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Optical nucleon-deuteron potential
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Nucleon-deuteron scattering is cast into the form of an optical potential formalism. Two forms of an optical
potential are given. The resulting integral equations for the optical potentials are approximated by the first two
leading terms. Our numerical results demonstrate that even at intermediate energies these approximations are
insufficient to cover all of the angular range. Rescattering terms of higher order in the nucleon-nucleon
~NN! t matrix are needed. If one focuses on forward scattering, low-order approximations in theNN t matrix
can be sufficient, depending on energy, and observable.@S0556-2813~97!00608-0#

PACS number~s!: 21.45.1v, 24.10.Ht, 25.10.1s
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I. INTRODUCTION

In recent years it has become possible to numeric
solve the three nucleon Faddeev equations with high pr
sion using any realistic nucleon-nucleon (NN) force and
even adding three-nucleon forces@1–4#. Therefore this sys-
tem appears to be a promising candidate to rigorously st
properties of optical potentials which describe the effect
interaction between the nucleon and the deuteron.

Optical potentials have a long tradition@5–9#. However,
their theoretical derivation from the underlyingN-particle
Hamiltonian poses a serious problem and actual realizat
have been carried through at intermediate energies in
spectator expansion scheme@7–9# and at lower energies in
the framework of dispersion relations@10#. At intermediate
energies the resulting expressions have the typical ‘‘tr ’’
form, where t is a NN t matrix andr the single particle
density matrix of the target. That form is the leading term
an expansion in theNN t matrix. Whether this truncation is
justified from a theoretical point of view is difficult to asse
because of the underlying many-body problem. In a fe
nucleon system, however, one may hope to get quantita
insight into the way the optical potential builds up by resc
tering processes of increasing order. This has been for
lated recently in the context of the Faddeev-Yakubows
scheme for very light nuclei@11#. In the present article we
restrict ourselves to the deuteron target and carry out num
cal studies.

In Sec. II we present the formalism for casting nucleo
deuteron (n-d) scattering into the form of an optical poten
tial scattering problem. Our numerical study is shown in S
III. We conclude in Sec. IV.

II. THE n-d OPTICAL POTENTIAL

We start from the operatorU for elastic n-d scattering
which obeys the Alt-Grassberger-Sandhas~AGS! equa-
tions @12,13#

U5PG0
211PtG0U. ~1!

Here t is the off-shell nucleon-nucleont matrix generated
through the Lippmann-Schwinger equation from the parti
560556-2813/97/56~2!/654~16!/$10.00
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lar NN interactionV, P is the sum of a cyclic and an ant
cyclic permutation of three nucleons, andG0 the free three-
nucleon propagator. We work in the isospin formalism a
treat the nucleons as identical. The operators in Eq.~1! are to
be applied onto the initial channel state

ufqW 0
&[uwd&uqW 0& ~2!

built from the deuteron wave functionuwd& and the momen-
tum eigenstate of relative motionuqW 0& of the incoming
nucleon with respect to the deuteron.

One can decomposetG0 in Eq. ~1! into two parts. In the
first one the two nucleons propagate as a deuteron and in
second they are in two-body scattering states:

tG05V
1

E2H02V1 i«
5VGd1VGc , ~3!

with

Gd[uwd&
1

E2~3/4m!q22Ed1 i«
^wdu, ~4!

Gc[E dpW uwpW&
~1 !

1

E2~3/4m!q22~1/m!p21 i«
~1 !^wpW u.

~5!

We use standard Jacobi momentapW and qW @13# to describe
the motions in the two-nucleon subsystem and for the th
particle in relation to the subsystem. FurtherH0 is the free
3N Hamiltonian andV the NN potential. The nucleon mas
is denoted bym.

With these definitions and using the fact th
PG0

21ufqW 0
&5PVufqW 0

& one can transform Eq.~1! to

U5V1VGdU, ~6!

with

V5PV1PVGcV. ~7!

