u) = {u0, u1, . . . , ud−1}. For a vertex u ∈ V (G), if ui =
(u, v) ∈ A(G), then (ui, vj) ∈ A(L(G)) for any j ∈ Zd. Let V (K+

d ) be Zd and
(u, v) ∈ A(G). Then ((u, x), (v, y)) ∈ A(G⊗K+

d ) for any x, y ∈ Zd. For s ∈ Zd,
a mapping fs : V (L(G)) 7→ V (G ⊗ K+

d ) is defined as follows:

fs(ui) = (u, i ⊕d s).

For any s, fs is bijective. Moreover if (ui, vj) ∈ A(L(G)), then (fs(ui), fs(vj)) =
((u, i ⊕d s), (v, j ⊕d s)) ∈ A(G ⊗ K+

d ). Next, let the subset As of A(G ⊗ K+
d )

be
As = {(fs(ui), fs(vj)) | (ui, vj) ∈ A(L(G)), i, j ∈ Zd}.

By the definition, each 〈Ai〉 is a spanning subdigraph. We show that for any
s 6= t, As∩At = ∅. Let ui = (u, v) ∈ A(G). Suppose to the contrary, we assume
that there exists an edge ((u, i), (v, j)) ∈ As ∩ At for some s, t. Then, there
also exists an edge ((u, x), (v, y)) 6∈ Ar for any r ∈ Zd. It is for this reason
that in each subset As, there are exactly d edges that can be represented as
((u, ∗), (v, ∗)), while A(G ⊗ K+

d ) has d2 edges. If no subset As includes an
edge ((u, x), (v, y)), then there is no pair i, j such that i + s ≡ x (mod d) and
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j + s ≡ y (mod d). Nevertheless ui = (u, v) ∈ A(G) and (ui, vj) ∈ A(L(G))
for any j ∈ Zd, we have

(fx	di(ui), fx	di(vy	dx⊕di)) = ((u, x), (v, y)) ∈ Ax	di.

This is contradictory to the assumption that ((u, x), (v, y)) does not belong to
any subset Ar. Therefore, A0 ∪A1 ∪ · · · ∪Ad−1 = A(G⊗K+

d ) and for any i 6=
j, Ai ∩ Aj = ∅. 2

We obtain the following corollary by applying Theorem5 repeatedly.

Corollary 6 Let n ≥ m ≥ 0 and d ≥ 1 be integers. If a digraph G is d-out-
regular, then

Ln(G) |Ln−m(G) ⊗ K+
dm .

PROOF. Since digraph G is d-out-regular, from Lemma 1, L(G), L2(G), . . . , Ln−1(G)
are all d-out-regular digraphs. From Theorem 5, Ln(G)|Ln−1(G) ⊗ K+

d and
Ln−1(G)|Ln−2(G) ⊗ K+

d . From Proposition 2,

Ln−1(G) ⊗ K+
d |Ln−2(G) ⊗ K+

d ⊗ K+
d = Ln−2(G) ⊗ K+

d2 ,

Ln−2(G) ⊗ K+
d2 |L

n−3(G) ⊗ K+
d3 ,

...

Ln−m+1(G) ⊗ K+
dm−1 |L

n−m(G) ⊗ K+
dm .

Therefore, Ln(G)|Ln−1(G) ⊗ K+
d |L

n−2(G) ⊗ K+
d2 | · · · |Ln−m(G) ⊗ K+

dm . 2

3.2 Isomorphic factorization into the Kautz digraph

In the previous section, we have treated the line digraph of a d-out-regular
digraph. The Kautz digraph K(d, s + 1) is a line digraph of K(d, s), that is,
K(d, s + 1) ∼= L(K(d, s)). Therefore we have K(d, s + 1) |K(d, s) ⊗ K+

d as a
direct consequence from Theorem5. In this section, we show that the Kautz
digraph K(d, D) divides the Kronecker product of the Kautz digraph and the
de Bruijn digraph.

At first, we give the following description derived from the vertex labeling of
the Kautz digraph in [10].

Proposition 7 [10] The Kautz digraph K(d, n) is isomorphic to the digraph
defined as follows: The vertex set is Zd+1 ×Zn−1

d . A vertex (x, u0u1 · · ·un−2) is
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adjacent to (y, v0v1 · · · vn−2) if and only if y = x ⊕d+1 (u0 ⊕d 1) and vi = ui+1

for 0 ≤ i ≤ n − 3.

