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For several modern nucleon-nucleon potentials state-of-the-art Faddeev calculations are carried out for the
nd total cross section between 10 and 300 MeV projectile energy and compared to new high precision
measurements. The agreement between theory and data is rather good, with an exception at higher energies
where a 10% discrepancy builds up. In addition the convergence of the multiple scattering series incorporated
in the Faddeev scheme is studied numerically with the result that rescattering corrections remain important.
Based on this multiple scattering series the high energy limit of the nataross section is also investigated
analytically. In contrast to the naive expectation that the ttatross section is the sum of thg andnn total
cross sections we find additional effects resulting from the rescattering processes, which have different signs
and a different behavior as a function of the energy. A shadowing effect in the high energy limit only occurs
for energies higher than 300 MeV. The expressions in the high energy limit have qualitatively a similar
behavior as the exactly calculated expressions, but can be expected to be valid quantitatively only at much
higher energieq.S0556-281®9)03506-3

PACS numbd(s): 13.75.Cs, 21.36:x, 21.45:+v, 25.10+s

[. INTRODUCTION In order to obtain more insight into the behavior of the
multiple scattering series for the totald cross section we
For three-nucleon scattering the total neutron-deuteroprovide analytical high energy expansions for the first few
(nd) cross section is the simplest observable, since it is interms. Compared to the most naive picture, which in the high
tegrated over the angular distribution in elastit scattering  energy limit would equate the totald cross section with the
and all the angular and continuous energy distributions of theum of the total cross sections for neutron-protap)(and
three-nucleon (Bl) breakup process. If the theory does notneutron-neutronr(n) scattering, the rigorously calculated re-
agree with experiment, one has to expect that for some indisult is smaller for energies up to 300 MeV. Obviously shad-
vidual observables even stronger discrepancies might exisbwing effects can be expected. However, rescattering pro-
On the other hand if there is agreement, possible discrepamesses mag priori also enhance the totad cross section. It
cies in some individual unpolarized differential cross sec-is shown that rescattering processes of second order in the
tions have at least to average out. It is the aim of this articleNN t matrix lead to shadowing and antishadowing effects. In
to compare precise new data between 10 and 300 MeV neprinciple these features are known for thi 3cattering am-
tron laboratory energy for the totald cross sectiofl] with plitude from studies in the framework of Glauber theory
fully converged Faddeev calculations based on the mog2-5|. In contrast to this formulation we start from a multiple
modern nucleon-nucleorN(N) forces. The calculations are scattering series, which implies that it is an ordering accord-
based on a strictly nonrelativistic treatment. Despite this aping to powers of thé\N t matrix. The analytical steps lead-
parent restriction, we think that this comparison of theorying to the high energy limit of the first leading terms are
and experiment will be an important benchmark result. carried out in well defined integrals. There are a@riori
A first presentation of our results appeared in Héi. assumptions involved about the scattering process, such as,
Here we want to give a more detailed description and explice.g., diffraction type approximations. We observe that in the
ity show that our theoretical results are stable under thérigh energy limit a shadowing effect only occurs for energies
exchange of one of the most moddWN potentials by an- larger than 300 MeV, below this energy the contributions
other one. Detailed studies on the size of the contributions aecond order in th&IN t matrix in the high energy limit
the first few terms in the multiple scattering expansion to theenhance the sum afp andnn total cross sections. Further-
total nd cross section are given. more, it is interesting to see that even at 300 MeV the high
energy limit has quantitatively not been reached yet. Never-
theless, the analytical studies make the underlying physics
*Permanent address: Institute of Physics, Jagellonian Universitynore transparent. An analogous investigation for the much

PL-30059 Cracow, Poland. simpler case of three bosons was performed in F&f.
"Present address: InstitutrfStrahlen und Kernphysik der Univer- The paper is organized as follows. In Sec. Il we briefly
sita Bonn, Nussallee 14-16, D-53115 Bonn, Germany. describe the Faddeev framework, its multiple scattering ex-
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pansion, the leading order terms in tN& t matrix for ob- Furthermore, the operator for elastied scattering is
taining thend total cross section, and the high energy limit given by

of the corresponding expressions. The derivation of the high .

energy limit is explicitly given in Appendixes A and B. In U=PG,"+PT. 2.3
Sec. Il we present the results of our exact Faddeev calculas _ . .
tions in comparison with the data and with the calculations iﬁbur am 1s th‘? evaqunon aqd the .understar'wdmg of the total
the high energy limit. In Sec. IV we study the effect of three-nd cross section, which is given via the optical theorem
nucleon forces (BIF) on the totalnd cross section. In addi- am

tion, a simple estimate of relativistic kinematic effects is a{‘o‘f=—(2w)33—|m(d>|u|d>). (2.9
given. We conclude in Sec. V. 9o

Heremis the nucleon mass amy is the asymptotic momen-

Il. LEADING MULTIPLE SCATTERING TERMS FOR tum of the projectile nucleon relative to the deuteron. Thus
THE nd TOTAL CROSS SECTION solving Eq.(2.1) and using Eq(2.3) yields the desired result
AND HIGH ENERGY LIMIT in the form(2.4).

