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Benchmark calculations for polarization observables in three-nucleon scattering
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High precision benchmark calculations for phase shifts and mixing parameters as well as observables in
elastic neutron-deuteron scattering below the deuteron breakup threshold are presented using a realistic
nucleon-nucleon potential. Two totally different methods, one using a variational principle in configuration
space and the other solving the Faddeev equations in momentum space, are used and compared to each other.
The agreement achieved in phase shifts and mixing parameters as well as in the polarization observables is
excellent. The extreme sensitivity of the vector analyzing pateto small changes of the phase shifts and
mixing parameters is pointed o50556-281@8)07312-9

PACS numbegs): 21.45+v, 25.10+s, 03.65.Nk

[. INTRODUCTION [10,11). Such strong dependencies require very accurate cal-
culations. The aim of the present article is to demonstrate
A complete theoretical description of the three-nucleonthat extremely accurate numerical results can be achieved.
(3N) system is still limited by our knowledge of the nuclear These two 3l observable#\, andiT,; are of special inter-
interaction. Recently, progress has been achieved by optst, since present theoretical descriptions are about 30% off
mally tuning variousNN potential models to thé&IN data  the experimental data in the low energy region and up to now
base, which lead to a fit with g2 per datum very close to 1. No explanation has been found for the discrepai;#2—
Even by using these modeNIN potentials in triton calcula-  14]-
tions [1] the well known underbinding problem is stil ~ One way to parametrize the amplitude for elastic Nd scat-
present. The calculated binding energies lie between 7.6—81@ring is in terms of the partial-wave decomposgthatrix
MeV. A possible way to overcome this difficulty consists in eIementsSi,E,AE. HereJ is the total 3\ angular momen-
including three-nucleon interactioffNI) terms in the 3 tum, X and\’ the orbital angular momenta of a nucleon in
Hamiltonian, usually fitted to reproduce the correct experi-relation to the deuteron ar¥l andX’ the total spins of the
mental binding energy of 8.48 MeV. There are various mod-deuteron and the third nucleon. TiBamatrix elements can
els for TNI, arising from ther-7 exchang¢?2], exchanges of be expressed in terms of phase-shift and mixing parameters.
heavier mesonf3] or having more phenomenological forms As already stated above, the analyzing powgysandiTy;
[4]. The investigation of the TNI effects must not be limited show extreme dependencies on some of them. As it will be
to the AN bound state but should be extended to thi¢ 3 discussed in the next section, differences of about 1% in
continuum. A prerequisite to that is a well grounded theoretsome phase-shift parameters can lead to differences in these
ical approach and the numerical control of its application toobservables as large as 10% and more. Other observables, as
3N scattering problems. Under this respect, much progresthe tensor analyzing powers and the spin-transfer and spin-
has been made in recent yed®s-8|. As shown in[8], the  correlation coefficients, are sensitive to states with high val-
overall agreement to measure ®bservables using modern ues of A, typically A\=2, which are also important when
NN potentials is quite good, but there are exceptions. Amonghase-shift analysi€PSA) are performed.
them we can recall theM8 nucleon vector analyzing power In the present work we provide benchmark calculations
Ay, which depends very sensitively on tﬁ@j NN force  for 3N scattering observables as well as $matrix param-
components[9], or the deuteron vector analyzing power eters below the deuteron breakup threshold using a realistic
iT¢1, which shows a similar sensitivity. Both these observ-NN interaction. Two different techniques are used to calcu-
ables have specific dependencies in terms Wf Smatrix  late the Smatrix elements. The Bochum-Cracow group
elements: they are determined mainly by fliey-parameters  solves the Faddeev equations in momentum space as de-
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scribed in[6] and[8]. The Pisa group uses the Kohn varia- to 18, 34, 50, 66 channels, respectively. For highisrthe
tional principle in configuration spadé®,15,16. Both tech- number of channels increases up to 34, 98, 194, and 322,
niques have been used [ii7] but limiting the comparison respectively.
just to phase-shift and mixing parameters for states with total The results for the phase-shift and mixing parameters are
angular momenturd<7/2. Here we extend the investigation displayed in Table | for states up tb=9/2. The Pisa num-
to a number of observables by taking into account also statesers are calculated witky<6(7) for thepositive (negative
with higher J values which are needed for a complete con-parity states and the Bochum-Cracow numbers vyjth,
vergence of all considered observables. At the same time wea 6. For states with highed values the nuclear exchange
increase the accuracy in order to demonstrate the numericedrm PGgl as given in Eq(2.14 of Ref.[17] is sufficient,
reliability of both methods to an unprecedented degree. Spexs has been standard use in the Bochum-Cracow approach. In
cial emphasis is laid to the numerical accurate description ofhe notation of the Pisa group this amounts to the following
the vector analyzing powek, since it poses a severe the- easy manner to compute tBanatrix. In the states with high
oretical puzzle. relative angular momenturn the incident nucleon and the
The results obtained by the two techniques for the phasgeuteron are well separated due to centrifugal barrier effects.
shift and mixing parameters are presented in the next sectioTherefore, the asymptotic form of the wave function gives
Those for the observables are reported in Sec. lll. The conessentially a correct description of the system. The reactance
clusions are the content of the final section. matrix (K-matrix) of the system is given in this approxima-
tion (symmetrized Born approximatiptoy

