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The cross section for the proton weak capture reaction1H(p,e1ne)
2H is calculated with wave functions

obtained from a number of modern, realistic high-precision interactions. To minimize the uncertainty in the
axial two-body current operator, its matrix element has been adjusted to reproduce the measured Gamow-Teller
matrix element of tritiumb decay in model calculations using trinucleon wave functions from these interac-
tions. A thorough analysis of the ambiguities that this procedure introduces in evaluating the two-body current
contribution to thepp capture is given. Its inherent model dependence is in fact found to be very weak. The
overlap integralL2(E50) for the pp capture is predicted to be in the range 7.05–7.06, including the axial
two-body current contribution, for all interactions considered.@S0556-2813~98!06908-8#

PACS number~s!: 21.30.2x, 21.45.1v, 25.10.1s, 95.30.Cq
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I. INTRODUCTION

The proton weak capture on protons is the most fun
mental process in stellar nucleosynthesis: it is the first re
tion in the pp chain converting hydrogen into helium, an
the principal source for the production of energy and neu
nos in main-sequence stars. The theoretical descriptio
this hydrogen-burning reaction, whose cross section can

*Also Institut für Kernphysik, Technische Hochschule Darmsta
D-64289 Darmstadt, Germany.
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be measured in terrestrial laboratories, was first given
Bethe and Critchfield@1#, who showed that the associate
rate was large enough to account for the energy release
the Sun. Since then, a series of calculations has refined
original estimate by either computing the required wa
functions more accurately@2–5# or by using more realistic
models for the nuclear transition operator@6–8#. We here
contribute to this effort by providing an integrated study
these two aspects with emphasis on a reliable estimat
their associated theoretical uncertainties.

This paper is divided into seven sections and an appen
In Sec. II we set up the framework for the present study,
providing expressions for thepp fusion cross section and th

,
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1264 PRC 58R. SCHIAVILLA et al.
required matrix elements and by summarizing the curr
‘‘best’’ values for the various coupling constants, Fer
function, etc. In Secs. III and IV we give a fairly detaile
description of, respectively, thepp and deuteron wave func
tions, as obtained from modern~high-precision! interactions.
The latter include, along with the short-range nuclear par
complete treatment of electromagnetic effects up to ordera2,
a being the fine-structure constant, and accurately reprod
the measured low-energypp scattering parameters and de
teron properties. Sections V and VI deal with the calculat
of the pp cross section in the approximations, respective
in which only the one-body or both the one- and two-bo
parts of the axial current operator are retained. In Sec. VI
also review the evidence, as obtained from an analysis
tritium b decay, for the axial two-body components~explicit
expressions for them are listed in the Appendix!. Because of
their model dependence, we adopt the phenomenologica
proach of adjusting the cutoff masses in the meson-nuc
vertices andN to D axial coupling constant so as to obta
agreement with the experimental value for the Gamow-Te
matrix element in tritiumb decay. The question of how thi
procedure impacts thepp cross section is also examine
Finally, in Sec. VII we summarize our conclusions, and p
vide our ‘‘best’’ value for thepp overlap integral at zero
energy.

II. CROSS SECTION

The spin-averaged total cross section for t
1H(p,e1ne)

2H reaction can be written in the form@8#

s~E!5
1

~2p!3

GV
2

v rel,n.r.
me

5f ~E!(
M

u^d,M uA2upp&u2.

~2.1!

HereGV is the vector coupling constant for which the val
GV5(1.149 3960.000 65)31025 GeV22, as obtained
from a recent analysis off t values for superallowed
01→01 transitions@9#, is used;me is the electron mass an
v rel,n.r. is thepp relative velocity. The process is induced b
the axial-vector part of the weak interaction Hamiltonia
and consequently only even paritypp states contribute to the
matrix element.

The naive expression for the Fermi functionf (E) is given
by

f ~E![
1

me
5E d~E1Dm2En2Ee!peEeEn

2dEedEn

5E
1

~E1Dm!/me
dx xAx221S E1Dm

me
2xD 2

, ~2.2!

whereDm52mp2md50.931 25 MeV@10# (mp andmd are
the proton and deuteron masses, respectively!, E5k2/mp is
the c.m. incident energy, and the energy of the recoil
deuteron is neglected. A more refined treatment of the ph
space factor includes the effect of Coulomb focusing of
emittede1 wave function@3# as well as radiative correction
to the cross section. The latter have not actually been ca
lated for the present reaction but have been estimated t
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comparable to those obtained for neutron decay@11#. As a
result, the Fermi function is parametrized as

f ~E!50.144~119.04E!, ~2.3!

with E expressed in MeV. AtE50 the expression in Eq
~2.2! gives 0.148, which is about 3% larger than the mo
accurate estimate from Eq.~2.3!.

The deuteron and even paritypp wave functions are writ-
ten as

Cd
M~r !5Fu~r !

r
Y 01

1M~ r̂ !1
w~r !

r
Y 21

1M~ r̂ !Gz0
0 , ~2.4!

ck
~1 !~r !54pA2 (

Leven
(
ML

iLYLML
* ~ k̂!

eidL

kr
xL~r ;k!

3YLML
~ r̂ !h0

0z1
1 , ~2.5!

whereY LS
JM( r̂ ) are the normalized eigenfunctions of the tw

nucleon orbital angular momentumL, spin S, and total an-
gular momentumJ with projectionM ; hS

MS andzT
MT denote,

respectively, the eigenstates of the spinS and isospinT with
projectionsMS and MT . The deuteronu(r ) and w(r ), and
pp xL(r ;k) radial wave functions are obtained from sol
tions of a Schro¨dinger equation with nuclear and electroma
netic interactions, the latter including corrections fro
vacuum polarization, magnetic moment, two-photon e
change, and Darwin-Foldy terms. A discussion of the int
actions and radial wave functions is given in Secs. III and
below. Here, it suffices to say thatxL(r ;k) behaves asymp
totically as

xL~r ;k! ;
r→`

cosdLFL~kr !1sin dLGL~kr !, ~2.6!

wheredL is the phase shift, andFL and GL are the regular
and irregular Coulomb functions.

The nuclear axial current operator consists of one- a
two-body components

Aa5Aa
~1!1Aa

~2! , ~2.7!

wherea56 is an isospin index, and

A6
~1!52gA(

i
sit i ,6 , ~2.8!

t i ,65~t i ,x6 it i ,y!/2. ~2.9!

The ratio of the axial to vector coupling constan
gA5GA /GV , is taken to be@11# 1.265460.0042 by averag-
ing values obtained, respectively, from the beta asymm
in the decay of polarized neutrons (1.262660.0033)@12,13#,
and f t(n) and f t(01→01), and gA5@2 f t(01→01)/
f t(n)21]/351.268160.0033 @11#. The form of the axial
two-body current operator depends on the dynamical mo
used to construct it. However, the need for such a term
based on an analysis of tritiumb decay. This evidence a
well as the impact of the ambiguities associated with
form of A(2) on the pp fusion cross section is discusse
below in Sec. VI.
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Selection rules for a vector operator restrict the sum o
L in the initial capture state, Eq.~2.5!, to the valuesL50
and 2. However, theL52 contribution is negligible at very
low energies. Indeed, the initialS- andD-wave channel con-
tributions to the matrix element of the dominantA(1) opera-
tor are proportional to, respectively,

E
0

`

dr u~r !x0~r ;k!.E
0

`

dr u~r !F0~kr !, ~2.10!

E
0

`

dr w~r !x2~r ;k!.E
0

`

dr w~r !F2~kr !, ~2.11!

where thexL(r ;k) radial wave functions have been replac
with their asymptotic forms by settingdL.0, which is ap-
propriate for the energy range under consideration her~a
few keV!. It is then easily seen that

E
0

`

dr w~r !F2~kr !

E
0

`

dr u~r !F0~kr !

.2AS 11
1

h̄2D S 11
1

4h̄2D

3

E
0

`

drArw~r !I 5~2Aampr !

E
0

`

drAru~r !I 1~2Aampr !

