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Benchmark calculations for polarization observables in three-nucleon scattering
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High precision benchmark calculations for phase shifts and mixing parameters as well as observables in
elastic neutron-deuteron scattering below the deuteron breakup threshold are presented using a realistic
nucleon-nucleon potential. Two totally different methods, one using a variational principle in configuration
space and the other solving the Faddeev equations in momentum space, are used and compared to each other.
The agreement achieved in phase shifts and mixing parameters as well as in the polarization observables is
excellent. The extreme sensitivity of the vector analyzing powerAy to small changes of the phase shifts and
mixing parameters is pointed out.@S0556-2813~98!07312-9#

PACS number~s!: 21.45.1v, 25.10.1s, 03.65.Nk
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I. INTRODUCTION

A complete theoretical description of the three-nucle
(3N) system is still limited by our knowledge of the nucle
interaction. Recently, progress has been achieved by o
mally tuning variousNN potential models to theNN data
base, which lead to a fit with ax2 per datum very close to 1
Even by using these modernNN potentials in triton calcula-
tions @1# the well known underbinding problem is sti
present. The calculated binding energies lie between 7.6
MeV. A possible way to overcome this difficulty consists
including three-nucleon interaction~TNI! terms in the 3N
Hamiltonian, usually fitted to reproduce the correct expe
mental binding energy of 8.48 MeV. There are various m
els for TNI, arising from thep-p exchange@2#, exchanges of
heavier mesons@3# or having more phenomenological form
@4#. The investigation of the TNI effects must not be limite
to the 3N bound state but should be extended to theN
continuum. A prerequisite to that is a well grounded theor
ical approach and the numerical control of its application
3N scattering problems. Under this respect, much prog
has been made in recent years@5–8#. As shown in@8#, the
overall agreement to measured 3N observables using moder
NN potentials is quite good, but there are exceptions. Am
them we can recall the 3N nucleon vector analyzing powe
Ay , which depends very sensitively on the3Pj NN force
components@9#, or the deuteron vector analyzing pow
iT11, which shows a similar sensitivity. Both these obse
ables have specific dependencies in terms of 3N S-matrix
elements: they are determined mainly by the4PJ-parameters
PRC 580556-2813/98/58~6!/3085~8!/$15.00
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@10,11#. Such strong dependencies require very accurate
culations. The aim of the present article is to demonstr
that extremely accurate numerical results can be achie
These two 3N observablesAy and iT11 are of special inter-
est, since present theoretical descriptions are about 30%
the experimental data in the low energy region and up to n
no explanation has been found for the discrepancy@9,12–
14#.

One way to parametrize the amplitude for elastic Nd sc
tering is in terms of the partial-wave decomposedS-matrix
elementsSl8S8lS

J . Here J is the total 3N angular momen-
tum, l andl8 the orbital angular momenta of a nucleon
relation to the deuteron andS andS8 the total spins of the
deuteron and the third nucleon. TheS-matrix elements can
be expressed in terms of phase-shift and mixing parame
As already stated above, the analyzing powersAy and iT11
show extreme dependencies on some of them. As it will
discussed in the next section, differences of about 1%
some phase-shift parameters can lead to differences in t
observables as large as 10% and more. Other observable
the tensor analyzing powers and the spin-transfer and s
correlation coefficients, are sensitive to states with high v
ues of l, typically l>2, which are also important whe
phase-shift analysis~PSA! are performed.

In the present work we provide benchmark calculatio
for 3N scattering observables as well as forS-matrix param-
eters below the deuteron breakup threshold using a real
NN interaction. Two different techniques are used to cal
late the S-matrix elements. The Bochum-Cracow grou
solves the Faddeev equations in momentum space as
3085 ©1998 The American Physical Society