Il. PHASE SHIFT AND MIXING PARAMETERS Kl sns=2 (MS/iIH-ENS,j;J), (1)
i]

The two approaches used for numerical applications in
this article have been described previously. The Pisa groughere thg]\3,i;J) describes a free incident nucleband a
uses the pair correlated hyperspherical harm@PidH) basis  deuteron in a relative angular momentwrstate.3, is the
to expand the scattering wave functiff] and the corre- total spin of the deuteron and the nucleon. Using the fact that
spondingS-matrix is obtained using the complex form of the the asymptotic state is solution of the free Hamiltonian plus
Kohn variational principld16]. The Bochum-Cracow group the interaction between particlgsk, the following simpler
solves the Faddeev equations for the breakup operator #form is obtained:
momentum spac6,8]. The complex transition matrix for
elastic scattering is then gained by quadrature. J R o

The comparison between the results of the two techniques K)«E'Az::aZ = (N'215IIV(2,3|NEL);0). (2
has been performed using one of the Argohti¢ potentials,
namely the AV1418] one, which has all the complexities of A further approximation consists in retaining the most im-
a modernNN interaction built in. Our choice has been mo- portant term(Born approximatioj
tivated by the fact that this potential was used in many
benchmark calculations in the past, especially ii]. The
incident nucleon laboratory energy has been fixeEgt
=3.0 MeV, just below the deuteron breakup threshold.

In the correlated hyperspherical method the pattern offhis form is equivalent to the nuclear exchange term used by
convergence for th&matrix has been studied including in the Bochum-Cracow group:
then-d wave functions channels with increasing angular mo-
menta values. Let us denote hyandL , the orbital angular Ki/zmzz?’“’z"l;‘” PGy Y \3,1;d). (4)
momentum quantum numbers associated to the Jacobi vec-
tors of the N system in the channet, and defineKo=I,  The Smatrix is simply obtained using the relatic®= (1
+L,. The choiceK,<2(3), 45), 6(7) mean that all chan- +iK)(1—iK) 1. For the low energy used in this study, the
nels withl,+L,<2(3), 45), 6(7) have been included for Born approximation has been adopted for states with angular
positive (negative parity states. Of course, the number of momental=11/2. The results obtained in this approximation
hyperspherical components for each channel has been ifor the phase-shift and mixing parameters by the two groups
creased until convergence has been reached. As an exampdempletely overlap and are given in Table Il for states from
the numbers of the channels pertaining to the choKgs J=11/2 up toJ=15/2. As it will be shown in the next sec-
=2,4,6, for theJ'=1/2" state, result to b&l.=10,18,26, tion, higherJ states give disregardable contributions to the
respectively. Channels with high&r, values were checked observables at the energy considered here.
to give completely disregardable contributions. The numbers presented in Table |, obtained by the two