Projecting Eq.~6! onto the channel statesufqW& one gets
654 © 1997 The American Physical Society
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56 655OPTICAL NUCLEON-DEUTERON POTENTIAL
ŠqW u^wduUuwd&uq8W ‹

5ŠqW u^wduVuwd&uq8W ‹1E dq9W ŠqW u^wduVuwd&uq9W ‹

3
1

E2Ed2~3/4m!q921 i«
Šq9W u^wduUuwd&uq8W ‹. ~8!

This is an effective single-particle equation for the scatter
of the nucleon from the deuteron. The interaction is the
tical potentialV(qW ,q8W ) defined by

V~qW ,q8W ![ŠqW u^wduVuwd&uq8W ‹. ~9!

For a numerical realization it is convenient to introduce
operatorstc andTc defined as

VGc[tcG0 ,

VGcV[Tc . ~10!

Applying VGc from the left to Eq.~7! one gets

TABLE I. The total cross section (s tot) and the integrated elas
tic scattering angular distribution (sel) obtained from the solution
of the Faddeev equation~exact! and in two approximations to the
effectiven-d interaction (V a,V a1V b).

Elab~MeV! s tot~mb! sel~mb!

exact 0.9891E103 0.8394E103

10 V a 0.7243E103 0.7247E103

V a1V b 0.1099E104 0.9524E103

exact 0.1209E103 0.5163E102

65 V a 0.2158E102 0.2159E102

V a1V b 0.1331E103 0.6059E102

exact 0.2597E102 0.5126E101

140 V a 0.2042E101 0.2043E101

V a1V b 0.2924E102 0.5366E101

exact 0.1080E102 0.1235E101

200 V a 0.6138E100 0.6139E100

V a1V b 0.1186E102 0.1275E101

exact 0.5756E101 0.6998E100

300 V a 0.1496E100 0.1496E100

V a1V b 0.5595E101 0.7841E100
g
-

e

Tc5tcG0PV1tcG0PTc ~11!

and the optical potentialV is expressed with the help ofTc
by

V5PV1PTc . ~12!

It is easy to determinetc . Using Eqs.~3! and ~10! one gets

tG05VG5VGd1VGc5VGd1tcG0 , ~13!

which leads to

tc5t2VGdG0
215V~12G0V!212VGdG0

21. ~14!

Finally applying (12G0V) from the right one ends up with

tc5V2Vuwd&^wdu1tcG0V. ~15!

The difference betweentc and t, as reflected in different
leading terms of their Lippmann-Schwinger equations, ex
only in the ‘‘deuteron channel’’~the 3S123D1 partial wave
state!. In addition, in this channeltc is not singular, whereas
t has a single pole at the deuteron binding energy.

Equations~8!, ~11!, ~12!, and~15! offer a new scheme o
solving the nucleon-deuteron scattering problem by first
termining the optical potential and solving an effective sing
particle equation. Now we decompose Eq.~8! into partial
waves and use our standard momentum space basis s
@13#

upqa&[Up~ ls! j qS l
1

2D I ~ j I !JM S t
1

2DTL , ~16!

with ( ls) j ,t the angular momenta and isospin quantum nu
bers in the two-nucleon subsystem, (l 1

2)I ,
1
2 the correspond-

ing quantum numbers for the spectator nucleon, andJ, T,
andp5(21)l 1l the total angular momentum, isospin, an
parity of the three nucleon system. Then

Šq8W u^wduUuwd‹uqW &

5(
J,p

(
l8,I 8

(
l,I

Ul8I 8,lI
Jp

~q8,q!

3(
m8

^1md8I 8m8uJmd81m8&^l8m82m8 1
2 m8uIm8&

3Yl8,m82m8~ q̂8!(
m

^1mdImuJmd1m&

3^lm2m 1
2 muIm&Yl,m2m

! ~ q̂!dmd81m8,md1m , ~17!

where

Ul8I 8,lI
Jp

~q8,q![ (
l 50,2

(
l 850,2

E
0

`

dp8p82E
0

`

dpp2w l 8~p8!