a-

ot
n
at
n
w

ric
p

n
e-

as
tio
o

i
ou

e

r
r

u

f
o-
n

o
n
o

ve

r
of

m

ve
-

e
. S

322,

are

e

h. In
ing

e
cts.
es
nce
-

that
lus

-

by

e
ular
n

ups
m
-
he

wo
less
ces
re-

o
The

I of
u-

3086 PRC 58A. KIEVSKY et al.
scribed in@6# and @8#. The Pisa group uses the Kohn vari
tional principle in configuration space@5,15,16#. Both tech-
niques have been used in@17# but limiting the comparison
just to phase-shift and mixing parameters for states with t
angular momentumJ<7/2. Here we extend the investigatio
to a number of observables by taking into account also st
with higher J values which are needed for a complete co
vergence of all considered observables. At the same time
increase the accuracy in order to demonstrate the nume
reliability of both methods to an unprecedented degree. S
cial emphasis is laid to the numerical accurate descriptio
the vector analyzing powerAy , since it poses a severe th
oretical puzzle.

The results obtained by the two techniques for the ph
shift and mixing parameters are presented in the next sec
Those for the observables are reported in Sec. III. The c
clusions are the content of the final section.

II. PHASE SHIFT AND MIXING PARAMETERS

The two approaches used for numerical applications
this article have been described previously. The Pisa gr
uses the pair correlated hyperspherical harmonic~PHH! basis
to expand the scattering wave function@5# and the corre-
spondingS-matrix is obtained using the complex form of th
Kohn variational principle@16#. The Bochum-Cracow group
solves the Faddeev equations for the breakup operato
momentum space@6,8#. The complex transition matrix fo
elastic scattering is then gained by quadrature.

The comparison between the results of the two techniq
has been performed using one of the ArgonneNN potentials,
namely the AV14@18# one, which has all the complexities o
a modernNN interaction built in. Our choice has been m
tivated by the fact that this potential was used in ma
benchmark calculations in the past, especially in@17#. The
incident nucleon laboratory energy has been fixed atElab
53.0 MeV, just below the deuteron breakup threshold.

In the correlated hyperspherical method the pattern
convergence for theS-matrix has been studied including i
then-d wave functions channels with increasing angular m
menta values. Let us denote byl a andLa the orbital angular
momentum quantum numbers associated to the Jacobi
tors of the 3N system in the channela, and defineK05 l a
1La . The choicesK0<2(3), 4~5!, 6~7! mean that all chan-
nels with l a1La<2(3), 4~5!, 6~7! have been included fo
positive ~negative! parity states. Of course, the number
hyperspherical components for each channel has been
creased until convergence has been reached. As an exa
the numbers of the channels pertaining to the choicesK0
52,4,6, for theJP51/21 state, result to beNc510,18,26,
respectively. Channels with higherK0 values were checked
to give completely disregardable contributions.

In the Faddeev method in momentum space the con
gence for theS-matrix is studied increasing the total two
body angular momentumj max up to which theNN force is
taken into account. We went up toj max58 for J51/2 and
3/2. It turned out that withj max56 a complete convergenc
for the phase-shifts and mixing parameters was achieved
j max56 was used in the calculations for higherJ values. As
an example, the valuesj max52, 4, 6, 8 forJ51/2 correspond
al
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to 18, 34, 50, 66 channels, respectively. For higherJ’s the
number of channels increases up to 34, 98, 194, and
respectively.

The results for the phase-shift and mixing parameters
displayed in Table I for states up toJ59/2. The Pisa num-
bers are calculated withK0<6(7) for thepositive~negative!
parity states and the Bochum-Cracow numbers withj max
<6. For states with higherJ values the nuclear exchang
term PG0

21 as given in Eq.~2.14! of Ref. @17# is sufficient,
as has been standard use in the Bochum-Cracow approac
the notation of the Pisa group this amounts to the follow
easy manner to compute theS-matrix. In the states with high
relative angular momentuml the incident nucleon and th
deuteron are well separated due to centrifugal barrier effe
Therefore, the asymptotic form of the wave function giv
essentially a correct description of the system. The reacta
matrix (K-matrix! of the system is given in this approxima
tion ~symmetrized Born approximation! by

Kl8S8lS
J

5(
i j

^l8S8,i ;JuH2EulS, j ;J&, ~1!

where theulS,i ;J& describes a free incident nucleoni and a
deuteron in a relative angular momentuml state.S is the
total spin of the deuteron and the nucleon. Using the fact
the asymptotic state is solution of the free Hamiltonian p
the interaction between particlesj ,k, the following simpler
form is obtained:

Kl8S8lS
J

53(
i

(
j Þ1

^l8S8,i ;JuV~2,3!ulS, j ;J&. ~2!