,

~2.12!

where h̄5a/v rel,n.r., I L are modified Bessel functions, an
the asymptotic expressions, valid in the regime wh
h̄@kr, have been used for theFL @14#. The ratio above is
found to be roughly 0.000 13 in the limitv rel,n.r.→0 ~corre-
sponding toh̄→`).

Finally, the dependence ofAa upon the momentum trans
fer q52pe2pn , wherepe and pn are the outgoing lepton
momenta, is ignored in Eq.~2.8!, because of the very low
energies involved. AtE50 the kinetic energy available t
the final state is only about 420 keV, and the finite mom
tum transfer correction to the matrix element ofA(1) for
S-wave capture can be estimated to be approxima
(qrd)2.(0.0042)2, whereq.420 keV andr d.2 fm is the
root-mean-square radius of the deuteron—a tiny correct
indeed.

III. pp WAVE FUNCTION

The low-energypp scattering is described by the radi
Schrödinger equation

F d2

dr2
1k22

L~L11!

r 2
2mpV~r !GxL~r ;k!50, ~3.1!

with xL(r ;k) the radial wave function,mp the proton mass
andL the orbital angular momentum. The c.m. relative m
mentumk is given by k25mpTlab/2. The boundary condi-
tions for the wave function are
r

e

-

ly

n,

-

xL~0;k!50,

xL~r ;k! ;
r→`

FL~kr !C11GL~kr !C2 , ~3.2!

with FL andGL the standard regular and irregular Coulom
functions @14#. The potentialV(r ) can be divided into a
long-range electromagnetic partVEM and a short-range
nuclear partVN . The coefficientsC1 andC2 contain all the
necessary information about the partial wave, which is u
ally expressed in terms of the phase shiftdC:

tandC5C2C1
21 . ~3.3!

In a practical calculation, the Schro¨dinger equation~3.1! is
integrated out to somer , large in comparison with the rang
of the short-range~i.e., nuclear! force. The numerical wave
function is then matched to the asymptotic form of Eq.~3.2!,
and the corresponding phase shift is defined to be the p
shift of the nuclear force with respect to Coulomb wa
functions. Following the notation of Ref.@15#, we have
added the superscriptC, for Coulomb.

However, in reality the electromagnetic interaction inpp
scattering is much more complicated than just the sim
Coulomb interaction. This leads to some practical proble
in applying the scenario of integrating the Schro¨dinger equa-
tion, matching to Coulomb functions, and extracting t
phase shift. This will be discussed below.

The full interaction, up to second order in the fin
structure constanta'1/137, is given by@15–17#

VEM~pp!5VC11VC21VVP1VMM1VDF, ~3.4!

where

VC15a8
FC~r !

r
, ~3.5!

VC252
a

2mp
2F ~D1k2!

FC~r !

r
1

FC~r !

r
~D1k2!G

'2
aa8

mp
FFC~r !

r G2

, ~3.6!

VVP5
2a

3p

a8

r
I VP~r !, ~3.7!

VMM52
a

4mp
2

mp
2F2

3
Fd~r !s1•s21

Ft~r !

r 3
S12G

2
a

2mp
2 ~4mp21!

Fls~r !

r 3
L•S, ~3.8!

VDF52
a

4mp
2

Fd~r !. ~3.9!

Here theFC(r ), Fd(r ), Ft(r ), andFls(r ) are functions rep-
resenting the finite size of the nucleon charge distribution
the limit of point nucleons, FC(r )5Ft(r )5Fls(r )51,
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1266 PRC 58R. SCHIAVILLA et al.
whereasFd(r )54pd3(r ). Their explicit r dependence is
given in Ref.@16#. The various contributions are described
follows.

The Coulomb interactionVC1 contains a well-known@18#
energy dependence througha852ka/(mpv lab). However, at
the extreme low energies of interest to astrophysical calc
tions ~a few keV!, this energy dependence is negligible, a
we can seta85a for all practical purposes.

The two-photon-exchange interactionVC2 behaves like
1/r 2, and so we immediately have the problem that, in pr
ciple, we have to integrate out to infinitely large distanc
before we can match to Coulomb functions.

The vacuum polarization potentialVVP describes the aug
mentation of the photon propagator by an electron-posit
pair. In the limit of point protons@FC(r )51#, the vacuum
polarization integral is given by@19#

I VP~r !5E
1

`

dx e22merxS 11
1

2x2D ~x221!1/2

x2
, ~3.10!

with me50.511 MeV the electron mass. Including the finit
size effect, we get the more complicated expression as g
by Bohannon and Heller@17#, where the exponential is re
placed by

e22merx→D4~x!e22merx

2FD4~x!1
1

2
rD3~x!1

1

8
~r1r2!D2~x!

1
1

48
~3r13r21r3!D~x!Ge2r, ~3.11!

where r5br, D(x)5@12(2mex/b)2#21, and b
54.27 fm21. As a matter of fact, the simple multiplicatio
of Eq. ~3.10! with FC(r ) as an approximation to the inclu
sion of finite-size effects~and which was adopted in Re
@16#! already closely resembles the exact treatment~3.11!
where the finite-size effect is properly folded into the in
gral.

The magnetic moment interactionVMM arises as a conse
quence of the nonvanishing value of the proton magn
moment,mp52.792 85m0, while the Darwin-Foldy termVDF
is a short-range potential, describing the finite size of
proton, whereFd(r )→4pd3(r ) in the limit of point protons.

Now that we have defined the full long-range electrom
netic interaction, we can return to the question of how,
practice, to integrate the Schro¨dinger equation and extrac
the phase shift. We will restrict ourselves toS waves, and so
the tensor and spin-orbit terms in the magnetic moment
teraction vanish. It is convenient to define a phase shiftdW

V ,
which is the phase shift of the solution of the potentialW
with respect to the solution with the potentialV as the inter-
action. The well-known application of this procedure is t
situation whereV is the Coulomb potential andW is the
Coulomb plus nuclear potential, and the phase shiftdN

5dC1N
C is obtained by matching the numerical solution

Coulomb wave functions as in Eq.~3.2!.
If we are to includeVC2 in W, we run into the problem

that we have to integrate out to infinitely large distanc
before we can match to Coulomb functions. However,
s
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including the point-nucleon limit ofVC2 also in V, the
asymptotic wave function can be expressed in terms of n
integerL8 Coulomb functions, whereL8 satisfies

L8~L811!5L~L11!2aa8. ~3.12!

The asymptotic behavior of the wave function is now giv
by

xL~r !;F̃L~kr !C11G̃L~kr !C2 , ~3.13!

with F̃L(kr)5FL8(kr) and similarly forG̃L(kr). The advan-
tage is clear immediately: we only have to integrate out
distances large with respect to the nuclear interaction, wh
is only about 20 fm. But we have to bear in mind that no
the phase shift isdC11C21FS1N

C11C2 , where it should be under
stood implicitly that the superscript refers to the interactio
in the point-nucleon limit, while the interaction denoted b
the subscript includes also the~short-range! finite-size ef-
fects. To make this clear explicitly, we have here separa
off the finite-size effects by writing them symbolically a
being due to some short-range potentialVFS. In this nota-
tion, the phase shift with respect to Coulomb functions,
defined in Eq.~3.3!, now reads

dC15dC11C21FS1N
C1 5dC11C21FS1N

C11C2 1dC11C2
C1

5dC11C21FS1N
C11C2 1rL , ~3.14!

whererL can be easily expressed in terms of the stand
Coulomb phase shiftsL as

rL5sL82sL2~L82L !p/2. ~3.15!

The next step is to also include the vacuum polarizati
The case where we only have the Coulomb and vacuum
larization has been discussed in detail by Durand@20# and
Heller @21#, who derive expressions for the releva
asymptotic wave functions and vacuum polarization ph
shift tL[dC11VP

C1 . Although the vacuum polarization poten
tial exhibits an exponential falloff, the small value of th
electron mass means that the Schro¨dinger equation has to b
integrated out to several hundred Fermi before the poten
has dropped to sufficiently small values, and it is only th
that the numerical solution can be properly matched to
asymptotic solution.