In order to achieve insight into how the total cross

We solve the Faddeev equations fdv Scattering in the section is formed at high energies we consider the multiple

form scattering expansion of the operatdras given in Eq(2.3).
T|®)=tP|®)+tPG,T|D), (2.1  Thefirst fe_w terms constitute a power series expansion in the
NN t matrix
wheret is the NN t matrix, the operatoP is the sum of a 4
cyclical and an anticyclical permutation of three objects, and U=PG, "+ PtP+PtGPtP+- - - . (2.9

|@) is the initial channel state composed of a deuteron an
the momentum eigenstate of the projectile nucleon. The ful
breakup operator is

t higher energies only a few terms in this expansion may be
sufficient to describe the totald cross section. We evaluate
the different terms in the series numerically and study their

Up=(1+P)T, (2.2  contributions to the total cross section in Sec. lll.

In order to obtain analytical insight into the contributions
defining the physical meaning of theoperator. The itera- to the total cross section we consider the imaginary part of
tion of Eq. (2.1 together with Eq(2.2) generates the mul- the operatorlU as given in Eq.(2.5 between the channel
tiple scattering series for the breakup process. states®) and obtain

2i Im(®|U|D)=(D|U|D)—(D|U|D)*
=(®|P(t—t"P|®)+(P|PtG,PtP— Pt'G} Pt'P|®)+ - - -. (2.6)

Since the zeroth order term iy in (®|U|®) is real, it does The index 1 is the convenient and usual notati@hto
not contribute to the total cross section. The second ordesingle out the pai(23). Similarily we shall denotd,=t3;
term in theNN t matrix in Eq.(2.6) can be rewritten as andt;=t,,. The permutation operatd? is given as

(®|PtGPtP— Pt'GE Pt'P| @) P=P12P2st P13Pas. (2.10

Next we define
=(®|P(t—t")PGutP|®)—(®|P(t—t") PGyt P|d)*

+(®|Pt'P(Gy— G} )tP| D), (2.7

|®>2EP12P23|‘D>1.
| ) 3=P13P2g P);. (2.1))

which will be the starting point for extracting the high en- Applying P to the left and right one obtains for the first term

ergy limit analytically. _ on the right-hand side of E¢2.6)
Let us first concentrate on the first order term of E46)

and work out the permutations. For the channel diaewe (D|P(t—tTP|D)=5(D|t—tT|D),+ (D[t —tT|D),
choose
+o(@t—tT| )5+ (D[t—tT|D)s.
@) =|P)1=]04)230d0)1 (2.8 (2.12

An immediate consequence of Eg.11) and the antisym-

and theNN t matrix as given in the subsyste(®3) metry of the deuteron statey) is

t=1,=1p3. (2.9 [D)3=—Pag®),. (2.13
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Consequently one has
A Pt—tT[®)3= (D[Pt —t") Pog ),
=(@[t—t"|®),,
A Pt=tT[®) = — (P[Pt —t")|D),

= O[t—tT|D)3. (2.1
Here we used the symmetry bfinder exchange of particles
2 and 3.

As a final result we obtain for the first term on the right-
hand side of Eq(2.6), the first order term of the multiple
scattering expansion for thed total cross section

A P[t—tT|®)5}
(2.15

It is a straightforward but tedious algebra to evaluate Eq.
(2.15 in the high energy limit. The derivation is sketched in
Appendix A. Thus, the first order term in the multiple scat-
tering expansion gives in the high energy limit the following
contribution to the totahd cross section of Eq2.4)

(O|P(t—t"P|®)=2{,(D|t—tT|D),+
=2 P|(t—t") (1= Py |D),.

(1)

tot tot
Undtot On +U

(2.19
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the deuteron. Thus E2.16 shows that in the high energy

limit the total cross section fand scattering in first order in

theNN t matrix is indeed given as the sum of the total cross

sections fornp and nn scattering. This corresponds to the
naive expectation, where the projectile nucleon scatters inde-
pendently from both constituents of the deuteron.

Next we study the rescattering processes of second order
in t as given in Eq(2.7). Working out the permutations the

first term of the right-hand side of E(R.7) can be written as

(®|P(t—tT)PGytP|®)

=2{(P[(t—t")Gota(|D)1+|P),) +2{(P(t

—tHGoto(| D)1+ | D)3). (2.17)
Similarly the remaining term in Eq2.7) yields
(®|PtTP(Gy— G¥)tP|d)

= —47i{(P|tTS(E—H)t5(|®),+]|P),)
+ o DItTS(E—Ho)to(| D), +|D)3)}. (2.18

The analytic evaluation of the high energy limit is even
more tedious and is sketched in Appendix B. The leading
contribution of the terms given in E@2.7), second order in

The high energy limit is defined as the projectile momen-t in the multiple scattering expansion to the totad cross
tum g, being much larger than the typical momenta insidesection, is given by

o o= ——2 '*'f drcm(r)cpw(r)(Z C(iy,1—-1cCc(1u',1,-1)
'
14m)2261| 3 11 3 11 21R 3 11 11 2
X1 73| 3qg) @73 Im _ZQOEEnMUZQOEEnp | 72| Re 3% npltl 2%33"P)
1I 3 11 11 21 R 3 11 11 2
R311 3 11 R311 3 11
ZQoiznp|t|Z%§§np . 7 %05 2””|t| Qo5 5NN .