A further approximation consists in retaining the most im
portant term~Born approximation!:

Kl8S8lS
J

53(
j Þ1

^l8S8,1;JuV~2,3!ulS, j ;J&. ~3!

This form is equivalent to the nuclear exchange term used
the Bochum-Cracow group:

Kl8S8lS
J

53^l8S8,1;JuPG0
21ulS,1;J&. ~4!

The S-matrix is simply obtained using the relationS5(1
1 iK )(12 iK )21. For the low energy used in this study, th
Born approximation has been adopted for states with ang
momentaJ>11/2. The results obtained in this approximatio
for the phase-shift and mixing parameters by the two gro
completely overlap and are given in Table II for states fro
J511/2 up toJ515/2. As it will be shown in the next sec
tion, higherJ states give disregardable contributions to t
observables at the energy considered here.

The numbers presented in Table I, obtained by the t
different methods, agree between each other to within
than 0.1%. There are a few exceptions, where the differen
go up to 0.7%. This clearly demonstrates the power and
liability of both methods, which are totally different als
under the respect of the adopted numerical procedures.
comparison of our new results to the older ones in Table I
Ref. @17# gives a clear idea of the improvements in the n
merical accuracy. The phases given in Table II of@17# by the
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TABLE I. Phase shifts and mixing parameters in terms of the quantum numbersj max and K0 . The
numbers in parenthesis forK0 refer to odd parity states.

Bochum Pisa

JP dSl j max52 j max54 j max56 K052(3) K054(5) K056(7)