The presence ofVC2 considerably worsens the situatio
Since the 1/r 2 behavior ofVC2 is of longer range than the
exponential decay ofVVP, the Schro¨dinger equation has to
be integrated out to distances whereVVP is negligibly small
as compared toVC2. It is only then that we can match th
numerical solution to the proper asymptotic solution and
fine the phase shift. Unfortunately, because of the slow f
off of the vacuum polarization and the small magnitude
the two-photon-exchange contribution, we now have to in
grate out to much larger distances. Even at a distance
2000 fm the vacuum polarization has only dropped to ab
1% of the two-photon exchange.

The scenario of getting thepp wave function for a par-
ticular nuclear interactionVN in the S wave in the presence
of the full electromagnetic interactionVEM is now as follows.
We integrate the Schro¨dinger equation out to a distance o
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3000 fm, where the numerical solution is matched to
electromagnetic wave functionsF̄0(kr) andḠ0(kr). The lat-
ter are defined to be the solutions of the Schro¨dinger equa-
tion in the presence of the point-nucleonC11C21VP in-
teraction. This procedure, therefore, determines the ph
shift dEM of the nuclear plus full electromagnetic interactio
with respect to the point-nucleonC11C21VP interaction.
It should be stressed that this phase shift isnot the same as
the phase shift of the nuclear interaction in the presenc
only the Coulomb interaction (dC1N

C ). The relation between
these electromagnetic wave functions and the standard C
lomb wave functionsF0(kr) andG0(kr) is given by

S F̄0

Ḡ0
D 5S cos~r01t08! sin~r01t08!

2sin~r01t08! cos~r01t08!
D S F0

G0
D ,

~3.16!

with r0 andt08 the two-photon-exchange and vacuum pol
ization S-wave phase shifts, respectively. The prime in t
vacuum polarization is to indicate that this is the vacu
polarization phase shiftin the presence of VC2, which is
slightly different from what is defined in Refs.@20,21#. Note
that the numerical wave function is now properly normaliz
as in Eq.~3.2!, sincedC5dEM1r01t08 .

It should be pointed out that at extreme low energies~a
few keV!, dEM is almost zero, andr0 is of the order of a few
times 1024 deg, whereast08 rapidly drops from about
21022 deg at 10 keV to21025 deg at 2 keV, and sodC

exhibits a change of sign and goes through zero as a func
of energy. Hence, it is not recommended to use the norm
ization as advocated by Kamionkowski and Bahcall in R
@5#, i.e.,

x̄0~r ;k! ;
r→`

C0@G0~kr !1cotd0F0~kr !#, ~3.17!

with C0 the Gamow penetration factor. In their case@5#,
there is no problem~althoughdC is very small and cotdC

becomes very large!, because they did not includeVC2. Fur-
thermore, with this normalization~3.17!, the overlap integral
L, defined below, requires knowledge of thepp scattering
length app , where the presence ofVC2 and VVP in the full
electromagnetic interaction defines a rather complica
effective-range function@15#. On the other hand, the norma
ization ~3.2! advocated here allows for an immediate sub
tution of the numerical wave function~as obtained from
solving the Schro¨dinger equation! into the expression forL
as defined by Salpeter@2#, without having to worry about a
phase shift which goes through zero at these extreme
energies and without having to define a complica
effective-range function.

IV. DEUTERON WAVE FUNCTION

The deuteron is the bound state of protons and neutron
the coupled3S113D1 two-nucleon system. For a given loc
NN potentialV(r ), the radial wave functionsu(r ) andw(r )
for the deuteronS andD states, respectively, can be obtain
from the coupled Schro¨dinger equation
e

se

of

u-

-

on
l-

f.

d

-

w
d

in

F d2

dr2
2g2Gu~r !5m̄@V00~r !u~r !1V02~r !w~r !#,

F d2

dr2
2g22

6

r 2Gw~r !5m̄@V20~r !u~r !1V22~r !w~r !#,

~4.1!

wherem̄ is twice the reduced mass of proton and neutr
i.e.,

m̄[
2mpmn

mp1mn
. ~4.2!

All NN potentials applied in this study use consistently t
latest, very accurate, values for nucleon masses@12#, namely,

mp5938.272 31 MeV, ~4.3!

mn5939.565 63 MeV, ~4.4!

implying

m̄5938.918 52 MeV. ~4.5!

For theNN potential acting in particular partial waves, w
have introduced the convenient shorthand notationV00(r )
[^3S1uVu3S1&, V02(r )[^3S1uVu3D1&, etc., where^ r̂ u3S1&
[Y 01

1M( r̂ ) and^ r̂ u3D1&[Y 21
1M( r̂ ). The quantityg5 ik is dis-

cussed below.
The radial wave functions are properly normalized

unity,

E
0

`

dr@u2~r !1w2~r !#51. ~4.6!

The asymptotic behavior of the wave functions for large v
ues ofr is

u~r !;ASe2gr ,

w~r !;ADe2grF11
3

~gr !
1

3

~gr !2G , ~4.7!

where AS and AD are known as the asymptoticS- and
D-state normalizations, respectively. In addition, one defi
the ‘‘D/S-state ratio’’h[AD /AS .

Other deuteron parameters of interest are the quadru
moment

Qd5
1

20E0

`

dr r 2w~r !@A8u~r !2w~r !#, ~4.8!

the root-mean-square or matter radius

r d5
1

2H E
0

`

dr r 2@u2~r !1w2~r !#J 1/2

, ~4.9!

and theD-state probability
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PD5E
0

`

dr w2~r !. ~4.10!

Similar to scattering, the deuteron equation, Eq.~4.1!, is
solved numerically by integrating out to some larger ~25 fm
in our case! and matching the numerical waves to the
asymptotic forms, Eq.~4.7!, producingAS , AD , andg from
which the predicted deuteron binding energy is extracted

As mentioned, in the Schro¨dinger equation, Eq.~4.1!, the
interaction between the two nucleons is represented by a
cal potentialV(r ), with r5r22r1 the relative displacemen
between nucleons 1 and 2. However, in general, theNN
potentialV is nonlocal, i.e.,V[V(r ,r 8), wherer is the dis-
tance between the two ingoing nucleons andr 8 the one be-
tween the outgoing nucleons. A local potential can then
written asV(r ,r 8)u local5d(r2r 8)V(r ). For the more genera
case of a nonlocal potential, the coupled Schro¨dinger equa-
tion reads

F d2

dr2
2g2Gu~r !5m̄E

0

`

dr8rr 8@V00~r ,r 8!u~r 8!

1V02~r ,r 8!w~r 8!#,

F d2

dr2
2g22

6

r 2Gw~r !5m̄E
0

`

dr8rr 8@V20~r ,r 8!u~r 8!

1V22~r ,r 8!w~r 8!#. ~4.11!

This system of coupled integro-differential equations is th
solved by a combination of finite-difference, integra
discretization, and matrix-inversion techniques.

Alternatively, one may consider the two-nucleon syst
in momentum space, where the deuteron wave functio
given by

Cd
M~q!5@c0~q!Y 01

1M~ q̂!1c2~q!Y 21
1M~ q̂!#z0

0 , ~4.12!

with the normalization

E
0

`

dq q2@c0
2~q!1c2

2~q!#51. ~4.13!

The momentum-space Schro¨dinger equation that corre
sponds to Eq.~4.11! consists of two coupled integral equ
tions

c0~q!52
m̄

g21q2E0

`

dq8q82@V00~q,q8!c0~q8!

1V02~q,q8!c2~q8!#,

c2~q!52
m̄

g21q2E0

`

dq8q82@V20~q,q8!c0~q8!

1V22~q,q8!c2~q8!#. ~4.14!

Considering a finite set of discrete arguments for the fu
tions on the left-hand side~LHS! and using the same set o
o-

e

n

is

-

momenta to discretize the integrals on the RHS produce
matrix equation that is solved easily by the matrix-inversi
method@22#.