1/4m
+C(11,00C(11’ OO)r——(g—) (2m)8

]

1(
3 11 3 1 1
~ 75~ 5NPltl; o5~ NP

3 11 1 1
2%~ 5 Enp|t|zqo§— >hp

-

1 3
X1m q02 2

nn|t| do—

R 3 1
ZQOE_
a

1 1
2905~ Enp|t|zqo— 55MP

o

1 3 1 1
Enpltlzqoz—znp .
1 3 1 1

o))

2 | 3 11 3 11
+Im| = 7a05 5nPltI7do5 5NP .

1

]

11 R311 3 11 R311 3 1 1
5NN a+ ZQozznphﬁ%ginp . ZQoi—Enrﬂﬂz%E—Enn .
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11

R 3 1 R 3 1 1 3 1 1
+ ZQozz””“ﬁQoiznn . ZQoz‘g”Mﬂong‘z”D .
3 11 3 11 R 3 3 1 1
~ %05 5MPltl;do5 5P . — 2% 5 5NPltl;do5 — 5np .

R 3 11 3 11 R 3 11 3 11
+Re| 7oy~ 5 NPt do— 5 50p Re| 3% ZMNft];do— 5 5nn .

1 @ 1 11 11
- A1 _ rq _a\_| ot = | tot| = —
ppe ? i . drei(ner(r){2 C(11,1,-1)C(11",1-1)5 anp(z 2>ann(2 2)
1 1 1 1 11 1 1
+0’$10‘§ §—§>O'Lor§(§—§ +C(1:U,OO)C(1]J’,00)§ 0';05(55)0;0;(5—5)
1 1 11
*omp z‘z)"m(z E) ]Eofz’wf.”. (219

Here the sum ovel, |’ denotes thes and D-wave contri-  experimental data are obtained by adding the separately mea-
butions of the deuteron wave functiops(r). Further occur sured values of the hydrogen cross section and the
the imaginary and real parts of the forward and backwardleuterium-hydrogen cross section differefité The figure
two-nucleon scattering amplitudesr{ or np) with specified shows that the theoretical calculation describes the data very
spin magnetic quantum numbers in the initial and final stateswell at the lower energies but falls below the data at higher
The indexa denotes antisymmetrization without the factor energies. The calculation begins to underestimate the data
1/\2. The terms of second order imyive rise to Eq(2.19, around 100 MeV by about 4%, and this discrepancy in-
a quite complicated expression exhibiting the interferencesreases to about 11% at 300 MeV.

due to spin and isospin degrees of freedom. The péﬁv)t The calculation presented in Fig. 1 employs in the two-
related to the first square bracket in E8.19 contains real —nucleon subsystem angular momenta upg {@=4. This is

and imaginary parts of theN scattering amplitudes and has sufficient if we are satisfied with a calculational accuracy of
positive as well as negative contributions. Only a numericafl%, which corresponds to the size of the experimental error.
evaluation of these terms as function of the scattering energipt order to demonstrate the dependence of the numerical ac-
can give insight about the size and energy dependence &Hracy of our calculations, we show in Table I for a few
these terms. The pardrl(,z) related to the second square €nergies in the relevant energy regime the convergence of
bracket contains due to the optical theorem a product of two
NN total cross sections. That par{?) is negative and re-
duces the term of first order in the multiple scattering expan- |
sions, the sum of the twbIN total cross sections. This is — Theory
naturally called shadowing effect. Neglecting spin and isos- " Experiment
pin dependencies and consequently Eheave admixture in

the deuteron, and further neglecting the backward amplitudes —,
that expression given in E§2.19 reduces to the much sim- £§
pler ones which are given in Rd6] for three bosons. °

01t
[ll. DISCUSSION OF THE RESULTS OF THE FADDEEV
CALCULATIONS AND OF THE HIGH
ENERGY LIMIT

0.00 100.00 200.00 300.00

For calculating thend total cross section we employ the
E,, [MeV]

most recentNN potentials, namely, CD-Bonf9], AV18

[10], Nijm l'and I1[11]. Th‘?se potentials are optimally fitted FIG. 1. Comparison of the Faddeev calculation for the totl

to the Nijmegen data basis up to 350 MeV nupleon laboragygss section based on the CD-Bd@i potential with datd1]. The

tory energy. The Faddeev equati@hl) is solved in momen-  experimental values for the total cross section for deuterium were
tum space in a partial wave decomposed form. For a descrigptained by adding the separately measured values of the hydrogen
tion of the technical details of the calculations we refer tocross section and the deuterium-hydrogen cross section difference
Ref.[8]. In Fig. 1 we compare the calculatedl total cross (for details see Ref[1]). Error bars are omitted since they are
section based on the CD-Bonn potential with the data. Themaller than the dot size.
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TABLE I. The convergence of the calculated totadl cross
section with increasing,,,, at selected energies. The CD-Bonn po-

tential has been used ad\dN interaction. — Full Cale
tot ) —-=- 43, order
Ejar (MeV) ong (Mb) N\ ——= +2. order
jmax= 1 J max= 2 J max— 3 jmax= 4 J max= D 0.1 F e order
10.0 954.9 1038.0 1035.2 1037.3 1036.7 =
60.0 141.0 177.8 177.0 177.4 177.3 :
140.0 43.0 71.6 73.2 74.7 74.6
200.0 31.7 55.8 58.3 60.5 60.4
260.0 29.7 49.4 52.2 54.7 54.7
300.0 29.9 46.9 49.7 52.3 52.4
the total cross section as function pf,y, the maximum 500 1000 1500 2000 250.0 3000
angular momentum of the two-nucleon subsystem. In tie 3 E,, [MeV]