PROOF. Let φ be a function from Z2
d+1 onto Zd defined by φ(xy) = (y	d+1

x) 	d 1 for some x, y ∈ Zd+1. A mapping f : V (K(d, n)) → Zd+1 × Zn−1
d is

defined as follows:

f(x0x1 · · ·xn−1) = (x0, φ(x0x1)φ(x1x2) · · ·φ(xn−2xn−1)).

It is easy to verify that f is an isomorphism. 2

Theorem 8 Let d ≥ 2 and s, t be integers. Then,

K(d, s + t) |K(d, s) ⊗ B(d, t).

PROOF. For i ∈ Zd, a mapping fi : V (K(d, s + t)) → V (K(d, s) ⊗ B(d, t))
is defined as follows:

fi((w, v0v1 · · · vs+t−2)) = ((w, v0v1 · · · vs−2), (vs−1	d i)(vs	d i) · · · (vs+t−2	d i)).

For a vertex x = ((w, v0v1 · · · vs−2), vs−1vs · · ·vs+t−2) in V (K(d, s) ⊗ B(d, t)),
we consider an image f−1

i (x) of x. Then,

f−1
i (x) = (w, v0v1 · · ·vs−2(vs−1 ⊕d i)(vs ⊕d i) · · · (vs+t−2 ⊕d i)).

A vertex x has an image therefore fi is a surjection. Moreover |V (K(d, s+t))| =
|K(d, s) ⊗ B(d, t)|, hence fi is a bijection.

Next, we show that fi preserves adjacency. For a vertex x = (w, v0v1 · · · vs+t−2)
in K(d, s+t), vertices adjacent from x can be represented as y = (w⊕d+1(v0⊕d

1), v1v2 · · · vs+t−2α), where α ∈ Zd and fi(x) = ((w, v0v1 · · · vs−2), (vs−1 	d

i)(vs 	d i) · · · (vs+t−2 	d i)), fi(y) = ((w ⊕d+1 (v0 ⊕d 1), v1v2 · · · vs−1), (vs 	d

i) · · · (vs+t−2 	d i)(α 	d i)). Thus a mapping fi preserves adjacency.

A subset Ai of A(K(d, s) ⊗ B(d, t)) is defined by

Ai = {(fi(u), fi(v))|(u, v) ∈ A(K(d, s + t))},

where i ∈ Zd. Clearly, each 〈Ai〉 is isomorphic to K(d, s+ t), and is a spanning
subdigraph of K(d, s) ⊗ B(d, t). We show that for any i 6= j, Ai ∩ Aj = ∅.
Suppose, to the contrary, there exists an edge (x, y) such that (x, y) ∈ Ai ∩Aj

for some i, j. Then, there exists vertices u, u′, v, v′ such that fi(u) = fj(u
′) = x

and fi(v) = fj(v
′) = y. Let x = ((w, x0x1 · · ·xs−2), xs−1xs · · ·xs+t−2) and

y = ((w ⊕d+1 (x0 ⊕d 1), x1 · · ·xs−2(xs−1 ⊕d γ)), xsxs+1 · · ·xs+t−2δ) for some
γ, δ ∈ Zd. Then,
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u =(w, x0x1 · · ·xs−2(xs−1 ⊕d i)(xs ⊕d i) · · · (xs+t−2 ⊕d i)),

v =(w ⊕d+1 (x0 ⊕d 1), x1 · · ·xs−2(xs−1 ⊕d γ)(xs ⊕d i) · · · (xs+t−2 ⊕d i)(δ ⊕d i)),

u′ =(w, x0x1 · · ·xs−2(xs−1 ⊕d j)(xs ⊕d j) · · · (xs+t−2 ⊕d j)),

v′ =(w ⊕d+1 (x0 ⊕d 1), x1 · · ·xs−2(xs−1 ⊕d γ)(xs ⊕d j) · · · (xs+t−2 ⊕d j)(δ ⊕d j)).

We assume that (u, v) ∈ A(K(d, s + t)) and (u′, v′) ∈ A(K(d, s + t)), then we
obtain γ = i and γ = j, which produce a contradiction. 2

Since K(d, D) ∼= LD−1(K∗
d+1) and B(d, D) ∼= LD−1(K+

d ), we obtain the fol-
lowing corollary.

Corollary 9 On isomorphic factorizations related to the Kautz digraph, fol-
lowing statements hold.

(1) K(d, D) |K∗
d+1 ⊗ K+

dD−1 .
(2) K(d, 2s) |Ls−1(K∗

d+1 ⊗ K+
d ).

(3) K(d, s + t) ⊗ B(d′, t) |K(d, s)⊗ B(dd′, t).