3^p8q8ad8uUupqad&w l~p!. ~18!
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FIG. 1. Then-d elastic scattering cross section at different laboratory energies of the incoming neutron. The solid line results f
solution of the Faddeev equation. The dashed and dotted lines result inV a andV a1V b approximations for the effective nucleon-deuter
potential, respectively.
ro

The two deuteron wave function components arew l(p), and
ad are the three-nucleon quantum numbers with a deute
in the two-body subsystem:

$ad%5H ~ l 50,2; s51! j 51,S l
1

2D IJS 0
1

2D1

2J . ~19!
n
The corresponding steps can be carried through forV. Defin-
ing

Ũl8I 8,lI
Jp

~q8,q![~4m/3!Ul8I 8,lI
Jp

~q8,q!,

Ṽ l8I 8,lI
Jp

~q8,q![~4m/3!V l8I 8,lI
Jp

~q8,q!, ~20!
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FIG. 2. The same as in Fig. 1 but for the deuteron tensor analyzing powerT20.
to
ion
Eq. ~8! achieves the form

Ũl8I 8,lI
Jp

~q,q8!5Ṽ l8I 8,lI
Jp

~q,q8!1 (
l9,I 9

E
0

`

dq9q92

3
Ṽ l8I 8,l9I 9

Jp

~q,q9!Ũl9I 9,lI
Jp

~q9,q8!

q0
22q921 i«

~21!
with

E5
3

4m
q0

22Ed . ~22!

In contrast to the described formalism our standard way
solve then-d scattering problem is to use a Faddeev equat
for the T operator defined by
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FIG. 3. The same as in Fig. 1 but for the nucleon to nucleon polarization transfer coefficientKy
y8.
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T5tG0U. ~23!

From Eq.~1! one gets the integral equation

T5tP1tPG0T, ~24!

which we solve, andU is determined via

U5PG0
211PT ~25!
by quadrature.
We refer to @1–3# for the description of the method t

solve numerically Eq.~24!. We use the observables for ela
tic n-d scattering obtained from Eqs.~24! and ~25! as stan-
dards to which we compare the results obtained by differ
approximations to the optical potential formalism.

The kernels in Eqs.~11! and ~24! are very similar, only
t is replaced bytc . This suggests that the numerical tec
nique used to solve Eq.~24! could be applied directly to Eq
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FIG. 4. The same as in Fig. 1 but for the spin correlation coefficientCxx .
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~11!. Unfortunately the leading termtcG0PV in Eq. ~11! has
logarithmic singularities, when expressed in the ba
upqa&. As a consequence the action of the kernel in Eq.~11!
on that driving term is very hard to evaluate, sinceG0 in that
kernel also produces logarithmic singularities. Their confl
ence is a quite hard technical challenge, which we did
want to tackle. In contrast in Eq.~24! the driving term is not
singular and there are ‘‘only’’ the logarithmic singularities
the propagatorG0, which we can handle. Therefore we r
is

-
t

stricted ourselves to the lowest order terms for the opt
potential@see Eqs.~12! and ~11!#:

V 5V a1V b5PV1PtcG0PV. ~26!

The two terms partial wave projected into the deuteron ch
nel V lI ,l8I 8

a,b (q,q8) are given in the Appendix.
It should be pointed out that the calculation of the seco
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FIG. 5. The convergence properties of the leading termW to the transition operator U@see Eq.~29!# summed up to various orders of th
continuous parttc of the two-nucleont matrix. Elastic scattering cross section presented by stars, rombs, crosses, circles, squa
triangles corresponds toW in first, second, third, fourth, fifth, and sixth order intc .
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term V l8I 8,lI
b (q,q8) is as hard a numerical problem as t

exact solution of the Faddeev equations for theT operator
@Eq. ~24!#. One meets here the same pattern of moving s
gularities. Going to the next terms forV would require to
deal with even more complicated patterns of singularit
making their numerical treatment even more difficult. A
this shows how difficult it is to exactly determine the optic
-

s

l

potential forn-d scattering. According to this experience th
excludes it as a practical method for solving then-d scatter-
ing problem. It remains to be seen whether at least the
order terms are useful.