calculations two-nucleon angular momenta larger thag o )
are put to zero. We see that=4 is sufficient, if we are _ﬁF'G'tZ' dThe _Cot?”b”t'lct’_nf o thtf totald cross sec:"ct’;‘ o,i tgs
sasfied with an accuracy o 1%. Next we demonstate (W rs 1 e ki seateis eupansion o e Faccee,
stability of our theoretical result under the exchange of the[ P ' ; . ;
. . : L hen compared with the full Faddeev calculation. The potential em-
NN potentials. This is shown in Table Il. Clearly within an .
L . loyed is the CD-Bonn model.

accuracy of 1% the predictions of those four essentlall)})
phase equivalent potentials agree with each other. From this . he high imit of th
we can conclude that the deviation of the calculation from, AS a next step we conS|defr th e IQI]' lenergy imit of the
the data at higher energies, which is shown in Fig. 1 is indefI'St and jeqong order terms ?1 tf_e mu t('jp € scatterlngl expan-
pendent from th&IN interaction employed. sion afs herlve | in Sec. II.-T ? irst (()jr er term resu tshln a

In order to gain some insight how the totad cross sec- UM © the total cross section fap andnn scattering. The

tion is built up, the individual contributions of first, second Nigh energy limit of the second order term is given in Eq.

and third order in the multiple scattering expansion of the(z'lg)' In this equation we already indicate that this term

elastic amplitude are compared. In Fig. 2 we present the tot&CNSISts of two parts, one which consists of products of real
cross section calculated in first order, successively add th@"d imaginary parts of theIN t matrix, and one which is

contributions of the second and third order and compardU€ to the optical theorem proportional to products\ot
fotal cross sections. The latter term is negative and can be

those results with the full calculation. The figure shows tha
g considered as shadowing effect. The contributions of the dif-

the first order in the multiple scattering expansion is large X . S
than the full result at all energies. The second order contrit€"ent terms of the high energy limit are shown in Fig. 3. We

bution enhances the cross section below about 130 MeV arg[!oW the individual contributions up to a laboratory energy
decreases it at the higher energies. We also see that at en8f-800 MeV in order to get a better insight into their energy
gies below about 200 MeV the third order term is signifi-

cantly larger than the second order term, and thus that re- 10°—
scattering of higher order is very important. Only above 200

MeV the third order contribution becomes negligible. Here

the small correction of the second order rescattering process 107
becomes sufficient to describe together with the first order
contribution the full solution of the Faddeev equation. =
Around 300 MeV the first two terms in the multiple scatter- b
ing expansion of the scattering amplitude are sufficient to
describe the total cross section. 10°

TABLE Il. Stability of the calculated totahd cross sectionr!Sy
under the exchange of theN potentials. The calculations were
performed withj .= 3.

10° I T T |
200 400 600 800

E.o [MeV]

Ejap (MeV) % (mb)
AV18 CD-Bonn Nijml Nijmll
FIG. 3. The contributions of the different orders in theN t

10.0 1039.0 1035.2 1038.0 1038.3  matrix in the high energy limit to the totald cross section. The
100.0 97.7 99.3 98.2 97.5  solid line shows the sum of thep andnn total cross sections. The
140.0 72.2 73.2 72.5 71.8  positive contributiono{®) (dotted ling drops faster in energy than
200.0 57.8 58.3 57.9 57.4  the negative contribution?) (its magnitude is shown as dashed
300.0 49.5 49.7 49.6 49.3 line) of the second order term of the multiple scattering. For details

see Sec. lll.
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dependence. The contribution of the sumogf,+ oy is by
far dominant. The calculation shows thgf’ is always posi-
tive and thus enhances the total cross section. Thus this term Y
could be viewed as an antishadowing effect. The teffiis 010\
always negative. We see tha}?) falls off faster as function W\
of the energy thamr,(lz). This interplay of the different con-
tributions to the high energy limit of the second order term in
the multiple scattering expansion leads to an enhancement of
the totalnd cross section below about 400 MeV and a weak-
ening above compared to the sum of thp and nn total
cross sections. Thus only above 400 MeV the second order 0.04 1 I I i
term in the elastic amplitude leads in the high energy limit to 200 400 600 800
a shadowing effect as it is familiar from older estimates E. [MeV]
within the framework of Glauber theory. This is shown in
Fig. 4. The dotted line gives the contribution of the sum of FIG. 4. The contributions to the totald cross section in the
Onpt Tnn- To this sum the teror(?) is added and given by high energy limit. The dotted line shows the sum of tgandnn
the dashed line and enhances the total cross section. Then waal cross sections. Successively added to this is the positive con-
add in additions{? leading to the solid line. tribution o{?) (dashed lingand the negative contributian?’ (solid