d (3/2)2 23.897 23.903 23.904 23.899 23.905 23.905

1
2

1 d (1/2)0 235.35 234.84 234.81 235.33 234.81 234.81

h 1.179 1.247 1.251 1.271 1.252 1.253

d (1/2)1 27.479 27.524 27.529 27.534 27.533 27.533

1
2

2 d (3/2)1 25.10 25.06 25.06 25.04 25.05 25.05

e 7.268 7.253 7.254 7.252 7.255 7.255

d (3/2)0 270.47 270.48 270.48 270.52 270.50 270.50

d (1/2)2 2.439 2.422 2.421 2.421 2.420 2.420

3
2

1 d (3/2)2 24.204 24.214 24.215 24.216 24.216 24.216

h 20.3963 20.3889 20.3881 20.3869 20.3873 20.3874

e 0.7745 0.7766 0.7785 0.7747 0.7801 0.7800

j 1.451 1.438 1.438 1.429 1.438 1.438

d (3/2)3 0.9466 0.9443 0.9441 0.9425 0.9436 0.9436

d (1/2)1 27.145 27.186 27.191 27.201 27.195 27.195

3
2

2 d (3/2)1 26.44 26.42 26.41 26.39 26.40 26.41

h 23.854 23.813 23.809 23.819 23.806 23.805

e 22.751 22.764 22.765 22.762 22.768 22.765

j 20.2400 20.2567 20.2574 20.2577 20.2573 20.2575

d (3/2)4 20.2105 20.2109 20.2110 20.2113 20.2112 20.2111

d (1/2)2 2.401 2.388 2.386 2.382 2.385 2.385

5
2

1 d (3/2)2 24.558 24.567 24.567 24.571 24.569 24.569

h 22.084 22.146 22.152 22.167 22.157 22.157

e 20.3450 20.3266 20.3264 20.3387 20.3275 20.3280

j 20.7637 20.7379 20.7356 20.7343 20.7365 20.7363

d (3/2)1 26.40 26.39 26.38 26.32 26.35 26.37

d (1/2)3 20.4723 20.4760 20.4765 20.4771 20.4768 20.4767

5
2

2 d (3/2)3 0.9757 0.9720 0.9716 0.9694 0.9711 0.9712

h 20.3475 20.3596 20.3605 20.3593 20.3609 20.3609

e 0.5007 0.5165 0.5168 0.5188 0.5165 0.5165

j 0.9566 0.9832 0.9844 0.9943 0.9847 0.9845

d (3/2)2 24.140 24.142 24.143 24.151 24.145 24.144

d (1/2)4 0.1107 0.1104 0.1103 0.1100 0.1103 0.1102

7
2

1 d (3/2)4 20.2200 20.2204 20.2205 20.2208 20.2207 20.2209

h 20.5130 20.4923 20.4905 20.4868 20.4894 20.4895

e 0.3575 0.3694 0.3683 0.3695 0.3680 0.3686

j 1.266 1.225 1.221 1.219 1.222 1.222

d (3/2)5 0.04950 0.04947 0.04946 0.04944 0.04944 0.0494

d (1/2)3 20.4654 20.4683 20.4688 20.4695 20.4690 20.4689

7
2

2 d (3/2)3 1.030 1.027 1.026 1.024 1.026 1.026

h 22.334 22.311 22.304 22.298 22.301 22.308

e 20.2120 20.2505 20.2527 20.2500 20.2524 20.2510

j 20.7720 20.7790 20.7823 20.7842 20.7826 20.7873
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TABLE I. (Continued).

Bochum Pisa
JP dSl j max52 j max54 j max56 K052(3) K054(5) K056(7)

d (3/2)6 20.01170 20.01170 20.01170 20.01170 20.01170 20.01170
d (1/2)4 0.1088 0.1086 0.1085 0.1082 0.1084 0.108

9
2

1 d (3/2)4 20.2292 20.2293 20.2294 20.2297 20.2297 20.2297

h 22.214 22.218 22.223 22.231 22.227 22.226
e 20.2049 20.1983 20.1954 20.1947 20.1897 20.1954
j 20.8291 20.8289 20.8262 20.8251 20.8252 20.8259

d (3/2)3 0.9441 0.9440 0.9439 0.9413 0.9435 0.943
d (1/2)5 20.02550 20.02550 20.02552 20.02553 20.02553 20.02553

9
2

2 d (3/2)5 0.05151 0.05150 0.05149 0.05147 0.05147 0.051

h 20.4781 20.4841 20.4863 20.4887 20.4867 20.4866
e 0.3316 0.3268 0.3277 0.3273 0.3275 0.327
j 1.146 1.156 1.161 1.164 1.162 1.162
n
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two methods show some disagreements in the third digit a
sometimes, even in the second digit. Now we have m
better agreement. Only very seldom is there disagreeme
the third digit of a mixing parameter. So, we have now
improved agreement in the phase-shift parameters of
more digit with respect to@17#.

A direct comparison of theS-matrix represents a sever
numerical test for both methods. TheS-matrix is part of the
wave function and its elements are very sensitive to the
ferent contributions of the potential. This is put in eviden
in Table I where some parameters converged only after
d,
h
in

ne

f-

e

inclusion of high components in the expansion. To constr
the subtle details of the wave function is always a diffic
task. To this end, extended and denser grids of points h
been used in the numerical solution of the equations. Sta
numerical results have been obtained using the integral e
tions for calculating theS-matrix ~Bochum group! and the
Kohn second order estimate~Pisa group!. Fortunately, as
shown in the next section, for the observables there is
such a strong dependence on the details of the wave func
and a number of grid points like those ones used in previ
works is adequate.
TABLE II. Phase shifts and mixing parameters fromJ511/2 toJ515/2 in Born approximation.