In the following we will restrict ourselves to the approx
mation ofV given in Eq.~26! and study its quality at dif-
ferent 3N energies. The second term is of first order intc and
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FIG. 6. The same as in Fig. 5 but for the tensor analyzing powerT20.
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is qualitatively related to the standard expression for in
mediate energy optical potential expressions, which are
of first order in t. Our aim is to investigate, whether th
truncation is sufficient in then-d case.

III. RESULTS

We determined the approximationsV a and V a1V b to
the opticaln-d potential using as the underlyingNN force
r
so
the BonnB @14# potential. We restricted that force to the tw
strongest components acting in the1S0 and 3S123D1 states.
Therefore this is only a model study, but we do not expec
qualitative change in keeping alsop-wave NN forces and
higher ones. With this dynamical input we solved the Fa
deev equation for theT operator at five nucleon lab energie
Elab

N 510, 65, 140, 200, and 300 MeV generating ‘‘exac
elastic scattering observables. They form the reference
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FIG. 7. The same as in Fig. 5 but for the nucleon to nucleon spin transfer coefficientKy
y8 .
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ues by which we can judge the quality reached by our
proximations.

In Table I we show the total cross sections evalua
through the optical theorem together with the total elas
scattering cross sections. At all energies there are clear
crepancies between the exact results and those obtaine
V a and V a1V b approximations. Increasing the incomin
nucleon energy does not diminish this disagreement s
ciently well, e.g., to a few percent. It is interesting to no
-

d
c
is-
in

fi-

that for theV a approximation the total cross section and t
integrated elastic scattering cross section coincide. It refl
the fact that in this approximation the effective interaction
real, which forbids the breakup processes. ThatV a potential
arises from antisymmetrization and thus dominantly gove
the angular distribution at backward angles. This is appa
from Fig. 1.

In Fig. 1 the angular distribution for elastic scattering
shown. At all energies the exchange termV a gives a char-
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FIG. 8. The same as in Fig. 5 but for the spin correlation coefficientCxx .
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acteristic angular distribution, which is peaked at backw
angles and which is quite different from the exact resu
except for the highest energy. Adding theV b term brings the
cross sections in the direction of the exact values. Howe
even at 300 MeV a clear discrepancy, especially in the
ward and backward angles is left.

In Figs. 2–4 somen-d polarization observables ar
shown. TheV a1V b approximation disagrees with the exa
results at all angles, except at forward ones whereT20 and
d
s

r,
r-

the spin transfer coefficient are close to the exact results
These results clearly show that theV a1V b approxima-

tion does not include sufficiently well all the details of th
effective nucleon-deuteron interaction, if one wants to d
scribe the observables at all angles. Higher order term
tc @Eqs.~11!,~12!# would have to be added in order to get
better description for the optical potential. These rescatte
processes of second order intc or even higher are, howeve
very difficult to evaluate. If, on the other hand, one focus
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FIG. 9. The convergence properties of then-d elastic scattering differential cross section with respect to the order of the two-nu
t matrix t. The solid line is a fully converged exact result. Different symbols: stars, rombs, crosses, circles, squares, and triangles, a
obtained when the Neumann series for theT operator@Eq. ~24!# is truncated at first, second, third, fourth, fifth, and sixth order of tht
matrix, respectively.
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only on the forward angles, e.g., smaller than 50°, there
spin observables which are described reasonably well by
V a1V b approximation. This is also true to a smaller exte
for the differential cross section.