It is now interesting to compare those results obtainedine). For details see Sec. III.
from the first two terms of the multiple scattering expansion
in the high energy limit with the corresponding contributionsin Fig. 3, the second order term in the high energy limit
calculated exactly with the Faddeev framework. This com-€xhibits this behavior only around 400 MeV. Comparing the
parison is summarized in Table Ill. The second column givesum of first and second order terms of the exact Faddeev
the exact Faddeev result as reference. It should be noted thedlculation to the corresponding term in the high energy limit
all results given in Table Ill are calculated usifig,=4 in  (column 9 which is the sum of the terms in columns 6-8 in
the two-nucleon subsystem. Starting at 100 MeV we com-Table Ill) shows that the high energy limit is always larger in
pare the exact first order result to its high energy limit, thethe energy region under consideration. At 300 MeV the dif-
sum of thenp andnn total cross sections, as given in Eq. ference for the combined results in those orders is still 8%,
(2.16). The table shows that this sum is larger than the exacind thus the high energy limit is not yet quantitatively valid.
first order term for 140 MeV and higher. In fact, the differ- We would like to add that the asymptotic form requires
ence increases with increasing energy. In the case of thrdégher NN force components thap,,=4. For the study
bosons interacting via Malfliet-Tjon type forcgacting inall ~ presented in Table Il we kept the angular momenta in the
partial waves this difference vanishes around 300 MeV andtwo-nucleon system fixed at this value in order to compare
the asymptotic expression acquires its validity H&fe Ap- ~ Wwith the Faddeev results. The two-nucleomatrices under-
parently, the three nucleon system with realistic forces belying the calculations presented in Fig. 3, however, employ
haves differently. It would be very interesting to find out at Up t0 jya= 15 in order to obtain a converged result at 800
which energy the first order term will reach the asymptoticMeV. In the case of the high energy limit this can be easily
form. This interest is however restricted to the context of aachieved, since only thiN on-shell amplitudes enter.
mathematical model of potential scattering, since the stan-

2 0.084 X
b N,

0.06—

dard NN forces lose their physical meaning above pion- IV. ESTIMATE OF THREE-NUCLEON FORCE
production threshold. AND RELATIVISTIC CORRECTIONS

Next we compare the exact second order result to the
expression of the high energy limit as given in Eg.19. In this section we want to study the effect of three

First, the exact second order result of the Faddeev formalismucleon forces (BIF) on the totaind cross section and give

is a small correction to the first order result. At lower ener-a very simple estimate on the size of relativistic effects. The
gies it is additive and changes sign around 150 MeV, whichinclusion of NF in 3N continuum Faddeev calculations has
then leads to a reduction of the cross section. As can be sedeen formulated in Ref12], superseding a previous formu-

TABLE lll. Comparison of Faddeev results with the asymptotic expansion ones. The calculations were

performed throughout with the CD-Bonn potential ajgl,=4. The termso(® and ¢{?) are from Eq.

(2.19 . For more explanation of the different terms see Secs. Il and Il

Eian (MeV) g (Mb)
Faddeev calculation High energy expansion
ful FC  lord. 2ord. H2ord. oppto,, o ol® sum
100.0 100.95 108.27 1.91 110.18 105.60 20.62 -6.54 119.67
140.0 74.85 78.62 0.08 78.69 80.23 12.20 -3.96 88.45
200.0 60.55 62.74 -0.86 61.89 65.86 6.28 -2.80 69.34

300.0 52.30 54.05 -1.52 52.53 58.14 2.38 -2.28 58.24
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lation given in Ref[8]. The newer formulation is formally
more elegant and numerically more efficient and is used in

our calculations. The inclusion of\8F generalizes E¢2.1) §$ ANE
] + 1

to a 2NF + Rel.
+ Exp.

T|®)Y=tP|®)+ (1+tGo)V{V(1+ P)| D) +tP G, T| D)
+(1+tG) VP (14 P)G,T| D), 4.2 Solr
o

whereV{" is that part of the 8IF, which is symmetric under
exchange of particles 2 and 3. The totd B then has the
form

V,=VH+ V@ + v, (4.2)
and is totally symmetric. The full breakup operator as given  so9 1000 1500 2000 2500 3000
in Eq. (2.2 keeps its form, whereas the operator for elastic E,, [MeV]

nd scattering changes to
g 9 FIG. 5. Corrections to the Faddeev calculation based on a non-

U= PG(;1+V511)(1+ P)+PT+ Vftl)(1+ P)GoT. (4.3 relativistic Hamiltonian using strictly two-nucleon forcésolid
line) for the totalnd cross section. The open squares show calcula-
The optical theorem given in E2.4) stays of course valid. tions at va_rious energies, where_the Tucson-Meroumef(ﬁrce _
The numerical evaluation of E¢4.1) is quite demanding, has bet_en included. The open triangles show at various energies
since in contrast to theNs bound state one needs the partial calculatlon§ based on two-nucleon forces corrected YVIth a relativis-
wave projected momentum space representationg]dfnow tic kinematlc(fqr details see Sec. IV The dots descrlbg the data
for both parities and, in addition, for totaNBangular mo- [1]. All calculations are based on the CD-Bonn potential.