JP dSl Bochum-Cracow-Pisa JP dSl Bochum-Cracow-Pisa

d (3/2)4 20.2135 d (3/2)7 0.00280
d (1/2)6 0.00603 d (1/2)5 20.02513

11
2

1 d (3/2)6 20.01216 11
2

2 d (3/2)5 0.05311

h 20.4942 h 22.204
e 0.2978 e 20.1785
j 1.142 j 20.8481

d (3/2)8 20.00067 d (3/2)5 0.04968
d (1/2)6 0.00593 d (1/2)7 20.00144

13
2

1 d (3/2)6 20.01249 13
2

2 d (3/2)7 0.00290

h 22.185 h 20.4975
e 20.1660 e 0.2779
j 20.8640 j 1.125

d (3/2)6 20.01173 d (3/2)9 0.00016
d (1/2)8 0.00035 d (1/2)7 20.00141

15
2

1 d (3/2)8 20.00070 15
2

2 d (3/2)7 0.00297

h 20.4998 h 22.170
e 0.2634 e 20.1570
j 1.111 j 20.8752
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III. 3 N ELASTIC SCATTERING OBSERVABLES

We begin by showing in Fig. 1 the perfect agreeme
among the observables evaluated by the two methods.
two results for the observables are represented by the s
and long-dashed lines in Fig. 1, which are always indis
guishable from each other. These calculations are base
the phases of Table I evaluated with highest accuracy.

However we can relax those high requests and still kee
very good agreement among the predictions of the two m
ods. For the Bochum-Cracow calculations we can lower
two-nucleon angular momentumj max up to which we keep
the NN force different from zero fromj max56 to j max53
and still describe the observables within about 1 perc
Some examples are shown in Fig. 2 calculated withj max
52, 4, and 6, respectively. The lines forj max54 and 6 are

FIG. 1. The differential cross sectionds/dV, the tensor spin-
correlation coefficientT, the nucleon-to-nucleon vector spin

transfer coefficientKy
y8 , the nucleon-to-deuteron tensor spi

transfer coefficientKy
z8z8 , and the nucleon and deuteron vect

analyzing powersAy and iT11 at Elab53 MeV. The solid lines are
obtained from the Bochum-Cracow phases of this work, with
potential switched on up toJ59/2 and the nucleon exchange ter
taken into account fromJ511/2 till 15/2. The long-dashed lines ar
the same but obtained from the Pisa phases. The solid and l
dashed lines are always indistinguishable from each other.
short-dashed line is obtained forJP51/26, 3/26, 5/26, and 7/21

from the Bochum-Cracow phases of Ref.@17# and otherwise the
phases from this paper. The dotted lines are the same but obt
from the corresponding Pisa phases.
t
he
lid
-
on

a
h-
e

t.

indistinguishable, whereas the lines forj max52 exhibits
small deviations from the other lines for some of the obse
ables. The changes in the phases gained by going toj max
higher than 3 cancel out in the observables or occur for sm
phase-shifts and mixing parameters which are not so imp
tant for the determination of the observables. The same p
nomenon can be seen by increasing the numerical accur
Though a lot of phase-shifts and mixing parameters sh
sensitivity to numerical details, the observables do not.
the Pisa approach most of the large phase-shifts are alr
converged forK054(5) ~see Table I!, whereas the smalles
observables converge only forK056(7), asshown in Fig. 3.

Next let us regard the convergence of the observab
with respect toJ andl separately. Since it does not matt
which of the two sets of phases we are using, we ca
through that study with the Bochum-Cracow phases.

Let us start with the convergence inJ. It turns out that the
convergence inJ can be described in a very systematic wa
For spin observables whose magnitude is about 0.1,
greater than that, the convergence is reached already fJ

<11/2. In Fig. 4 we show as a typical exampleKy
y8 . For the

next class of observables with magnitudes about 10 tim

e

g-
e

ed

FIG. 2. The differential cross sectionds/dV, the nucleon vec-
tor analyzing powerAy , the deuteron tensor analyzing powerT21,

the nucleon-to-deuteron tensor spin-transfer coefficientKy
z8z8 and

the two tensor spin-correlation coefficientsS and T, calculated by
increasing the maximum allowed two-body angular moment
j max. Solid, long-dashed, and short-dashed lines refer toj max56, 4,
and 2, respectively. Note that the solid and long-dashed lines
always completely overlap.
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3090 PRC 58A. KIEVSKY et al.
smaller convergence is found forJ<13/2. Here we have
chosen as a typical exampleAy also shown in Fig. 4. For the
next class, again by about a factor of 10 smaller, e
J<15/2 is not quite sufficient, as can be seen in the exam
T in Fig. 4, and states up toJ525/2 have to be taken into
account. Thus the convergence inJ is strongly correlated to
the magnitudes of the observables.