The relevant Fourier transforms linking the configuratio
space and the momentum-space approaches are

VLL8~q,q8!5
2

pE0

`

dr r 2

3E
0

`

dr8r 82j L~qr !VLL8~r ,r 8! j L8~q8r 8!,

~4.15!

with VLL8(r ,r 8)u local5d(r 2r 8)VLL8(r )/rr 8 if the potential
is local and

uL~r !

r
5A2

pE0

`

dq q2 j L~qr !cL~q!, ~4.16!

with u0(r )[u(r ), u2(r )[w(r ), and j L the spherical Besse
functions.

Since high reliability and precision are an important a
pect of our present investigation, we have calculated the d
teron wave functions for some local potentials both wa
first, by solving Eq.~4.1! directly and, second, by solving
Eq. ~4.14! by matrix inversion and then performing the tran
formation, Eq.~4.16!, numerically. We find agreement be
tween the resulting deuteron waves to at least six signific
digits for anyr in the range 0.05–14 fm. This establishes t
reliability of our numerical methods. It also implies that
cases where we use the momentum-space approach an
~4.16!, as for the nonlocal potentials, our deuteron waves
of the highest numerical precision.

The deuteron is a pole in theS matrix at k5 ig. The
relativistic relationship betweeng and the deuteron binding
energyBd is given by@10#

As5md5mp1mn2Bd5Amp
22g21Amn

22g2,
~4.17!

where md denotes the deuteron rest mass. Notice that
equation determinesthe correct empiricalg, since nature is
relativistic. We note that inNN scattering we use the rela
tivistic relationship betweenk and Tlab, which implies that
the c.m. kinetic energyT is related tok according to

As5mp1mn1T5Amp
21k21Amn

21k2. ~4.18!

Thus, consistency with the scattering problem requires
use of Eq.~4.17! to determineg. The formal solution of Eq.
~4.17! is

g25@4mp
2mn

22~md
22mp

22mn
2!2#/4md

2 , ~4.19!

and, usingBd52.224 575 MeV and\c5197.327 053 MeV
fm, the accurate numerical value forg comes out to be

g50.231 538 0 fm21. ~4.20!

To obtain some pedagogical insight intog2, one may rewrite
Eq. ~4.19! in factorized form
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4md
2g25@~mn1mp!22md

2#@md
22~mn2mp!2#

5Bd~4m2Bd!~md
22dm2!, ~4.21!

where we introduce the average nucleon mass,

m[
mp1mn

2
5938.918 97 MeV, ~4.22!

and the nucleon mass differencedm[mn2mp51.293 32
MeV, and usedmd52m2Bd . From this we get

g25mBdS 12
Bd

4mD S 12
dm2

md
2 D , ~4.23!

and rewriting twice the reduced nucleon mass@cf. Eq. ~4.2!#
in terms of the average mass

m̄5mS 12
dm2

4m2D , ~4.24!

we finally obtain

g25m̄BdS 12
Bd

4mD 12dm2/md
2

12dm2/~4m2!

'm̄BdF12
Bd

4mS 12
dm2

m2 D G
'm̄BdS 12

Bd

4mD . ~4.25!

The approximations involved in Eq.~4.25! are good to 1 part
in 109. Therefore, this equation reproduces the exact va
for g to all digits given in Eq.~4.20!. One can now identify
the termm̄Bd as the nonrelativistic approximation tog2 and
the factor (12Bd/4m) as the essential relativistic correctio
In most calculations of the past, the nonrelativisticg was

used, gnr[Am̄Bd50.231 606 6 fm21. The difference be-
tween gnr and the correctg, Eq. ~4.20!, leads to a small
difference~0.03%! in the overlap integralL2 ~see below!.
Although the difference is rather small, we believe o
should use the relativistically correct value, Eq.~4.20!.

Besides the strong interaction, there is also a nonvan
ing electromagnetic interaction between protons and n
trons that can be written as@16#

VEM~np!5VC1~np!1VMM~np!, ~4.26!

where

VC1~np!5abn

Fnp~r !

r
,

VMM~np!52
a

4mpmn
mpmnF2

3
Fd~r !s1•s21

Ft~r !

r 3
S12G

2
a

mpm̄
mn

Fls~r !

r 3
~L•S1L•A!. ~4.27!
e

h-
u-

Here A5(s12s2)/2, andFnp(r ) is a short-range function
representing the finite size of the neutron charge distribu
~for details, see Ref.@16#!. Because theS-wave expectation
values for the tensor and spin-orbit operators vanish,
long-range 1/r 3 parts do not contribute forL50. For LÞ0,
we make the approximation thatdEM1N

EM 'dN ~or SEM1N
EM

'SN in terms of theS matrix!. This means that in our cal
culations the asymptotic behavior of the deuteron wave fu
tions still satisfies Eqs.~4.7! and ~4.14!.

The interaction~4.26! is included only in the case of th
Argonne AV18 NN potential @16# where it contributes 18
keV to the deuteron binding energy, mostly from the ma
netic moment partVMM(np) of the interaction. One would
expect that the inner part of the deuteron wave function
affected by the inclusion or omission ofVEM(np) ~the outer
part is essentially insensitive since it is ruled byg which is
identical for all potentials!. Fortunately, it turns out that the
quantitative effect is very small, as will be demonstrated
low. Thus, also models that do not include the electrom
netic interaction between protons and neutrons can be
sidered as sufficiently reliable for our study.

Since allNN potentials are fitted to the value ofg given
in Eq. ~4.20!, they all accurately describe the empirical de
teron binding energy,Bd52.224 575(9) MeV@23#, via the
relativistic relation Eq.~4.17!. The other deuteron param
eters, as well as the3S1 scattering lengthat and effective
ranger t , are listed in Table I. Predictions are given for th
five high-precisionNN potentials that we focus on, namel
AV18 @16#, CD-Bonn @30#, Nijm-I @31#, Nijm-II @31#, and
Reid93 @31#. Notice that not all quantities in Table I ar
independent. For example, the deuteron effective rangerd
[r(2Bd ,2Bd) is related toAS , h, andg by

AS
2~11h2!5

2g

12grd
. ~4.28!

For our present investigation, essentially onlyAS is of rel-
evance~besidesg). However,AS ~and rd) cannot be mea-
sured directly. The empirical information given in the la
column of Table I onAS and rd are model-dependent ex
trapolations of low-energy data. Therefore, to trust the p
dictions for AS by our NN potentials, it is important tha
these models reproduce accurately all measured low-en
data, which is confirmed by Table I. The only exceptions
the deuteron matter radiusr d and the quadrupole momen
Qd , which are both underpredicted by all potential mode
There are, however, meson-exchange current contribut
and relativistic corrections forr d and Qd which may make
up for the discrepancies@32,33#. The D-state probability,
PD , that is listed in the bottom row of Table I, is not a
observable. It is, however, an interesting theoretical quan
in studies of the nuclear force. The lower value forPD pre-
dicted by CD-Bonn is a reflection of the nonlocal nature
this potential which is based upon relativistic meson fie
theory @30,34#. Meson-exchange Feynman diagrams are,
general, nonlocal expressions that are represented in mom
tum space in analytic form.

Finally, in Fig. 1, we display the deuteron wave functio
produced by the fiveNN potential models. Major difference
are, again, related to whether the models are local or no
cal. While the central potentials of AV18, Nijm-II, an
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TABLE I. Triplet S-wave low-energy scattering parameters and deuteron properties.