In the Faddeev method in momentum space the convegifferent methods, agree between each other to within less
gence for theSmatrix is studied increasing the total two- than 0.1%. There are a few exceptions, where the differences
body angular momentury,,, up to which theNN force is  go up to 0.7%. This clearly demonstrates the power and re-
taken into account. We went up i@,,—=8 for J=1/2 and liability of both methods, which are totally different also
3/2. It turned out that with ,,,=6 a complete convergence under the respect of the adopted numerical procedures. The
for the phase-shifts and mixing parameters was achieved. Sopmparison of our new results to the older ones in Table Il of
imax=6 was used in the calculations for highkvalues. As  Ref.[17] gives a clear idea of the improvements in the nu-
an example, the valuég,.,=2, 4, 6, 8 forJ=1/2 correspond merical accuracy. The phases given in Table I[Xf] by the

Ki,mfsgl(x'z',1;3|V(2,3)|>\2,j;J>. 3)
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TABLE I. Phase shifts and mixing parameters in terms of the quantum nunjpgrend K,. The
numbers in parenthesis fét, refer to odd parity states.

Bochum Pisa
a1 Ss jma=2 jmax=4 jma=6 Ko=2(3)  Ko=4(5)  K¢=6(7)
8312 —3.897 —3.903 —3.904 —3.899 —3.905 —3.905
1" Sumo  —35.35 —34.84 —34.81 —35.33 —34.81 —34.81
2
n 1.179 1.247 1.251 1.271 1.252 1.253
S1 —7.479 —7.524 —7.529 —7.534 —-7.533 —-7.533
1 5(3,2)1 25.10 25.06 25.06 25.04 25.05 25.05
2
€ 7.268 7.253 7.254 7.252 7.255 7.255
5(3,2)0 —70.47 —70.48 —70.48 —70.52 —70.50 —70.50
82 2.439 2.422 2.421 2.421 2.420 2.420
3" 8312 —4.204 —4.214 —4.215 —4.216 —4.216 —4.216
2
—0.3963 —0.3889 —0.3881 —0.3869 —0.3873 —0.3874
€ 0.7745 0.7766 0.7785 0.7747 0.7801 0.7800
13 1.451 1.438 1.438 1.429 1.438 1.438
5(3,2)3 0.9466 0.9443 0.9441 0.9425 0.9436 0.9436
S —7.145 —7.186 -7.191 —7.201 —7.195 —7.195
3 5(3,2)1 26.44 26.42 26.41 26.39 26.40 26.41
2
n —3.854 —3.813 —3.809 —3.819 —3.806 —3.805
€ —2.751 —2.764 —2.765 —2.762 —2.768 —2.765
I3 —0.2400 —0.2567 —0.2574 —0.2577 —0.2573 —0.2575
5(3,2)4 —0.2105 —0.2109 —0.2110 —0.2113 —0.2112 —0.2111
812 2.401 2.388 2.386 2.382 2.385 2.385
5 83122 —4.558 —4.567 —4.567 —4.571 —4.569 —4.569
2
n —2.084 —2.146 —2.152 —2.167 —2.157 —2.157
€ —0.3450 —0.3266 —0.3264 —0.3387 —0.3275 —0.3280
& —-0.7637 —-0.7379 —0.7356 —0.7343 —0.7365 —0.7363
Sa1 26.40 26.39 26.38 26.32 26.35 26.37
5(1,2)3 —0.4723 —0.4760 —0.4765 —-0.4771 —0.4768 —0.4767
5 5(3/2)3 0.9757 0.9720 0.9716 0.9694 0.9711 0.9712
2
—0.3475 —0.3596 —0.3605 —0.3593 —0.3609 —0.3609
€ 0.5007 0.5165 0.5168 0.5188 0.5165 0.5165
I3 0.9566 0.9832 0.9844 0.9943 0.9847 0.9845
33192 —4.140 —4.142 —4.143 —4.151 —4.145 —4.144
5(1,2)4 0.1107 0.1104 0.1103 0.1100 0.1103 0.1102
7" 83194 —0.2200 —0.2204 —0.2205 —0.2208 —0.2207 —0.2209
2
n —0.5130 —0.4923 —0.4905 —0.4868 —0.4894 —0.4895
€ 0.3575 0.3694 0.3683 0.3695 0.3680 0.3686
& 1.266 1.225 1.221 1.219 1.222 1.222
33195 0.04950 0.04947 0.04946 0.04944 0.04944 0.04944
5(1,2)3 —0.4654 —0.4683 —0.4688 —0.4695 —0.4690 —0.4689
7 5(3,2)3 1.030 1.027 1.026 1.024 1.026 1.026
2
n —2.334 —2.311 —2.304 —2.298 —2.301 —2.308
€ —0.2120 —0.2505 —0.2527 —0.2500 —0.2524 —0.2510

13 —0.7720 —0.7790 —0.7823 —0.7842 —0.7826 —0.7873
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TABLE I. (Continued).