Let us now examine the convergence with respect tol.
For a givenJ and parityP, the S-matrix elements are al
coupled to each other. Therefore, limiting the calculation
the observables by a maximall ~instead of a maximalJ)
means that for someJP states, only parts of the correspon
ing S-matrices are taken into account. However, this pro
dure does not harm and one gets always a very nice con
gence. Actually, at these low energies, the contributions
the waves with large values ofl are suppressed by the ce
trifugal barrier, and therefore the convergence inl is usually
faster than that inJ.

As an example we show in Fig. 5 theKy
z8z8 andT observ-

ables. As can be seen in the figure, forl<5 T is already
converged, andl<4 is not too bad, either. As one can s
for example from Table I,l<5 means that the highestJ

FIG. 3. The differential cross sectionds/dV, the nucleon vec-
tor analyzing powerAy , the deuteron tensor analyzing powerT21,

the nucleon-to-deuteron tensor spin-transfer coefficientKy
z8z8 and

the two tensor spin-correlation coefficientsS and T, calculated by
increasing the maximum allowedK0 in the expansion of the wave
function. Solid, long-dashed, and short-dashed lines correspon
maximumK056(7),4(5),2(3).
n
le

f

-
er-
f

taken into account is 13/2. On the other hand the much la

observableKy
z8z8 is fully converged only forl<6, which

means one needs phases up toJ515/2. In J this observable
reaches convergence earlier, forJ<13/2. But this is the ex-
ception. In most cases the convergence inl is faster than in
J.

Now let us demonstrate the extreme sensitivity ofAy with
respect to tiny changes of some phase shift parame
namely the4PJ phase-shifts and thee3/22 mixing parameter.
We modified them individually by 1%. The effect onAy is
shown in Table III~see also Table 2 in Ref.@10#!. Clearly the
sensitivity of Ay to the 4PJ phase-shifts is quite
dramatic—an enlargement factor of up to nearly 20 fro
changes in the phases to changes in the observable are fo

FIG. 4. Convergence inJ for the nucleon-to-nucleon vecto

spin-transfer coefficientKy
y8 , the nucleon vector analyzing powe

Ay , and the tensor spin-correlation coefficientT. Shown is the re-
sult obtained from the phases withJ<25/2 ~solid line!, J<15/2
~short-dashed line!, J<13/2 ~dotted line!, andJ<11/2 ~long-short-
dashed line!.

FIG. 5. Convergence inl for the tensor spin-correlation coeffi
cient T and the nucleon-to-deuteron tensor spin-transfer coeffic

Ky
z8z8 . Shown are the results obtained from the phases withl<6

~long-dashed line!, l<5 ~short-dashed line!, and l<4 ~dotted
line!. The solid line is the same as in Fig. 4,