AV18 CD-Bonn Nijm-I Nijm-II Reid93 Empirical

at ~fm! 5.419 5.419 5.418 5.420 5.422 5.419~7! a

r t5r(0,0) ~fm! 1.753 1.752 1.751 1.753 1.755 1.754~8! a

rd5r(2Bd ,2Bd) ~fm! 1.767 1.764 1.762 1.764 1.769 1.765~5! b

AS (fm21/2) 0.8850 0.8845 0.8841 0.8845 0.8853 0.8845~9! b

h 0.0250 0.0255 0.0253 0.0252 0.0251 0.0256~4! c

r d ~fm! 1.967 1.966 1.967 1.968 1.969 1.97535~85! d

Qd (fm2) 0.270 0.270 0.272 0.271 0.270 0.2859~3! e

PD ~%! 5.76 4.83 5.66 5.64 5.70 —

aReference@24#.
bReferences@25,26#.
cReference@27#.
dReference@28#.
eReferences@29,25#.
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Reid93 are stricly local, the Nijm-I central force include
momentum-dependent terms which give rise to nonlo
structures in the equivalent configuration-space poten
This affects the deuteronS wave and is the reason why th
u(r ) generated by CD-Bonn and Nijm-I are so similar~large
solid and dashed curves in Fig. 1! and differ from the other
three potentials. The Nijm-I tensor potential is strictly loc
similar to AV18, Nijm-II, and Reid93, which explains wh
these four potentials generate very similarD waves. The
CD-Bonn tensor potential is nonlocal.

V. AXIAL ONE-BODY CURRENT CONTRIBUTION

Using the wave functions as defined in Eqs.~2.4! and
~2.5! and ignoring theD-wave contribution in the initial scat
tering state, we find that the matrix element of the~domi-
nant! one-body part of the axial current is given by

^d,M uAm
~1!upp&5dM ,mA16pgA

eid0

k E
0

`

dr u~r !x0~r ;k!

[A32p

g3
gAC0L~E!, ~5.1!

where Am561,0
(1) are the spherical components ofA(1),

FIG. 1. Deuteron wave functions: large curves,u(r ); small
curves, w(r ). The solid, dashed, dash-dotted, dotted, and lo
dashed curves are generated from the CD-Bonn, Nijm-I, Nijm
Reid93, and AV18 potentials, respectively.
l
l.

,

Am5657(Ax6 iAy)/A2 andAm505Az , C0 is the Gamow
penetration factor, and the overlap integral is conventiona
defined as@2#

L~E!5~g3/2!1/2
eid0

C0kE0

`

dr u~r !x0~r ;k!. ~5.2!

The constantg is defined in Eq.~4.20!, and the wave func-
tion x0 is normalized as in Eq.~2.6!. Because the solar fu
sion reaction actually occurs at energies of only a few ke
the phase shiftd0 is extremely small, and so the exponent
eid0 can conveniently be approximated by unity. Note th
when we adopt the normalization as advocated by Kami
kowski and Bahcall@5#, Eq. ~3.17!, we find

L~E!5~app
2 g3/2!1/2E

0

`

dr u~r !x̄0~r ;k!, ~5.3!

where the scattering lengthapp is defined as

2
1

app
5 lim

k→0
C0

2k cotd0 . ~5.4!

Equation~5.3! coincides with the definition of the overla
integral given by Kamionkowski and Bahcall@5#. However,
as stated in our discussion on thepp wave function, it is not
at all trivial to calculate the correct scattering lengthapp
when electromagnetic interactions other than the po
particle Coulomb interaction are present.

In the following, we will present our results for the ove
lap integral using realisticpp and deuteron wave functions
By realistic we mean that these wave functions were
tained by solving the scattering and bound-state equat
using the recent high-precisionNN potential models, the pa
rameters of which were fitted to give an almost optimal d
scription of theNN scattering data up to laboratory energi
of 350 MeV ~i.e.,x2/data'1). The fiveNN models we con-
sider consist of the AV18 Argonne model@16#, the CD-Bonn
model@30#, two Nijmegen models, Nijm-I and Nijm-II@31#,
and a regularized update of the Reid soft-core potential@31#.
The AV18 potential was fitted including all finite-size effec
in the full electromagnetic potential of Eq.~3.4!, whereas the
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other four potentials used the point-particle approximati
i.e., FC(r )5Ft(r )5Fls(r )51 and Fd(r .0)50. Further-
more, the AV18 potential is the only model which includ
the electromagnetic interaction~4.26! also in the deuteron.

In Table II we show the results forL2(Elab)
(E5Elab/2) as calculated from Eq.~5.2!. The integral was
cut off atr 550 fm, which is valid since beyond this distanc
the deuteron wave function has become extremely small,
so the contribution to the overlap integral becomes ne
gible. The results are shown for laboratory kinetic energ
of 5, 4, 3, and 2 keV, which are extrapolated to define
result at zero energy. For each model we use the deut
and pp scattering wave functions of that particular mod
The dependence on the particularNN model is found to be
rather small. Taking the average over all five models we fi
L2(0)56.97560.010. Leaving out the CD-Bonn mode
which is quite different from the other models in that it is t
only model with nonlocal tensor interactions, we find
even smaller model dependence withL2(0)56.97060.005.

We again want to stress that theseNN models were fitted
including the full electromagnetic potential, and so the wa
functions have to be calculated in the presence of this s
electromagnetic interaction. Truncating it, for example
only including the standard Coulomb interaction, w
modify the wave function and, hence, the overlap integral
Table III we show the effect onL2(E) for different trunca-
tions of the electromagnetic part of the interaction. For
nuclear interaction we take the AV18 potential as an
ample. The other models show a similar trend. We cons
four different truncations of the electromagnetic interactio
all for point-particle protons. The effect ofVC2 is seen to be
rather small: neglecting it increasesL2(0) by only 0.0035,
which is a 0.05% effect. The proper inclusion of the vacu
polarization is much more important: neglecting it causes
almost 1% increase.

TABLE II. Square of the overlap integralL(Elab) at various
laboratory energies for the fiveNN potential models. The zero
energy results are obtained by extrapolating the preceding res

NN model Ref. 5 keV 4 keV 3 keV 2 keV 0 keV

AV18 @16# 7.002 6.995 6.987 6.980 6.965
CD-Bonn @30# 7.022 7.014 7.007 6.999 6.985
Nijm I @31# 7.002 6.994 6.987 6.979 6.965
Nijm II @31# 7.008 7.000 6.993 6.986 6.971
Reid93 @31# 7.011 7.003 6.996 6.989 6.974

TABLE III. Square of the overlap integralL(Elab) at various
laboratory energies for four different truncations of the electrom
netic interaction~all for point-particle protons!. The nuclear inter-
action is the AV18 potential@16#. The result for the full interaction
with finite-size contributions is included for comparison.

VEM(pp) 5 keV 4 keV 3 keV 2 keV 0 keV

VC1 7.060 7.051 7.043 7.035 7.019
VC11VC2 7.063 7.055 7.047 7.039 7.023
VC11VVP 6.993 6.985 6.978 6.971 6.956
VC11VC21VVP 6.996 6.989 6.981 6.974 6.960
Full 7.002 6.995 6.987 6.980 6.965
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Finally, for the AV18 potential we can also study th
finite-size effects and the effect ofVEM(np) in the deuteron
calculation. Neglecting the finite-size effects underestima
L2(0) by only 0.08%, as shown in the table. Simply remo
ing VEM(np) changes the binding energy toBd(trunc)5
22.242 227 MeV, and hence the asymptotic behavior of
deuteron wave function. The consequence of this is t
L2(0) increases by 0.03, almost a 0.5% effect. However
we first refit the binding energy@i.e., make a modified AV18
potential which does not includeVEM(np), but which does
have the proper asymptotic deuteron wave function#, then the
difference inL2(0) is only 0.001. Hence, the inclusion o
VEM(np) under the restriction that the potential model co
rectly fit the experimental binding energy has only a sm
effect on the overlap integral, as we alluded to earlier.

VI. BEYOND THE AXIAL ONE-BODY CURRENT
CONTRIBUTION

In this section we review the procedure leading to t
experimental determination of the Gamow-Teller~GT! ma-
trix element in tritiumb decay, and demonstrate the inabili
of calculations based on axial one-body currents and real
wave functions from modern interactions to correctly pred
this value. After a brief discussion of the axial two-bod
current operators, we address the issue of their model de
dence by adopting the phenomenological approach of c
straining them to reproduce the experimental value of the3H
GT matrix element. We then calculate these two-body c
rent contributions to thepp weak capture, examining in par
ticular the question of how their associated uncertainties
fect thepp cross section.