Now there is a different form to express the optical p
tential, which can be used to evaluate higher order terms
simple manner for the on-shell matrix elements. We can
Eq. ~1! into the form

U5PG0
211PVGdU1PVGcU. ~27!
re
at
t

-
a

ut

Then defining

W[PG0
211PVGcW ~28!

one gets

U5W1WG0VGdU. ~29!

This equation does not have the standard form where
driving term acts also as the potential in the integral kern
But projected onto channel states it leads to a single par
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FIG. 10. The same as in Fig. 9 but for the deuteron tensor analyzing powerT20.
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equation for the elasticn-d scattering amplitude similar to
Eq. ~8!. The connection ofW to V is simply

WG0V5V ~30!

andU from Eq. ~29! provides the same on-shell matrix el
ments asU from Eq. ~8! sinceG0VfqW 0

5fqW 0
. ThatW op-

erator is directly expressed as a multiple scattering serie
tc as easily follows from Eq.~28!:
in

W5PG0
211PtcP1PtcG0PtcP1•••. ~31!

That series can be evaluated through an integral equa
defining

W5PG0
211PT̃c , ~32!

whereT̃c obeys
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FIG. 11. The same as in Fig. 9 but for the nucleon to nucleon spin transfer coefficientKy
y8 .
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T̃c5tcP1tcG0PT̃c . ~33!

The advantage of the form Eq.~29! is now that at least the
on-shell matrix elements ofW can be evaluated to arbitrar
order intc . Clearly if that multiple scattering series requir
higher order terms, then due to Eq.~30! also the previous
form of the optical potential will require them. For the eval
ation of theW operator in the kernel of Eq.~29! again the
same remarks apply as forV in Sec. II. ThatW evaluated
through Eqs.~32! and ~33! will suffer from logarithmic sin-
gularities already in the driving term and the iteration of th
object causes very tough numerical obstacles.

Thus we restricted ourselves to the Born approximat
for Eq. ~29! and evaluated the multiple scattering series
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FIG. 12. The same as in Fig. 9 but for the spin correlation coefficientCxx .
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T̃c via Eq. ~33! applied only to the on-shell channel stat
This generated via Eq.~32! elastic scattering amplitudes i
various orders intc . The resulting elastic scattering obse
ables partially summed up to certain orders intc are shown
in Figs. 5–8. It is clearly seen that there is no converge
with respect totc at our lowest energy of 10 MeV. At highe
energies the cross sections series starts to converge an
third order is sufficient. However, no convergence is in
.

e

the
-

cated, even at high energies, for spin observables with
ception of the forward angular region. Therefore, if one
cuses again only on forward angles, convergence is fo
and low orders are sufficient.

We have to conclude that the opticaln-d potential for
the energies considered cannot be truncated at the
order term in tc if one wants to describe observables
all angles. At small c.m. angles, however, low order trun
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tions are quite acceptable. This is the angular region, wh
is mostly studied in nucleon-nucleus scattering for heav
targets, since the cross section drops quickly by sev
orders of magnitude from 0° to about 60°. And for th
restricted angular region the lowest order truncation app
to be successful for heavier systems@15–17#. Our results can
therefore be considered to support that.

In view of our results an interesting question arises: h
important are the rescattering effects of orders higher tha
in the nucleon-nucleont matrix for elastic neutron-deutero
scattering? To that aim we regard the multiple scattering
ries in the fullNN t operatort for the operatorU of elastic
scattering. That series is defined through Eqs.~24! and ~25!
and reads

U5PG0
211PtP1PtPG0tP1•••. ~34!

The predictions summed up to different order int for some
scattering observables are compared to the exact resul
Figs. 9–12. At the lowest energy of 10 MeV there is
convergence in that series in thet matrix for any of the
elastic scattering observables. That strong divergenc
caused by theJp5 1

2
1 contribution, which is the quantum

number of the 3N bound state and whose existence is resp
sible for that divergence. At higher energies the contribut
of Jp5 1

2
1 diminishes and a tendency for convergence

pears. However, even at 300 MeV the sixth order resca
ing is needed for some observables to reproduce the e
results. Even more, at 200 and 300 MeV the first order te
in t is not acceptable, except at forward angles, andCxx
excluded.