to
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There are no such extremely strong sensitivities to
NN 3Pj phase-shifts@10#, although they alone determin
Ay . In @10# the biggest enlargement factor was reported
3P0 to be 3.5. In view of that extreme sensitivity it is inte
esting to see whichAy would result by using the phases
Ref. @17#, which were calculated not with such an extrem
accuracy as in this article. Thereby it is interesting to n
how the more accurate calculations in this study change
of these four parameters which dominateAy for both ap-
proaches compared to the older and less accurate numbe
@17#: the changes are 0.24%~0.20%! for 4P1/2, 0.42%
~0.42%! for 4P3/2, 0.30% ~0.65%! for 4P5/2 and 0.55%
~1.65%! for e3/22 in the Bochum-Cracow~Pisa! case. Now
the Ay resulting from the phases of@17# is shown in Fig. 1
~beside other observables! in comparison to the present be
result. We see a small shift for the Bochum-Cracow res
and a larger one for the Pisa result. This can be illustra
further by assuming thatAy changes linearly with changes o
the phases around their present values. Using Table III
gether with the small changes of the present phases to
ones of Ref.@17# one indeed finds thatAy should change by
about 10%~1%! for the Pisa~Bochum! case. In other words
in one case we see a stability for the resulting observable
the other case not. The simple reason is that the expansio
the PHH components in@17# was truncated in a nonuniform
manner for the different states and in@17# it was not foreseen
that even those small changes in the phases would e
certain observables in a magnified manner. On the o
hand if a consistent treatment of all states is performed
individual changes of the phases are smoothed out in
observables, as it was the case for the Bochum-Cracow
culation in Ref.@17#. In the Pisa group papers successive
Ref. @17# and in the present paper the PHH expansion
been consistently carried through for all states with a cor
calculation ofAy .

IV. SUMMARY AND CONCLUSIONS

In the present paper benchmark calculations for pha
shift and mixing parameters, as well as for observables
elastic neutron-deuteron scattering below the deute
breakup threshold are presented. We used the realistic A
NN potential. Twoab initio completely different methods
have been used to calculate the quantities of interest.
approach of the Pisa group is based on the correlated hy
spherical expansion of the wave function in configurat
space and uses the complex Kohn variational principle

TABLE III. The effect of 1% changes in the phases to whichAy

is most sensitive. Given is the value ofAy in its maximum as well
as the change in percent in the maximum.

Ayumax %

AV14 0.3306
4P1/231.01 0.2960 211.7
4P3/231.01 0.3083 27.2
4P5/231.01 0.4051 18.4
e3/2231.01 0.3362 1.7
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determine theS- or the K-matrix. The approach of the
Bochum-Cracow group is based on an exact technique
solving the Faddeev equations in momentum space.

The results obtained for the phase-shift and mixing
rameters by means of the two approaches show nearly
fect agreement. Also the calculated observables agree
well with each other. This demonstrates that both the va
tional approach of the Pisa group and the integral equa
method of the Bochum-Cracow group are equally well sui
for high accuracy calculations of the elasticnd scattering
observables below the breakup threshold.

The comparison with the older results of Ref.@17# shows
that the numerical accuracy in the phase-shift and mix
parameters has increased by one more digit. The chang
the phase-shifts had only very small effects on the results
the observables of the Bochum-Cracow group. The situa
was different for the Pisa results, since in Ref.@17# the
phases were evaluated with different accuracy requirem
for the different states and an observable likeAy which ex-
hibits extreme sensitivity does not tolerate that. This sho
that it is important to construct the observables by us
S-matrix elements calculated at the same approxima
level. In this case, in fact, a more rapid convergence w
respect to the number of terms included in the internal str
ture of then-d states and a lower sensitivity to the numeric
accuracy is achieved for the observables. In fact,
S-matrix elements are part of the wave function and theref
rather sensitive to the subtle aspect of the structure of
state. On the contrary, the observables are average quan
where the small details of the wave function are somew
smeared out.

Also the convergence of the observables along the t
three-body angular momentumJ and the relative angula
momentuml has been studied. We found that the conv
gence of the observables with the total three-body ang
momentumJ is strongly correlated to the magnitude of th
observables. Though the convergence of the observa
with the angular momentuml is in most cases faster than i
J, it is less systematic and has therefore to be checked
more care. Therefore a PSA has to treat the more ph
shifts as free parameters the smaller the considered obs
ables are.

In the present paper, attention has been paid only t
realistic two nucleon interaction without the inclusion of TN
terms. This will be the object of a future investigation.

In conclusion,n-d scattering states at energies below t
deuteron breakup threshold can be constructed equally a
rately by the two methods presented. It is grateful that
phase-shift and mixing parameters can be calculated with
precision of about 0.1%, comparable to the one obtaina
for bound states.
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