— H 5 n
menta larger thanJ=1/2. At a projectile energyEy, scattering calculations does not yet exist. Thus we restrict
=200 MeV we checked that total angular momenta ug t0 ,rselves to a very simple estimate of a relativistic kinematic

=9/2 were needed. The calculation of the three-nucleoRgtect Due to the optical theorem the total cross section is
force matrix elements for such high angular momenta begiven as

came possible due to the new partial wave decomposition for

the three-nucleon force introduced in REE3]. Of course, 1

NN forces contribute significantly up tb=25/2 to 3N scat- opdec ﬂlm(<b|U|<b>, (4.9
tering states. In our calculations we employ the Tucson- J

Melbourne forcd 14], which has has been adjusted individu-

3 . . -
ally to the "H binding ehnergy 1|‘or each of the ﬁlﬁerent sible changes of 1§ |U|®) in going from a nonrelativistic
modernNN forces[15]. The resu ts_presented in this papcejz_r to a relativistic formulation, the ratio of the relativistic to the
are based on the CD-Bonn potential and the corresponding,  re|ativistic total cross section is simply given by

parameters of the Tucson-Melbourne force.

In a previous study we found thatN3force effects are nd .
responsible for filling the minima in the angular distribution Trotrel _ |J_ | _ EnEq / MyMy )
of elasticnd scattering, especially at higher energjé$]. UPO?,nr il el pre(En+Eg) /PR (my+my)
Though the effect is seen only in the minima of the differ-
ential cross sections, and thus is small in magnitude, onklere, E,, and E4 are the relativistic kinetic energies of the
might expect traces thereof in the integrated quantity, theneutron and the deuteron in the c.m. system, pifitiis the
total cross section. Corresponding effect to those in the elaselativistic c.m. momentum. The other terms are obviously
tic angular distribution might also occur if\Bbreakup pro- the nonrelativistic approximations thereof. This ratio given
cesses, over which is also integrated when calculating thi Eq. (4.5) is easily evaluated and leads to an increase of the
total cross section. This is indeed the case as shown in Fig. fotal nd cross section, namely, an increase of about 3% at
The effect of the 8l force enhances the totald cross sec- 100 MeV and about 7% at 250 MeV. Calculations based on
tion calculated withiNN forces only by about 4%. It is inter- 2N forces only, which include this relativistic effect, are
esting to note that this enhancement is almost independent ghown at various energies in Fig. 5. Again, these additional
the energy when considering the energy regime between 1Qfffects enhance the total cross section and bring the calcula-
and 300 MeV. It is also obvious from the figure that tHé 3 tion closer to the data. It is also clear that this effect does not
force effects included here are not strong enough to bridgeonstitute a relativistic theory, since the forward scattering
the gap between the calculation based dhf@rces only and  amplitude is still calculated entirely nonrelativistically. How-
the data. However, one should keep in mind that the Tucsorever, both effects, the one caused by inclusion ofNF3
Melbourne NF model is just one model, and theory as well model and the simple estimate of a relativistic effect, are
as application of Bl forces is just at the beginning. roughly similar in magnitude, and when added up would

A second effect, which can be expected to appear esp&ome close to the data in the higher energy regime. It should
cially at higher energies is an effect due to relativity. A gen-be also noted that at lower energies, the added effects would
erally accepted framework for carrying out relativistiN3 overpredict the data.

wherel|j| is the incoming current density. If we neglect pos-
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V. SUMMARY find that these corrections enhance the tothkcross section
In vi f . . tal inf i th about 7% at 250 MeV, while being much smaller at lower
N view of neéw precise experimental information on eenergies. Again, those corrections go into the right direction

total nd cross section fully converged Faddfaev calculationquth respect to the data. However, we do not suggest that our
based on the most modeNN forces are carried out at pro- ggtimate is the complete solution of the problem, since in our

jectile energies between 10 and 300 MeV. For the Faddeeyy|cylation the forward scattering amplitude is still calcu-
calculations a strictly nonrelativistic treatment is employed.|ated entirely nonrelativistically.

The calculations show that the results for the totdlcross Both our estimates of corrections to our nonrelativistic
section do not depend on the choice among the most recepaddeev calculations based oil Zorces suggest, that ef-
phase-equivalent potentials. fects due to Bl forces as well as relativistic effects become

In order to obtain more insight into the behavior of the non-negligible at higher energies. This calls for a strong ef-
multiple scattering series for thed total cross section, we fort to progress theoretical developments of a theory Nf 3
study its convergence within the Faddeev framework. Beloworces as well as a relativistic framework foN3scattering.
about 200 MeV projectile energy rescattering of higher order
is very important, as can be concluded from the fact that here ACKNOWLEDGMENTS
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cessegparticle productiopoccurring in a relativistic context

will change the results presented here. In accordance with the

naive expectation, we extract from the first order term in the ~APPENDIX A THE HIGH-ENERGY LIMIT OF THE
multiple scattering series the sum of the total cross sections ~ FIRST ORDER TERM IN THE NN T MATRIX

for np andnn scattering, and from the second order term & 14 gyajuate the first order term of the multiple scattering

shadowing effect proportional to products of the td¥iN  eypansion for the total cross sectifsee Eqgs.(2.6) and
cross sections. The shadowing contribution is negative 3”92.15)] in the high energy limit we consider

reduces the totahd cross section. However, we also find
positive terms proportional to products of real and imaginary x152(6D|(t—tT)(1— Py3)| D). (A1)
parts of spin dependeitN forward and backward scattering
amplitudes. Those terms provide an overall enhancement of
thend total cross section, but vanish faster with energy thanThe completeness relation in the three-nucleon space is
the shadowing term. At projectile energies above 400 Me\Wiven by
the shadowing is the dominant second order effect.