A. Tritium b decay

Evidence for the presence of axial two-body current co
tributions to weak transitions comes from theb decay of
tritium. Its half-life can be expressed as

~11dR!t5
K/GV

2

f V^F&21 f A gA
2^GT&2

, ~6.1!

wheredR51.9% is the so-called outer radiative correctiont
is the half-life, andf V and f A are Fermi functions calculate
by Towner, as reported by Simpson@35#, to have the values
2.835531026 and 2.850531026, respectively. The experi
mental value for the combinationK/GV

2 is (6146.660.6) s,
as obtained by Hardyet al. @9#. This value is actually 0.15%
larger than that used by Simpson@35#, (6137.263.6) s, in
his 3H b-decay analysis. Finally,̂F& and^GT& denote the
reduced matrix element of the Fermi and GT operato
which in the one-body limit are given by, respectively,

^F&5K 3HeUU(
i

t i ,1UU3HL , ~6.2!

^GT&5K 3HeUU(
i

sit i ,1UU3HL . ~6.3!

Simpson @35# reports the experimental value (1134
63.1) s for the combination (11dR)t f V . In order to extract

s.

-
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a value for the tritium GT matrix element, it is necessary
calculate the Fermi matrix element. If the trinucleons we
pure totalT51/2, MT561/2 states, then the Fermi matr
element would just be one. However, charge-symme
breaking ~CSB! and charge-independence breaking~CIB!
and, more importantly, electromagnetic effects in the nuc
interaction lead to a small correction. In the present stu
such a correction is calculated using3H and 3He wave func-
tions obtained with the correlated-hyperspherical-harmo
~CHH! method@36# from the AV18 two-nucleon interaction
~including electromagnetic terms! and the Urbana UIX three
nucleon interaction@37#. We find, neglecting isospin admix
turesT>3/2 ~the probability ofT53/2 components in3He
has been estimated to be about 0.0016%!,

^F&2[12e50.9987. ~6.4!

The present value fore is about twice that obtained by Sait
et al. @38# in a ~converged! Faddeev calculation based on th
older Argonnev14 two-nucleon@39# and Tucson-Melbourne
~TM! three-nucleon@40# interactions and phenomenologic
CSB and CIB terms constrained to reproduce the obse
mass difference in3H and 3He. However, the individua
binding energies are underpredicted by this Hamilton
model by about 3%. In contrast, the present AV18/UIX CH
wave functions reproduce the experimental binding ener
of both systems within less than 10 keV~incidentally, the
variational CHH and ‘‘exact’’ Faddeev@41# and Green’s
function Monte Carlo@42# methods produce trinucleon bind
ing energies all within a few keV of each other!. It is unclear
at this point whether the difference ine values calculated
here and in Ref.@38# is to be ascribed to binding energ
effects or to differences in the treatment of the electrom
netic, CSB, and CIB interactions~or both!. We note that
Simpson uses the valuee50.0006 in line with the estimate
of Saitoet al.

Using the measured half-life, and the valuesK/GV
2

5(6146.660.6) s, f A / f V51.005 29,^F&250.9987, andgA
51.265460.0042, the ‘‘experimental’’ GT matrix elemen
is obtained:

^GT&uexpt5A3~0.95760.003!, ~6.5!

where theA3 is from a Clebsch-Gordan coefficient.
The experimental GT matrix element is compared w

predictions from a number of modern Hamiltonians w
various combinations of realistic two- and three-nucleon
teractions in Table IV. We also give in Table V the calc
lated percent probabilities of theS-, S8-, P-, and D-wave
components in the3H wave function@36,41#. A few com-
ments are in order. First, the model Hamiltonians with
TM three-nucleon interaction are all designed to reprod
the experimental3H binding energy in Faddeev calculation
by adjusting the cutoff mass in the TM force@41#. As already
pointed out, the two-nucleon interactions employed in
present work are of high precision, and produce fits topp
andnp scattering data up to laboratory energies of 350 M
with a x2 per datum in the range 1.03–1.09.

Second, in Table IV we also quote the results obtain
using the relation

^GT&.A3~PS1PD/32PS8/3!, ~6.6!
e
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wherePS , PD , andPS8 are the probabilities of theS-, D-,
and S8-wave components in the3H state. Use of such a
relation implicitly assumes isospin symmetry—namely, th
3H and 3He form an isodoublet—and also ignores the co
tribution of P-wave components. However, corrections
Eq. ~6.6! appear to be very small, a few parts in a thousa

Third, the results listed in Table IV indicate that mode
interactions lead to predictions for the GT matrix element
tritium in the rangeA33(0.92320.937), and therefore to a
underestimate of the experimental value ranging, in rela
terms, from 2.1% for CD-Bonn/TM to 3.7% for AV18/UIX

B. Axial two-body current model

For the axial two-body current operator we use a sligh
expanded version of the conventionalp- and r-meson ex-

TABLE IV. One-body and two-bodyDp contributions to the
Gamow-Teller matrix element of tritiumb decay, obtained with
various combinations of modern two- and three-nucleon inter
tions in CHH and 42-channel Faddeev calculations, the former
the AV18/UIX model only. The one-body results obtained from E
~6.6! are also quoted, while those under the heading ‘‘total’’ gi
the sum of the one-body~first column! andDp contributions.

Hamiltonian One-body Eq.~6.6! Dp Total

AV18 0.924 0.925 0.0507 0.975
AV18/TM 0.925 0.925 0.0546 0.980
AV18/UIX 0.922 0.923 0.0560 0.979

CD-Bonn 0.935 0.935 0.0427 0.977
CD-Bonn/TM 0.937 0.937 0.0435 0.980

Nijm I 0.926 0.927 0.0507 0.977
Nijm I/TM 0.928 0.927 0.0534 0.981

Nijm II 0.926 0.927 0.0504 0.976
Nijm II/TM 0.927 0.927 0.0534 0.981

Reid93 0.925 0.926 0.0514 0.977
Reid93/TM 0.926 0.926 0.0549 0.981

TABLE V. The S-, S8-, P-, andD-state percent probabilities in
3H wave functions. The results for the AV18/UIX model are fro
Ref. @36#.

Hamiltonian S S8 P D

AV18 90.10 1.33 0.066 8.51
AV18/TM 89.96 1.09 0.155 8.80
AV18/UIX 89.51 1.05 0.130 9.31

CD-Bonn 91.62 1.34 0.046 6.99
CD-Bonn/TM 91.74 1.21 0.102 6.95

Nijm I 90.29 1.27 0.066 8.37
Nijm I/TM 90.25 1.08 0.148 8.53

Nijm II 90.31 1.27 0.065 8.35
Nijm II/TM 90.22 1.07 0.161 8.54

Reid93 90.21 1.28 0.067 8.44
Reid93/TM 90.09 1.07 0.162 8.68
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change model first described by Chemtob and Rho@43#.
These are two-body currents associated with excitation
intermediateD resonances byp and r exchanges, thepr
mechanism, and the contactpNN andrNN interactions. In
the tables, these operators are denoted, respectively, asDp,
Dr, pr, pS, andrS. Explicit expressions for them are liste
in the Appendix for completeness. Here we only note that~i!
the ~nonlocal! momentum-dependent terms in thep, r, and
pr operators are retained in contrast to Ref.@38#; ~ii ! mono-
pole form factors are included at thepNN andrNN vertices
with cutoff massesLp andLr , respectively; and~iii ! there
is significant uncertainty in the leadingDp and Dr contri-
butions, since theN to D transition axial coupling is no
known @44#. In the model adopted here, the latter is rela
within the quark model to the nucleongA , namely, gND

5(6A2/5)gA .
The present approach consists of using the simplest

sible two-body operators that give an adequate descriptio
the longest-range mechanisms and of adjusting the cu
masseswithin a given Hamiltonian modelso as to reproduce
the experimental3H GT matrix element. The contribution
due to exchanges of heavier mesons, such as theA1 @45,46#,
or renormalizations effects, arising fromD-isobar admixtures
in the nuclear wave functions@44#, are neglected. However
in the next subsection it is argued that these approximat
are not expected to have an impact in any significant way
the theoretical predictions for thepp weak capture cross sec
tion once the two-body current model is constrained to fit
GT matrix element of tritium.

