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Modular Network SOM

Abstract

This study aims to develop a generalized framework of an SOM called amodular network SOM

(mnSOM). The mnSOM has an array structure consisting of functional modules that are trainable

neural networks, e.g., multi-layer perceptrons (MLPs), instead of the vector units of the conven-

tional SOM. In the case of MLP-modules, an mnSOM learns a group of systems or functions in

terms of the input-output relationships in parallel with generating a feature map of them. Thus

an mnSOM with MLP modules is an SOM in function space rather than in vector space. In this

paper, first, as an example, we focus on a class of mnSOM that consists of MLP modules and in-

troduce the architecture and algorithm. Then, a more generalized framework is described. Finally,

some simulation results of an MLP-module-mnSOM are presented.

Keywords: SOM, modular network, function space
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1 Introduction

Kohonen’s Self-Organizing Map (SOM) (Kohonen, 2001) is an unsupervised learning algorithm

for generating topology-preserving transformation from a high-dimensional data vector space to

a low-dimensional map space, and it is a powerful tool used in many areas such as data mining,

analysis, classification, and visualization. Applications of SOM have spread into numerous ar-

eas such as web-based search (Kohonen, Kaski, Lagus, Salojärvi, Honkela, Paatero, & Saarela,

2000), bioinformatics (Abe, Kanaya, Kinouchi, Ichiba, Kozuki, & Ikemura, 2003), and finance

(Deboeck, & Kohonen, 1998), and its importance continues to increase. Despite its increasing im-

portance, however, the conventional SOM and most of its extensions can only deal with vectorized

data. If one wishes to deal with a non-vector dataset, then one needs to make the data vectorized

in advance or modify the SOM itself to adapt to the data type. Therefore, generalizing the SOM

family is an unavoidable problem in which the SOM algorithm is described independently of the

data type.

Our study aims to develop a generalized framework of the conventional SOM by adopting

the idea of a modular network in what we call amodular network SOM (mnSOM). The idea of

the mnSOM is simple: every vector unit of the conventional SOM is replaced by a trainable

functional module such as a neural network. Thus the architecture of the mnSOM is an assembly

of the functional modules arrayed on a lattice (Fig. 1). The functional modules can be designed

to suit each application while keeping the backbone algorithm of the SOM untouched. This

generalization strategy provides both a high degree of design flexibility and reliability to SOM

users because the mnSOM allows one to choose the functional modules from the great number

of neural architectures already proposed, and at the same time the consistent extension method

assures the theoretical consistency, e.g., statistical properties, of the results. Furthermore, this

strategy allows for the functional capability of data processing to all nodal units of the SOM.

Thus, our mnSOM can be used as an assembly of data processors after training. This is another

advantage of the mnSOM.

As an example, let us consider a case in which an mnSOM user is trying to make a map of

the weather dynamics of the world’s cities. In this case, the task is to generate a feature map that

visualizes the degrees of similarity or difference between the weather dynamics of each city; if the

weather patterns of New York and Tokyo are described by similar dynamics, then the two cities
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will be neighbors in the weather map, whereas if London and Singapore have different dynamics,

then they will be mapped far apart. Of course one could make a map by using a conventional SOM

after vectorizing all the weather data. However, such a map would provide no information about

the relationships between the dynamics. To achieve this task, one should identify the weather

dynamics of every city and then generate a feature map by comparing the dynamics. This is

what one can do with an mnSOM. By using an mnSOM, all one has to do is: (i) design a neural

network that can learn the weather dynamics of a single city, (ii) employ the neural network as

the functional module of the mnSOM, and (iii) train the mnSOM by entering world wide weather

data. In addition, the mnSOM can be used as an assembly of weather forecast systems after

training.

A similar concept has been proposed as Operator Map (Kohonen, 1993), suggesting that SOM

can be extended from vector space to function space. From the viewpoint, operator map was the

first proposal of this generalization, though Kohonen only showed the algorithm for linear op-

erator case. Extensions of SOM from vectors to subspaces are also related to this work, such

as ASSOM (Kohonen, Kaski, & Lappalainen, 1997), and parameterized SOM (Walter & Ritter,

1996). But our purpose is to establish a more general and flexible framework that takes over these

cases, thus our aim is to challenge to build a unified theory of SOM variations with functional

modules. One may also find a resemblance to the Local Linear Map (Martinetz, Ritter, & Schul-

ten, 1990), though our mnSOM is essentially different. The purpose of a Local Linear Map is to

represent a single, nonlinear function as the combination of the local linear operators, whereas the

purpose of an mnSOM is to generate a feature map of an assembly of nonlinear functions which

are represented by nonlinear function modules.

In this paper, the ideas, architecture, and algorithms of the proposed mnSOM are first outlined,

with special attention given to the case of MLP-modules. Then, we try to describe a more gener-

alized framework. Finally, the simulation results of some application examples are presented.

2 Theoretical framework

2.1 mnSOM with MLP modules

The architecture of an mnSOM is shown in Fig. 1. Basically, the architecture is such that each

vector unit of the conventional SOM is replaced by a functional module. These modules are
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arrayed on a lattice that represents the coordinates of the feature map. Many trainable algorithms

can be employed as functional modules, though Fig. 1 illustrates the case of an MLP-module.