A comparison of the theoretical calculations based on a
nonrelativistic Faddeev framework with two-nucleon forces 1= 2 d%p dq
only and the experimental observables exhibits a discrepancy mimomz  vivpvg
with respect to thend data, which starts around 100 MeV
with a few percent and reaches about 10% at 300 MeV.
Possible corrections can be due to either three-nucleon forces
or relativistic effects or both. We calculated the effect of the
Tucson-Melbourne R force on the totaihd cross section
and find that in the energy regime between 100 and 300 MeV
this 3BNF model provides an overall enhancement of the total Herep andq are standard Jacobi moments, the spin

cross section of~4%. This is consistent with previous stud- magnetic quantum numbers andthe corresponding isospin

ies, which found that the minima of the elastic scatteringg,antum numbers of the three nucleons. In that notation the
angular distribution are filled in when this\Ng- is taken into  -hannel stat¢d), reads

consideration. In the total cross section this effect is not large

enough to bring the present calculations close to the data, but

the trend is in the right direction. | )= pgMgrg)| domMnwn)- (A3)
A second effect, which can be expected to appear espe-

cially at higher energies is due to relativity. We carry out a

simple estimate of effects due to relativistic kinematics, andVe also need a change of basis

X|p mymg vov3)|qmy vy )(p MM vovg [(qmyvy.

(A2)
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3 3
1 1
2(P MaMy v3v1 G Myv,|p” MyMg vov5 Q' Myvi)y = 5( = Eq/ _Q) o\ p+q'+ 54 Xi[[l Omym/ Il:[l Svivi  (Ad)
and the explicit expression for the deuteron state
(_ 12— v3 . 11
(P MMy v3v1| @4 My) :T 8y - vy % (111 mymg—m) Y, (p) (5 >1mgmy my— ml) @1 (p). (A5)
|

As an immediate step one finds after a suitable substitution of integration variables

APt—tT@)= > X X D | d®% gl —zmam;vay)

mimg mé v1v3 ,,é

3 1 3 1
X < 70T EszmsVNV3|t_tT|ZCIo+ Eszmstv3> (—zmgmyvzvq|@g).

If the projectile momentuni g is much larger than typical 2
momentaz occurring in the deuteron state, one can take the e =E— am\ 5Qo+2
NN t matrices out of the integral and obtain

. 3 , 3(1, ,

{P[t—t"| D), =eqt 700~ g 7% Go-2+2
3/4qg— )

“sssy Y E LR DR I

MMg ! vivg L =eqgt m 4% +4mQO'Z 4mz

3 3
X <ZqOmNm3VNV3|t_tT|Zq0mNm3VNV3>

(A7)

3/4qg—° 1 3 2
- o)

x [ (e ~mamuvons) (~ zmgmurinl o)

A6
(A8) Thus in the high energy limit we only encounter on-shell

Here the energy argument of thenatrices is given by NN t matrices. Using Eq(A5) we find

3 3
H{D[t—tTD)— > > <ZQOmNm3VNr_V1|t_tT|ZQOmNm3VNr_V1>

mimg vy
1 ® ) 11 2
XEE f dp pPef(p) C(111my—mz—my,mg+m;)°C Eal,msml . (A8)
)

The next step is to introduce properly antisymmetride states in theNN t matrix. This comes automatically of course,
since the formX; contains the operation (1P,3). Taking this into account we find altogether for the expres$ibh5

3 3
(@P(t—tHP|DYy— > > <ZQOmNm3VN!_Vllt_tT|Zq0mNm3VN!_V1>

MMg ¥1 na na

o0 11 2
XEI fo dp pzsof(p)C(lllmd—ms—ml,maJr ml)ZC(E El,m3m1) . (A9)

Here the antisymmetrized and normalized fidM state is given by

|pPMaM3 v, v3)na = —=(1— Pa3)|pmymg vpv3). (A10)

Sl

2

Finally we use the relation
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.3 . N3
dpV Zqum§m§v§v§> 7 GoPm;mgvyv3 V, (A11)

P

Mpmg vovg

where theNN potentialV is applied to the two-nucleon scattering stdtes )(*). Furthermore, the definition of the totilN
cross section initiated by fixed magnetic spin and isospin quantum numbers is given by

2

ol _, (my,mg)=(2m) ( ) Z > | dp (A12)

4
N o
m2m3 vovy

3 3 - o
na<ZqOmNm3VNa_ V1|t|ZQOPm2méV2V3>
This inserted into Eq(A9) and applying the relation given in E(R.4) to the totalnd cross section we arrive at

o 11 2
O-tl\?(ti(mNadeN)_mEr; > (th 1(mNam3)§|: fodp p2<p|2(p)C(I11,md—m3—ml,m3+m1)2C<§E,mg,ml) ‘
1m3 v
(A13)

This is the contribution of the terr{2.15 to the totalnd cross section for initially polarized particles and a nucleon species
of type vy . Averaging over the initial state polarizations one can perform the summationsnguend my analytically and
using the normalization conditions for tkeandd-wave parts of the deuteron wave function one ends up for a neutron induced
process with