Bochum Pisa
g Oz Jmax=2 fmax—=4 Jmax=6 Ko=2(3) Ko=4(5) Ko=6(7)
5(3/2)5 —0.01170 —0.01170 —0.01170 —0.01170 —0.01170 —0.01170
5(1/2)4 0.1088 0.1086 0.1085 0.1082 0.1084 0.1084
9" 5(3/2)4 —0.2292 —0.2293 —0.2294 —0.2297 —0.2297 —0.2297
2
n —2.214 —2.218 —2.223 —2.231 —2.227 —2.226
€ —0.2049 —0.1983 —0.1954 —0.1947 —0.1897 —0.1954
3 —0.8291 —0.8289 —0.8262 —0.8251 —0.8252 —0.8259
5(3/2)3 0.9441 0.9440 0.9439 0.9413 0.9435 0.9435
5(1/2)5 —0.02550 —0.02550 —0.02552 —0.02553 —0.02553 —0.02553
9 5(3/2)5 0.05151 0.05150 0.05149 0.05147 0.05147 0.05147
2
n —-0.4781 —0.4841 —0.4863 —0.4887 —0.4867 —0.4866
€ 0.3316 0.3268 0.3277 0.3273 0.3275 0.3276
& 1.146 1.156 1.161 1.164 1.162 1.162

two methods show some disagreements in the third digit andnclusion of high components in the expansion. To construct
sometimes, even in the second digit. Now we have muchhe subtle details of the wave function is always a difficult
better agreement. Only very seldom is there disagreement ilask. To this end, extended and denser grids of points have
the third digit of a mixing parameter. So, we have now anbeen used in the numerical solution of the equations. Stable
improved agreement in the phase-shift parameters of oneumerical results have been obtained using the integral equa-
more digit with respect t§17]. tions for calculating thesmatrix (Bochum group and the

A direct comparison of thé&matrix represents a severe Kohn second order estimat®isa group. Fortunately, as
numerical test for both methods. Ti®ematrix is part of the shown in the next section, for the observables there is not
wave function and its elements are very sensitive to the difsuch a strong dependence on the details of the wave function
ferent contributions of the potential. This is put in evidenceand a number of grid points like those ones used in previous
in Table | where some parameters converged only after theorks is adequate.

TABLE Il. Phase shifts and mixing parameters frdm 11/2 toJ=15/2 in Born approximation.

Jn Ssy Bochum-Cracow-Pisa Jn Bsy Bochum-Cracow-Pisa
S ~0.2135 Sy 0.00280
s 0.00603 s ~0.02513
11* 33126 —0.01216 11° S5 0.05311
2 2
” —0.4942 7 —2.204
€ 0.2978 € —-0.1785
¢ 1.142 ¢ —0.8481
Scaime —0.00067 Seams 0.04968
Suzs 0.00593 Sy ~0.00144
13 e ~0.01249 13 Scarzy 0.00290
2 2
n ~2.185 7 —0.4975
€ —0.1660 € 0.2779
¢ —0.8640 ¢ 1.125
PR ~0.01173 8329 0.00016
s 0.00035 St —0.00141
15" S —0.00070 15 P 0.00297
2 2
7 —0.4998 7 ~2.170
€ 0.2634 € —0.1570