(4) K(d, D1 + D2 + · · ·+ Dk) |K(d, D1) ⊗
(

⊗k
i=2 B(d, Di)

)

.

(5) K(d, kD) |K(d, D)⊗ B(d(k−1), D).

PROOF. (1): From Corollary 6. (2): Since Ls−1(K∗
d+1)

∼= K(d, s) and Ls−1(K+
d ) ∼=

B(d, s), we apply Proposition 3 and Corollary 6. (3): From Theorem 8, Propo-
sition 2, and Lemma 4 (1). (4): From Theorem 8 and Lemma 4 (1) repeatedly.
(5): D1 = D2 = · · ·Dk = D in Corollary 9 (4). Then apply Lemma 4 (2). 2

Note that K∗
d+1 ⊗K+

dD−1 is a complete d + 1-partite digraph with each partite
set having dD−1 vertices. In [9], it was shown that the de Bruijn digraph divides
the complete digraph, namely, B(d, D) |K+

dD. A similar result for the Kautz
digraph is obtained by slightly modifying the right-hand side and we have
shown that the Kautz digraph K(d, n) divides some kind of complete digraph
K∗

d+1 ⊗ K+
dD−1 .

3.3 Isomorphic factorization into the binary generalized de Bruijn digraph

In this section, we will consider factorizations on generalized de Bruijn di-
graphs. Since L(GB(n, d)) ∼= GB(dn, d) has been shown in [7], we have GB(dn, d) |GB(n, d)⊗
K+

d as a direct consequence from Theorem 5. Now, we want to generalize this
formula by replacing K+

d to GB(m, d).

For real x, bxc denotes the greatest integer less than or equal to x.
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Lemma 10 For positive integers m, n and x,
⌊

x mod mn

n

⌋

=
⌊

x

n

⌋

mod m.

PROOF. We remember that x mod n = x − nbx/nc. Then,

⌊

x mod mn

n

⌋

=

⌊

x − mnbx/mnc

n

⌋

=
⌊

x

n
− m

⌊

x

mn

⌋⌋

=
⌊

x

n

⌋

− m
⌊

x

mn

⌋

=
⌊

x

n

⌋

mod m.

2

Lemma 11 Let m, n ≥ d ≥ 2 be integers. Then

GB(mn, d) ⊆ GB(m, d) ⊗ GB(n, d).

PROOF. We define a bijection σ from Zmn to Zm × Zn so that

σ : x 7→
(⌊

x

n

⌋

, x mod n
)

.

Note that σ−1
(

(a, b)
)

= na + b. Let H be a digraph with the vertex set

V (GB(m, d)⊗GB(n, d)) and the arc set {(σ(x), σ(y))|(x, y) ∈ A(GB(mn, d))}.
Then, a vertex (a, b) of H is adjacent to vertices

σ
(

(d(na + b) + r) mod mn
)

=

(

⌊

(d(na + b) + r) mod mn

n

⌋

, (db + r) mod n

)

=

(

(

da +
⌊

db + r

n

⌋)

mod m, (db + r) mod n

)

,

where 0 ≤ r ≤ d − 1. Since db + r ≤ d(n − 1) + (d − 1), b(db + r)/nc ≤
b(dn − 1)/nc = d − 1. That is, H is a factor of GB(m, d) ⊗ GB(n, d). 2

We obtained that GB(mn, d) is a factor of GB(m, d)⊗GB(n, d) for any d ≥ 2,
but the next question is what is the structure of GB(m, d) ⊗ GB(n, d) related
to GB(mn, d). We investigate the case for d = 2, the binary generalized de
Bruijn digraphs.
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Lemma 12 A function α : x 7→ n− 1− x is an automorphism of the digraph
GB(n, d). Moreover, if d = 2, it swaps the two sets of arcs (x, dx) and (x, dx+
1), x ∈ Zn.

PROOF. For x ∈ Zn and r ∈ Zd, an arc (x, (dx + r) mod n) of the digraph
GB(n, d) is mapped to (n − 1 − x, (−dx − r − 1) mod n) by α. The vertex
n − 1 − x of GB(n, d) is adjacent to vertices (−dx − d + r′) mod n, r′ ∈ Zd.
Since −d ≤ −r − 1 ≤ −1 and −d ≤ −d + r′ ≤ −1, the function α is an
automorphism of GB(n, d). If d = 2, the set of arcs {(x, 2x mod n) | x ∈ Zn}
is mapped to the set of arcs {(n− 1− x, n − 1− (2x mod n)) | x ∈ Zn} which
is equal to {(x, (2x + 1) mod n) | x ∈ Zn}. 2

Theorem 13 Let m ≥ 2 and n ≥ 2 be integers. Then,

GB(mn, 2) |GB(m, 2) ⊗ GB(n, 2).