0';05 o'tot + crtOt (A14)

APPENDIX B: THE HIGH ENERGY LIMITS OF THE SECOND ORDER TERMS IN THE NN T MATRIX

To evaluate the second order term of the multiple scattering expansion for thedatedss section in the high energy limit
we consider

Xo=o(®|(t—t") Gy ts|D);. (B1)

Corresponding steps to the ones carried out in Appendix A lead to

Xy= E 2 2 d3zjd3z’<<pd|—zm3m11/3vl>

MM3Y1¥3 mimlvyvg myvy”

><<(3/4)q0+(1/2)z momgvovs|t—t1|(3/14)qo— (1/2)z— 2’ mymjvhv})
—|egl = (Lm)(22+2'%+2-2')+(3/2m)(z+2') - Qo+ i €

1 3 1
><< - Zq°+ z+ EZ/ mymj vy vy t | Oo+ 52 mlmgvgvg>(—z’mzmévgvéhpd). (B2)

Again we assume thatq is much larger than the momertandz’ in the deuteron state and find

3 3 3

P 2 ’ Q- 0 1 T

Xp— X > > < QoMM v9vs|t— t| Qo MyMgvyvg _ZQOm1m2V1V2|t| Qomymzvivs ) -1, (B3)
m1m3v1V3 mrerrV/ m”v”

237273 272

with

r_on_r

Tzfdapf 4%p’ (@al —pmamyvv ) —p' mzmgrivs| oq)
—|egl = (1im)(p?+p'2+p-p') +(3/2m)(p+p') - Go+ie€

(B4)

For the extraction of the asymptotic limit d$q,| — we refer to a previous stud] carried out for three bosons. We use
Eqg. (A5) and use the deuteron wave function given in configuration space. After some algebra one arrives at

R im ,
- _27T2(_)1/2_ V3(_ )1/2— %)

11
3q0 vy, — V3 5,,' _V 2 C(lll Qnd)(z 21 m3md 3)1/2|+1

V21" +1 i"—'fo dr @ ()@ (r) 8, m,—m, O

! 1 1 ! li
x; C(1'11,0my)| 5 5Lm;my—m; ! gy (B5)

The second term in Ed2.17) can be evaluated analogously and we end up with the intermediate result
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3
<<I>|P<t—t*>PGotP|<I>>———<2w>2mE > > <4qom2m3VZV3lt—t| oMMy — mz,v2,—v'z’>
3V3 mr ! "o

v Myva na

3 3 ,
><<—Zqomd—mg,mé,—v3,vé|t|Zq0m1mzvlvg> (—)M2ra(— V2
na
1
xE V2I+1 CIllOmd)( SLmamy— m3>2 V2I'+1c(l’ 110md)( SLmsmy— mg)

xil’ ! J:drgp,,(r)gol(r). (B6)

We encounter only forward or backwaMIN scattering amplitudes, which induces connections between the magnetic spin

guantum numbers occurring in tlnmatrices(puta():z). Further we sum over the initial spin magnetic quantum numirgrs
andmy . As an example of these summations we show the result

> {(@|P(t—thP G, tP|®)—c.c}

mymy

~.30p 1 N o -|'—|foo
_'ﬁz_w“Z ¢2|+1%, V2’ +1i o dremen(m)

22

11 11
X ZC(I11,0])C(I’11,O])[0}\?}\,( “np +gt§;q(§§nn

tot

+ o 1—En : nn
NNl 5 T 2 P|onn 2

11 11
+C(I11,OOC(I'11,00[0‘§’L(2znp)crtN‘”N(z Znn

—ing(ZW)ZZ ¢2|+1§|) \/2I’+1i""fw drgo|(r)go|,(r)[2C(lll,OJ)C(l’11,0])
0 0

1 3 1 1 2
X q02 2np|t| q02 zpn -

+C(111,00C(1"11,00
11 3 11 3 1 1 31 1
X {2 q022np|t| Goz 5PN Im Zqoi_ipmﬂzqoi_inp
na na
31 1 3 11 2 ) 31 1 3 11
m ZQOE_EI’IMH_Z%EEW\ a - q02 2np|t| qozinp -

3 1 1 3 11 B7
ml 705~ 5905 500) |1l (®7)

The last term in Eq(2.7) can be treated analogously to E&.1) resulting in

2
+

11 3 11
q02 2np|t| q02 2pn o

+

X

. 3
(®|PtTP(Gy—G§)tP|®)— —8ri > > > <4q0m2m3v2v3|t| CIomzms,VzV3>
mlm3V1V3 m2!m3/]}2!])3/ mznyzn na
3 ’ 2 3 Q.11 0.1 q
X —Zqom1m2v1v2|t|zq0m1m2v1v2 [ (B8)
na
where

- 1 3
I=fd3pf d3p’<<pd|—pm3m1V3vl><—p’mémév;vélde(—Iedl—5(p2+p’2+p’-p)+qu-(p+p’)).

It is easily shown that in the high energy limit
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1.
T=— 1. (B9)

I

It remains to perform the summations over the spin and isospin quantum numbers. Then using the connection tmthe total
cross section, Eq2.4), results in the lengthy expressi¢d.19.
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