¢ 1.111 & ~0.8752
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do /dQ [mb/st] 0.00 1 do /dQ2 [mb/s1] 0.30 ] 4v*10
400 4 - 400 - - VoV I
300 1 - _0.10 - 300 1 - 0.201 r
200 200 - 0.10 -
—0.20 -
100 - 100 - F0.00 -
0.90 0.30{ To1 % 10 L0051 A
0.80 0.20 I 0.00 1
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FIG. 1. The differential cross sectiatu/d(}, the tensor spin- FIG. 2. The differential cross sectiahr/d(), the nucleon vec-

correlation coefficientT, the nucleon-to-nucleon vector spin- tor analyzing poweA, , the deuteron tensor analyzing povies; ,

transfer coefficientK{', the nucleon-to-deuteron tensor spin- the nucleon-to-deuteron tensor spin-transfer coefficle@'f' and
transfer coefficient<?*", and the nucleon and deuteron vector the two tensor spin-correlation coefficierisand T, calculated by
analyzing power#\, andiT,; at E;;,=3 MeV. The solid lines are increasing the maximum allowed two-body angular momentum
obtained from the Bochum-Cracow phases of this work, with thej max- Solid, long-dashed, and short-dashed lines refgf,ig=6, 4,
potential switched on up td=9/2 and the nucleon exchange term and 2, respectively. Note that the solid and long-dashed lines do
taken into account frord=11/2 till 15/2. The long-dashed lines are always completely overlap.
the same but obtained from the Pisa phases. The solid and long-
dashed lines are always indistinguishable from each other. Thindistinguishable, whereas the lines fpf,,=2 exhibits
short-dashed line is obtained fol'=1/2%, 3/2%, 5/2%, and 7/2  small deviations from the other lines for some of the observ-
from the Bochum-Cracow phases of REL7] and otherwise the ables. The changes in the phases gained by going, 0
phases from this paper. The dotted lines are the same but obtaingglgher than 3 cancel out in the observables or occur for small
from the corresponding Pisa phases. phase-shifts and mixing parameters which are not so impor-
tant for the determination of the observables. The same phe-
nomenon can be seen by increasing the numerical accuracy.
Ill. 3N ELASTIC SCATTERING OBSERVABLES Though a lot of phase-shifts and mixing parameters show
We begin by showing in Fig. 1 the perfect agreememsensit_ivity to numerical details, the observable; do not. For
among the observables evaluated by the two methods. THE® Pisa approach most of the large phase-shifts are already
two results for the observables are represented by the solgPhverged fol,=4(5) (see Table), whereas the smallest
and long-dashed lines in Fig. 1, which are always indistin-0bServables converge only s, =6(7), asshown in Fig. 3.
guishable from each other. These calculations are based on Next let us regard the convergence of the observables
the phases of Table | evaluated with highest accuracy. ~ With respect tal andA separately. Since it does not matter
However we can relax those high requests and still keep Which of the two sets of phases we are using, we carry
very good agreement among the predictions of the two metthrough that study with the Bochum-Cracow phases.
ods. For the Bochum-Cracow calculations we can lower the L€t us start with the convergenceJnlt turns out that the
two-nucleon angular momentuii,,, up to which we keep ~convergence id can be described in a very systematic way.
the NN force different from zero fronj nm="6 t0 j ma=3 For spin observables whose magmtude is about 0.1, or
and still describe the observables within about 1 percen@reater than that, the convergence is reached already for
Some examples are shown in Fig. 2 calculated with, =<11/2. In Fig. 4 we show as a typical exampﬂé . For the
=2, 4, and 6, respectively. The lines fpf,=4 and 6 are next class of observables with magnitudes about 10 times
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do /dQ [mb/sr] A, %10 KY

400 | 0.30 g 0.9017¢ T 0.301
0.80 -
300 4 L 0.20 3 0.20
0.70 -
200 - - 0.10 1 - 0.10 1
0.60 -
100 1 [ 0.00 A - 0.50 - L 0.00 -
0.30{ Tp, + 10 L 0051 [ 0.00 -
0.20 L 0.00 -
—0.10
0.10 - —0.05
KZ% %10
0.00 " —0.10 - - —0.20
0 45 90 135 180
0.00 5 %100 - 0.00 - 9 [deg]
—0.10 A .
FIG. 4. Convergence i for the nucleon-to-nucleon vector
~0.204 I —0.101 spin-transfer coefficienk? , the nucleon vector analyzing power
Ay, and the tensor spin-correlation coeffici@ntShown is the re-
~0.30 4 | sult obtained from the phases with<25/2 (solid ling), J<15/2
—0.20 - (short-dashed line J<13/2 (dotted ling, andJ=<11/2 (long-short-
i . : : . . dashed ling
0 45 90 135 180 0 45 90 135 180
¥ [deg] 9 [deg]