PROOF. We define τ as a permutation on Zm × Zn so that τ : (x, y) 7→
(n − 1 − x, y). It is easy to see that τ is an automorphism of GB(m, 2) ⊗
GB(n, 2). From Lemma 11, the digraph GB(mn, 2) can be embedded into the
digraph GB(m, 2)⊗GB(n, 2) by the function σ. Let H1 be a digraph with the
vertex set V (GB(m, 2))⊗ V (GB(n, 2)) and the arc set {(σ(x), σ(y)) | (x, y) ∈
A(GB(mn, d))}. We notice that a vertex (a, b) of H1 is adjacent to two vertices
(2a + s, 2b) and (2a + s, 2b + 1), where s is either zero or one. Let H2 be a
digraph obtained from H1 by applying the permutation τ . From Lemma 12,
a vertex (a, b) of H2 is adjacent to vertices (2a + s′, 2b) and (2a + s′, 2b + 1),
where s′ = (s + 1) mod 2. Thus, H1 and H2 do not have a common arc. 2

Applying Proposition 2 to Theorem 13, we have the next corollary. This corol-
lary shows a result about factorization into the digraph GB(n, d) with respect
to the prime factorization of the order n, while Shibata et al. [8] investigated
the factorization into the de Bruijn digraph B(d, D) with respect to the prime
factorization of the degree d.

Corollary 14 Let N be an integer. Assume that N is factorized into n1n2 · · ·nk

for ni ≥ 2 (1 ≤ i ≤ k). Then

GB(N, 2) |
⊗

1≤i≤k

GB(ni, 2).

We may have the similar result on the generalized Kautz digraph using the
same embedding functions.
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Corollary 15 Let N be an integer. Assume that N is factorized into n1n2 · · ·nk

for ni ≥ 2 (1 ≤ i ≤ k). Then

GI(N, 2) |
⊗

1≤i≤k

GI(ni, 2).

4 Concluding remarks

In this paper, we investigated several relations between the Kronecker product
and the line digraph. We showed that the Kronecker product of some d-out-
regular digraph and complete symmetric digraph K∗

d is factorized into the line
digraph of d-out-regular digraph. In addition, we showed that the Kronecker
product of the Kautz digraph and the de Bruijn digraph is factorized into
the Kautz digraph, the Kronecker product of binary generalized de Bruijn
digraphs is factorized into the binary generalized de Bruijn digraph.

Hamilton decomposition is one of the most simple isomorphic factorization.
The existence of a Hamilton decomposition allows the message traffic evenly
distributed across the network. Hamilton decomposition of graphs has been
studied in [1], etc. In [8], isomorphic factorization problem is applied to fault-
tolerance of interconnection networks. For reasons mentioned above, it is ex-
pected that isomorphic factorization is effective to construct parallel algo-
rithms, especially message passing, on interconnection networks.
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the hypercube? in: F.André and J.P.Verjus, eds., Hypercube and Distributed
Computers, pp.279-293 (North Holland,Amsterdam 1989).

[3] G. Chartrand and L. Lesniak, Graphs & Digraphs, fourth ed. ,
Chapman&Hall/CRC, 2004.

10



[4] F. Harary, R. W. Robinson, N. C. Wormald, Isomorphic factorisations I: complete
graphs, Trans. Amer. Math. Soc 242 (1978) 423–260.

[5] F. Harary, R. W. Robinson, N. C. Wormald, Isomorphic factorisations V: directed
graphs, Mathematika 25 (1978) 279–285.

[6] F. Harary, R. W. Robinson, Isomorphic factorisations X: unsolved problems, J.
Graph Theory 9 (1985) 67–86.

[7] M. Imase, T. Soneoka, K. Okada, Connectivity of regular directed graphs with
small diameters, IEEE Trans. Comput., C-34, pp.267–273, 1985.

[8] Y. Shibata, T. Hasunuma, S. Fukuda, Isomorphic factorization of de Bruijn
digraphs, Discrete Math., 218 (2000) 199–208.

[9] Y. Shibata, Y. Gonda, Extension of de Bruijn and Kautz graph, Comput. Math.
Appl., 30 (1995) 51–61.

[10] Y. Tanaka, Y. Shibata, The Cayley digraph associated to the Kautz digraph,
submitted.

11