C. Axial two-body current contributions to the pp capture
and 3H GT matrix element

In Table VI we quote the contributions to the GT matr
element obtained with the CHH AV18/UIX trinucleon wav
functions from the individual components of the axial cu
rent operators listed in the Appendix. The small differenc
between the present results and those reported in Ref.@8# are
due to the slightly different values used forLp (Lp

54.80 fm21 in the present work versusLp54.65 fm21 in
Ref. @8#! and, presumably to a lesser extent, to the fact
older calculations were based on a different Hamilton
model, consisting of the Argonnev14 two-nucleon and
Urbana-VIII three-nucleon interactions, which, however, d

TABLE VI. Contributions to the Gamow-Teller matrix elemen
of tritium b decay, obtained with the CHH AV18/UIX trinucleo
wave functions. The cutoff massesLp54.8 fm21 and Lr

56.8 fm21 are used in the axial two-body operators. The cumu
tive result is 0.9636. The two-body results obtained by retain
only the contributions of theT51 pairs in tritium are also given
~column labeledT51).

Total T51

One-body 0.9218
Dp 0.0560 0.0291
Dr –0.0213 –0.0111
pr 0.0070 0.0035
pS 0.0044 0.0025
rS –0.0043 –0.0021
of
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reproduce the experimental binding energies of the trinu
ons in a 34-channel Faddeev calculation@47#. The cumula-
tive value for the calculated GT matrix element isA3
30.964, about 0.7% larger than experiment. A slight adju
ment in the cutoff massesLp andLr or ND axial coupling
~or both! is thus required to bring theory and experiment in
perfect agreement. We will return to this point later, in Se
VII.

To test the model dependence, we have calculated
leading Dp contribution with 42-channel Faddeev wav
functions obtained from the Hamiltonian models discuss
earlier, and the results are listed in Table IV. Both the o
body andDp contributions show a strong correlation wit
the D-state probability in the trinucleon wave function
which is obviously related to the deuteronD-state probabil-
ity predicted by the underlying two-nucleon interaction, as
evident from Tables I and V. This correlation is a dire
consequence of the dominant contributions due toT
51 1S0
T50 3S1-3D1 (T50 3D1) transitions for the
one-body (Dp) component. This has been verified explicit
by including only the above channels in the Faddeev eva
ation of the GT matrix element. As a result, the sum of t
one-body andDp contributions turns out to be essential
model independent, as indicated in Table IV. Such a con
sion is also expected to hold when the remaining two-bo
contributions are included. Thus, to reproduce the exp
mental GT matrix element, a single adjustment of the cut
massesLp and Lr or gND in the axial two-body current
operators should suffice for all Hamiltonian models cons
ered.

We now turn to thepp capture. We only quote results
presented in Table VII, corresponding to the AV18 and C
Bonn interactions. The values calculated with these t
models, which give the two extremes for the one-body c
tribution, 6.966 and 6.992, respectively, at zero energy,
within less than 0.2% when all two-body current contrib
tions are included. Thus, the two-body part of the axial c
rent leads to an increase of the AV18 and CD-Bonn o
body results, amounting, respectively, to 1.6% and 1.1
consistently with the findings of the earlier study@8#.

Having demonstrated the model independence of theo
ical predictions for the GT matrix element andpp weak
capture cross section, we now want to address the issu
how ambiguities in the axial two-body currents might affe
this conclusion. To this end, it is useful to decompose the
matrix element as

K 3HeU(
i , j

Oz,1~ i j !U3HL
5K 3HeU(

i , j
Oz,1~ i j !P1

t~ i j !U3HL
1K 3HeU(

i , j
Oz,1~ i j !P0

t~ i j !U3HL , ~6.7!

whereOz,1 is the z component of any axial two-body cur
rent operator, andP0,1

t are projection operators overT50
and 1 two-nucleon states:

P0
t~ i j !1P1

t~ i j !51, ~6.8!

-
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P1
t~ i j !5

31ti•tj

4
. ~6.9!

In Eq. ~6.7! most of theT50 (T51) contribution is coming
from conversion of apn T,S50,1 (nnT,S51,0) pair in
3H to a pp T,S51,0 (pnT,S50,1) pair in 3He, for ex-
ample,

K 3HeU(
i , j

Oz,1~ i j !P1
t~ i j !U3HL

.K 3HeU(
i , j

P0
t~ i j !Oz,1~ i j !P1

t~ i j !U3HL , ~6.10!

since the numbers ofT,S50,0 andT,S51,1 pairs in the
trinucleons are much smaller than those withT,S50,1 and
T,S51,0 @48#. It is now easy to see that, if~neglecting
isospin-symmetry breaking corrections! u3He&5Qu3H&,
whereQ[t1,xt2,xt3,x is the isospin-flip operator, then

K 3HeU(
i , j

P0
t~ i j !Oz,1~ i j !P1

t~ i j !U3HL
5K 3HeU(

i , j
P1

t~ i j !Oz,1~ i j !P0
t~ i j !U3HL , ~6.11!

since the matrix element is real,Q commutes withPT
t , Q2

51, andO6
† 5O7 . Thus, theT50 andT51 contributions

FIG. 2. Gamow-Teller~solid lines! andpp ~dashed lines! two-
body densities. Note that allpp curves have been rescaled by
single factor, as explained in the text.
in Eq. ~6.7! are expected to be of about the same size. T
can be seen from Table VI, where the sums of theT50 and
1 and T51 alone contributions to the GT matrix eleme
from the individual components of the two-body operato
are listed.

It is interesting to define the two-body densities:

rO~x;GT!5K 3HeU(
i , j

d~x2r i j !Oz,1~ i j !P0
t~ i j !U3HL ,

~6.12!

rO~x;pp!5K ppU(
i , j

d~x2r i j !Oz,1~ i j !Ud,0L ,

~6.13!

such that

E
0

`

dx rO~x!5O contribution. ~6.14!

These densities are shown in Fig. 2, where therO(x;pp)
curves have been rescaled by asingle factor R, obtained by
matching the maximum of the GT andpp Dp densities. As
can be seen from Fig. 2, the GT andpp densities overlap in
the region x<2 fm. Of course, at largerx values the
rO(x;GT) is significantly smaller than therO(x;pp), O
5pS,Dp,pr, because of the increased binding in the t
nucleons. This scaling is to be expected, since it is a con
quence of the ‘‘scaling’’ behavior more generally observ
for the calculatedT,S50,1 andT,S51,0 pair distribution
functions in nuclei@48#; see Figs. 3 and 4. Finally, we sho
in Fig. 5 therDp(x) densities obtained with the AV18 an
CD-Bonn Hamiltonians for the GT andpp matrix elements.
In this case, both theT50 andT51 contributions are in-
cluded in the GT densities—namely, they have been ca
lated by removing the isospin projector in Eq.~6.12!. Note
that the pp densities have been rescaled by a factorR
.39.0 obtained by matching the maximum of the AV18 G
and pp densities. However, this rescaling also makes
CD-Bonn GT andpp densities very close~see Fig. 5!, dem-
onstrating that theR factor has only a very weak mode
dependence.
n

dy
TABLE VII. Square of the overlap integralL(Elab) at various lab energies for the AV18 and CD-Bon
interactions. The zero-energy results are obtained by linear extrapolation of those atElab53 and 5 keV. The
cutoff massesLp54.8 fm21 and Lr56.8 fm21 are used in the axial two-body operators. The two-bo
contributions are added successively in the given order.