taken into account is 13/2. On the other hand the much larger

FIG. 3. The differential cross sectiahs/d(}, the nucleon vec- observabIeK)Z,'Z/ is fully converged only for<6, which
tor analyzing poweA, , the deuteron tensor analyzing powWs,  means one needs phases ugdo15/2. InJ this observable
the nucleon-to-deuteron tensor spin-transfer coefficl@iﬁf' and reaches convergence earlier, fb13/2. But this is the ex-
the two tensor spin-correlation coefficiersand T, calculated by ception. In most cases the convergenca iis faster than in
increasing the maximum allowed, in the expansion of the wave j
func_tion. Solid, long-dashed, and short-dashed lines correspond to Now let us demonstrate the extreme Sensitivit)AQfWith
maximumKo=6(7),4(5),2(3). respect to tiny changes of some phase shift parameters,
namely the*P; phase-shifts and the’>~ mixing parameter.
We modified them individually by 1%. The effect d¥, is

smaller convergence 1S found fars< 13/2'. He_re we have shown in Table lli(see also Table 2 in Ref10]). Clearly the
chosen as atyp|pal examplg also shown in Fig. 4. For the sensitivity of A, to the 4p. phase-shifts is quite
gixiglzais:ho?%aﬂﬂeZiﬁ?ggl;; Zsfi;tno[)emsele?l iir?ﬁgeer;(aixgrgramatic—an enlargement factor of up to nearly 20 from

T in Fig. 4, and states up tb=25/2 have to be taken into hanges in the phases to changes in the observable are found.

account. Thus the convergencediis strongly correlated to

the magnitudes of the observables. 0.00 1
Let us now examine the convergence with respect.to

For a givenJ and parityIl, the Smatrix elements are all

coupled to each other. Therefore, limiting the calculation of —0.10

the observables by a maximal (instead of a maximabD)

means that for som@'! states, only parts of the correspond-

ing Smatrices are taken into account. However, this proce-_g .

dure does not harm and one gets always a very nice convel ‘

gence. Actually, at these low energies, the contributions of 0 45 90 135 180 0 45 90 135 180

the waves with large values af are suppressed by the cen- o [deg] ¥ [deg]

trifugal barrier, and therefore the convergenca iis usually

faster than that in. . FIG. 5. Convergence in for the tensor spin-correlation coeffi-
As an example we show in Fig. 5 tlh’e§ # andT observ-  cientT and the nucleon-to-deuteron tensor spin-transfer coefficient

ables. As can be seen in the figure,_fmSS T is already Kilzl. Shown are the results obtained from the phases witi6

converged, and <4 is not too bad, either. As one can see (long-dashed line A<5 (short-dashed line and A<4 (dotted

for example from Table IN<5 means that the highest line). The solid line is the same as in Fig. 4,

T %100
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TABLE lIl. The effect of 1% changes in the phases to whish  determine theS or the K-matrix. The approach of the
is most sensitive. Given is the value &f in its maximum as well  Bochum-Cracow group is based on an exact technique for

as the change in percent in the maximum. solving the Faddeev equations in momentum space.
The results obtained for the phase-shift and mixing pa-
Aylmax % rameters by means of the two approaches show nearly per-
AV14 0.3306 fect agreement. Also the calculated observables agree very
4 _ well with each other. This demonstrates that both the varia-
Px1.01 0.2960 11.7 . . . .
4p,x1.01 0.3083 79 tional approach of the Pisa group and the integral equation
4p X 1.01 0.4051 18.4 method of the Bochum-Cracow group are equally well suited

for high accuracy calculations of the elastid scattering
observables below the breakup threshold.