These results are presumably not surprising since the
ries Eq. ~34! includes the intermediate propagation in t
deuteron channel and thus the iteration of the optical po
tial, which is not small. But even rewriting the series E
~34! into the optical potential form, we found that the mu
tiple scattering series for the optical potential, now in t
truncatedtc operator, does not converge fast enough to j
tify in general a first order approximation intc .

IV. CONCLUSIONS

Starting from the AGS equations we developed an equ
lent formulation of the 3N scattering introducing an effectiv
h
r-
al
t
rs

1

e-

in

is

-
n
-
r-
ct

e-

n-
.

-

-

nucleon-deuteron interaction, usually called an optical pot
tial. The resulting integral equation for this interaction co
tains all the hard tasks of the 3N problem with its compli-
cated pattern of singularities. Thus, in spite of the simplic
of the n-d system, the determination of that effective inte
action is a hard numerical task. In a model study we
stricted theNN force to the 1S0 and 3S123D1 channels.
Further we restricted ourselves to the exchange term and
term linear in the continuum part of the two-nucleont ma-
trix. Such an approximation is, however, not sufficient ev
at as high energies as 300 MeV to describe the observabl
all angles. Further, our study of the convergence proper
of the transition operator for then-d elastic scattering opera
tor U reveals that the restriction to the first leading terms
the two-nucleont matrix is not sufficient. However if one
focuses on forward angles only, lower orders in theNN t
matrix turn into a reasonable approximation, depending
the energy and observables. This latter point supports
validity of first order optical potential studies at higher ene
gies for forward angles, where they are successfully appl
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APPENDIX

Performing the projection ofPV onto the upqa& basis
states and using the corresponding matrix elements for
permutation operatorP @13# one gets
is
^pqauPVup8q8a8&5(
l a 8̄

E
0

`

dp9p92^pqauPup9q8a 8̄&^p9l a 8̄uVup8l a8&

5(
l a 8̄

E
0

`

dp9p92E
21

1

dx
d~p2p1!

pl a12

d~p92p2!

p9 l a 8̄12
Gaa 8̄~qq8x!^p9l a 8̄uVup8l a8&

5(
l a 8̄

E
21

1

dx
d~p2p1!

pl a12 Gaa 8̄~qq8x!
^p2l a 8̄uVup8l a8&

p2
l a 8̄

, ~A1!

where the quantum numbers inā8 are the same as ina with the exception ofl ā8 in case of coupled two-nucleon states. In th
casel ā85 l a62.

This leads to
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V lI ,l8I 8
a

~q,q8![(
l a

(
l a8

E
0

`

dp8p82E
0

`

dpp2w l a
~p!^pqauPVup8q8a8&w l a8

~p8!

5(
l a

(
l a8

E
0

`

dp8p82(
l ā8

E
21

1

dx
w l a

~p1!

p1
l a

Gaā8~qq8x!
^p2l ā8uVup8l a8&

p2
l ā8

w l a8
~p8!, ~A2!

with

p15Aq821 1
4 q21qq8x,

p25Aq21 1
4 q821qq8x. ~A3!

In a similar way one gets

V lI ,l8I 8
b

~q,q8![(
l a

(
l a8

(
ã

E
21

1

dxE
0

`

dp8p82E
0

`

d q̃q̃2
w l a

~p1!

p1
l a

Gaã~qq̃x!

3E
21

1

dx8(
l ā8

(
l ã¯

^p2l ãutc„E2 ~3/4m! q̃2
…u l ā̃p18&

p81
l ã¯p2

l ã
Gā̃ ā8~ q̃q8x8!
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