5 keV 4 keV 3 keV 0 keV
AV18 CD-Bonn AV18 CD-Bonn AV18 CD-Bonn AV18 CD-Bonn

One-body 7.002 7.022 6.995 7.014 6.987 7.007 6.965 6.985
1pS 7.015 7.024 7.007 7.016 6.999 7.009 6.977 6.987
1rS 7.005 7.018 6.997 7.010 6.990 7.003 6.967 6.981
1Dp 7.138 7.126 7.130 7.118 7.122 7.111 7.099 7.089
1Dr 7.090 7.092 7.083 7.084 7.075 7.077 7.052 7.055
1pr 7.114 7.097 7.107 7.089 7.099 7.082 7.076 7.060
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The discussion above shows that two-body contributi
to thepp capture are essentially independent of the spec
dynamical model adopted as long as the latter is constra
to reproduce the experimental value of the GT matrix e
ment.

VII. CONCLUSIONS

We have calculated the axial matrix element for proto
proton weak capture using five modern high-precis
nucleon-nucleon potentials. All these models give excell
fits to elasticNN scattering data with ax2/datum near 1 and
reproduce measured deuteron properties very well. We h
paid particular attention to details of the electromagnetic
teraction and the proper treatment of the low-energypp scat-
tering solutions. As noted before@5# the most important cor-
rection to the standard Coulomb interaction between prot
is the vacuum polarization, which reduces the cross sec
by about 1%. We have shown that other fine details of
electromagnetic interaction increase the cross section

FIG. 3. TheT,S51,0 pair distribution functions for various nu
clei; see Ref.@48#. Note that the curves have been renormalized
the peak height of the16O density.

FIG. 4. TheT,S50,1 MS50, 61 pair distribution functions
for given anglesu between the spin-quantization axis and the re
tive position vector of the two nucleons and for various nuclei;
Ref. @48#. Note that the curves have been renormalized to the p
height of the deuteronMS561 u50 density.
s
c
ed
-

-
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-
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e
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about 0.1%. This is in part compensated by the correct r
tivistic treatment of the deuteron wave numberg, which
gives a net 0.03% reduction in the cross section. Includ
just the axial one-body operator, the five models differ
only 0.3% in the calculated cross section.

The biggest remaining uncertainty is in the contribution
axial two-body currents, which can increase the cross sec
by about 1–1.5 %. Three concerns were expressed at
recent workshop on solar fusion rates@11# regarding the use
of the known tritiumb-decay rate to predict the axial two
body current contribution to thepp fusion reaction:~1! the
model dependence of the one-body contribution to the
matrix element and the resulting uncertainty in the extrac
two-body current contribution to that matrix element;~2!
two-body currents couplingT,Tz51,0 pairs toT,Tz51,1
pairs, which can contribute to the tritium GT matrix eleme
but not to thepp capture; and~3! isobar and contact term
could give different contributions to the GT andpp-capture
matrix elements, and thus knowledge of their sum in the
may not be sufficient to predict their sum in the captu
matrix element.

Our detailed calculations show that these concerns do
influence the prediction of thepp-capture rate. In particular
~1! the model dependence in the one-body contribution to
GT matrix element comes mostly from that in theD-state
probabilities. Because of the smallerD state predicted by the
CD-Bonn potential~Table V!, the corresponding prediction
for this contribution is larger by about 1%~Table IV!. How-
ever, the prediction obtained with this potential for th
pp-capture rate via one-body currents is also larger by ab
0.3% ~Table II! because of the smallerD state in the deu-
teron ~Table I!. The axial two-body currents are necessar
weaker in the CD-Bonn model because they strongly cou
the S and D states. In fact the sum of one- and two-bo
current contributions is much less model dependent than
ther as can be seen from Tables IV and VII.~2! The axial
two-body currents do not couple theT,Tz51,0 pairs to the
T,Tz51,1 pairs in any significant way, as the discussion
the preceding section makes clear.~3! The two-body currents
are large at small interparticle distances where nuclear fo

o

-
e
k

FIG. 5. Gamow-Teller~solid lines! and pp ~dashed lines! Dp
densities obtained with the AV18 and CD-Bonn Hamiltonians. N
that the Gamow-Teller densities include both theT50 andT51
contributions—namely, they have been calculated by removing
isospin projectorP0

t( i j ) in Eq. ~6.12!. The pp densities have been
rescaled by a single factorR.39.0, obtained by matching the max
mum of the AV18 Gamow-Teller andpp densities.
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1276 PRC 58R. SCHIAVILLA et al.
dominate over binding energies. In this region the pair wa
functions in different nuclei are similar in shape and diff
only by a scale factor. This is the basis of the Bethe-Levin
conjecture@49#, which can be used to relate processes s
as pion and photon absorption, involving nucleon pairs,
different nuclei@48#. Thus the ratios of GT andpp-capture
matrix elements of different two-body current terms a
nearly the same as can be seen from Fig. 2. Theref
knowledge of their sum in the GT matrix element is suf
cient to predict their sum in thepp-capture matrix element

Finally, as we have already mentioned, the GT ma
element is slightly overpredicted@A330.964 versus the ex
perimental valueA33(0.95760.003)#. Reducing the quark-
model prediction for theN to D axial coupling in theDp and
Dr currents by 20% brings theory and experiment in
agreement. The resulting CD-Bonn and AV18 values for
square of thepp overlap integral at zero energy are th
found to be 7.045 and 7.059, respectively. Predictions
this quantity with other modern interactions are expected
fall in this range. Thus, the model dependence and theo
cal uncertainty appear to be at the level of a few parts i
thousand, much smaller than the estimate given in Ref.@11#.
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APPENDIX: THE AXIAL TWO-BODY CURRENT OPERATORS

For completeness, we list here the momentum-space expressions for the axial two-body currents used in the pres
~1! Axial p-exchangeD-excitation current:

Aa,i j
~2! ~q;Dp!52

16

25
gA

f pNN
2

mp
2 ~mD2m!

sj•k j

mp
2 1kj

2
f p

2 ~kj !@4 t j ,a k j2~ti3tj !a si3k j #1 i
 j . ~A1!

~2! Axial r-exchangeD-excitation current:

Aa,i j
~2! ~q;Dr!5

4

25
gA

gr
2~11kr!2

m2~mD2m!

f r
2~kj !

mr
21kj

2 $4 t j ,a ~sj3k j !3k j2~ti3tj !a si3@~sj3k j !3k j #%1 i
 j . ~A2!

~3! Axial p-exchange~pair! current:

Aa,i j
~2! ~q;pS!5

gA

2m

f pNN
2

mp
2

sj•k j

mp
2 1kj

2
f p

2 ~kj !$~ti3tj !asi3k j2 i t j ,a@q1 isi3~pi1pi8!#%1 i
 j . ~A3!

~4! Axial r-exchange~pair! current:

Aa,i j
~2! ~q;rS!52gA

gr
2~11kr!2

8m3

f r
2~kj !

mr
21kj

2 „t j ,a$~sj3k j !3k j2 i @si3~sj3k j !#3~pi1pi8!%

1~ti3tj !a$qsi•~sj3k j !1 i ~sj3k j !3~pi1pi8!2@si3~sj3k j !#3k j%…1 i
 j . ~A4!

~5! Axial pr current:

Aa,i j
~2! ~q;pr!52gA

gr
2

m

sj•k j

~mr
21ki

2!~mp
2 1kj

2!
f r~ki ! f p~kj !~ti3tj !a@~11kr!si3k i2 i~pi1pi8!#1 i
 j . ~A5!

Hereq is the total momentum transfer5k i1k j , k i ( j ) is the momentum transfer to nucleoni ( j ), pi andpi8 are the initial and
final momenta of nucleoni , and f p(r)(k)5pion (r-meson!-nucleon monopole vertex form factor. The quark model has b
used to relate thepND, rND, and axialND couplings to, respectively, thepNN, rNN, andgA couplings. The expression fo
pS represents the conventional pair current operator given in the literature. It is obtained with pseudoscalar pion-
coupling. With pseudovector coupling the pion momentumk j in the first term in brackets would be replaced by the exter
momentumq and an additional term (pi1pi8) would appear with the isospin structure (ti3tj )a . Furthermore, therS operator
includes only those terms which are proportional to (11kr)2. Finally, mp , mr , m, and mD are, respectively, the pion
r-meson, nucleon, andD masses.
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