The comparison with the older results of REf7] shows
that the numerical accuracy in the phase-shift and mixing
parameters has increased by one more digit. The changes in
There are no such extremely strong sensitivities to théhe phase-shifts had only very small effects on the results for
NN 3P; phase-shift{10], although they alone determine the observables of the Bochum-Cracow group. The situation
Ay. In [10] the biggest enlargement factor was reported forwas different for the Pisa results, since in REf7] the
3P0 to be 3.5. In view of that extreme sensitivity it is inter- phases were evaluated with different accuracy requirements
esting to see whict\, would result by using the phases of for the different states and an observable Wkgwhich ex-
Ref. [17], which were calculated not with such an extremehibits extreme sensitivity does not tolerate that. This shows
accuracy as in this article. Thereby it is interesting to notethat it is important to construct the observables by using
how the more accurate calculations in this study change afF-matrix elements calculated at the same approximation
of these four parameters which dominae for both ap- level. In this case, in fact, a more rapid convergence with
proaches compared to the older and less accurate numbersrigspect to the number of terms included in the internal struc-
[17]: the changes are 0.24%©.20% for “P,,, 0.42% ture of then-d states and a lower sensitivity to the numerical
(0.42% for “Pg,, 0.30% (0.65% for “Ps, and 0.55% accuracy is achieved for the observables. In fact, the
(1.659% for €2~ in the Bochum-CracowPisa case. Now Smatrix elements are part of the wave function and therefore
the A, resulting from the phases 17] is shown in Fig. 1 ~ rather sensitive to the subtle aspect of the structure of the
(be3|de other observab)eism comparison to the present best state. On the contrary, the observables are average quantities
result. We see a small shift for the Bochum-Cracow resultvhere the small details of the wave function are somewhat
and a larger one for the Pisa result. This can be illustrate§meared out.
further by assuming tha, changes linearly with changes of  Also the convergence of the observables along the total
the phases around their present values. Using Table Il tothree-body angular momentut and the relative angular
gether with the small changes of the present phases to tfgomentumi has been studied. We found that the conver-
ones of Ref[17] one indeed finds thak, should change by gence of the observables with the total three-body angular
about 10%(1%) for the Pisa(Bochum) case In other words mMomentumJ is strongly correlated to the magnitude of the
in one case we see a stability for the resulting observable, iabservables. Though the convergence of the observables
the other case not. The simple reason is that the expansion yith the angular momenturk is in most cases faster than in
the PHH components if17] was truncated in a nonuniform J, it is less systematic and has therefore to be checked with
manner for the different states and[ 7] it was not foreseen more care. Therefore a PSA has to treat the more phase-
that even those small changes in the phases would effeghifts as free parameters the smaller the considered observ-
certain observables in a magnified manner. On the othegbles are.
hand if a consistent treatment of all states is performed the In the present paper, attention has been paid only to a
individual changes of the phases are smoothed out in theealistic two nucleon interaction without the inclusion of TNI
observables, as it was the case for the Bochum-Cracow calerms. This will be the object of a future investigation.
culation in Ref.[17]. In the Pisa group papers successive to In conclusion,n-d scattering states at energies below the
Ref. [17] and in the present paper the PHH expansion hageuteron breakup threshold can be constructed equally accu-
been consistently carried through for all states with a correctately by the two methods presented. It is grateful that the
calculation ofA, . phase-shift and mixing parameters can be calculated within a
precision of about 0.1%, comparable to the one obtainable
for bound states.

2 x1.01 0.3362 1.7

IV. SUMMARY AND CONCLUSIONS

In the present paper benchmark calculations for phase-
shift and mixing parameters, as well as for observables in
elastic neutron-deuteron scattering below the deuteron This work was supported in part by the Deutsche Fors-
breakup threshold are presented. We used the realistic AV1léhungsgemeinschaft under Project No. Hu 746/(B3H.)

NN potential. Twoab initio completely different methods and Project No. Gl 87/24-1H.W.) and was performed in
have been used to calculate the quantities of interest. Theart under the auspices of the U.S. Department of Energy.
approach of the Pisa group is based on the correlated hypefhe numerical calculations of the Bochum-Cracow group
spherical expansion of the wave function in configurationhave been performed on the Cray T90 of thechitleistung-
space and uses the complex Kohn variational principle tgrechenzentrum in lluh, Germany.
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