Since each module represents a certain ‘functional feature’ determined by the module architecture,

the entire mnSOM represents a map of those features.

In order to outline the key concept of mnSOM, let us start from an example case in which

an mnSOM user tries to make a map of a group of functions{ f1(·), . . . , fI (·)}, which are un-

known initially. Instead, the sample datasets{D1, . . . ,DI } are assumed to be given. Here,Di =

{(xi,1, yi,1), . . . , (xi,J, yi,J)} is a class of input-output vectors sampled from theith function. Thus,

the vector pairs satisfyyi, j = fi(xi, j). The tasks of the mnSOM are (i) to identify the unknown

functions, and (ii) to generate a feature map of those functions. In other words, the task of the

mnSOM is to undertake topological mapping from a function space to a map space. Therefore,

the mnSOM should be an SOM in the function space rather than the vector space.

What the user needs to do first is select the module architecture. In this case, the module

is required to have the ability to learn a function from a set of data vectors. Therefore, MLPs,

radial basis function (RBF) networks, and their siblings are the candidates of the module type.

Here, let us consider the case of MLP-modules, i.e., MLP-module-mnSOM (MLP-mnSOM).

Hereafter, the MLP-mnSOM is assumed to haveK MLP modules which representK functions

g1(·), . . . , gK(·). These functions are determined by the weight vectorsw1, . . . ,wK , which are

updated by the backpropagation algorithm. (In this paper, let the subscripts represent the indexes

of mapping objects or datasets, whereas the superscripts refer to the indexes of mnSOM modules.)

Fig.1 about here.

The algorithm of mnSOM consists of four processes:evaluative process, competitive process,

cooperative process, andadaptive process. In the evaluative process, the outputs of all MLP

modules are evaluated for each input-output data vector pair. If, for example, an input data vector

xi, j is picked up, then the output of thekth moduleỹk
i, j = gk(xi, j) is calculated for that input. This

calculation process is repeated fork = 1, . . . ,K, using the same inputxi, j . After evaluating all

outputs for all inputs, then the errors of all modules for each data class are evaluated. Now letEk
i
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be the error of thekth module for the dataset from theith function, i.e.,

Ek
i =

1
J

J∑

j=1

∥∥∥ỹk
i, j − yi, j

∥∥∥2
(1)

=
1
J

J∑

j=1

∥∥∥gk(xi, j) − fi(xi, j)
∥∥∥2
. (2)

If J (the number of samples) is large enough, then the square distance between thekth module

and theith system in the function space is approximated by the errorEk
i as follows.

L2(gk, fi) =

∫ ∥∥∥gk(x) − fi(x)
∥∥∥2

pi(x)dx ' Ek
i (3)

Here,pi(x) denotes the probability density function of the input data vectorsxi, j of theith system.

In this paper it is assumed that{pi(x)} for i = 1, . . . , I are approximately the same asp(x), due to

the normalization of the data distribution for each class.1

In thecompetitive process, the module which minimizes the errorEk
i is determined as thebest

matching module (BMM), i.e., the winner module for theith class. Thus, letk∗i be the module

number of the BMM for theith class. Thenk∗i is defined as

k∗i = arg min
k

Ek
i . (4)

In the cooperative process, the learning weights are calculated by using the neighborhood

function. Letψk
i (t) denote the learning weight of thekth module for theith class at calculation

time t. Thenψk
i (t) is given by the following equations.

ψk
i (t) =

h
(
‖ξk − ξk∗i ‖; t

)

I∑

i′=1

h
(
‖ξk − ξk∗

i′ ‖; t
) (5)

h(l; t) = exp

[
− l2

2σ2(t)

]
(6)

Hereξk expresses the position of thekth module in the map space, andh(l; t) is a neighborhood

function which shrinks with the calculation timet. By using the learning weightsψk
i , the energy

function of thekth moduleEk is given as follows.

Ek(t) =

I∑

i=1

ψk
i (t) Ek

i (t) (7)

1If {pi (x)} are different from each other significantly, then it is impossible to define the distance measure between the

given functions. Thus, comparisons between the functions have no meaning in such cases. There is an issue of how to

deal with such cases, but it is not the focus of this paper, since it depends on how the user wants to define similarities and

differences of the functions.
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It means that the mnSOM algorithm gives the energy function of each module by using the SOM

algorithm. Note thatEk has the global minimum point at whichgk(·) satisfies

gk(x) =

I∑

i=1

ψk
i (t) fi(x). (8)

This is the essence of the generalization.

In theadaptive process, all MLP modules are updated by the backpropagation learning algo-

rithm, so that every module get closed to the global minimum point determined by the energy

funtion as follows.

∆wk = −η∂Ek

∂wk
= −η

I∑

i=1

ψk
i

∂Ek
i

∂wk
(9)

Therefore thekth MLP-module is updated so as to converge to the mass center of{ fi(x)} given

by (8). The backpropagation learning is repeated until all modules are sufficently updated. For

example, (9) is repeated around thousand times for every iteration timet. During the training

of MLPs, each input vectorxi, j is presented one by one as the input, and the corresponding

outputyi, j is presented as the desired signal. These four processes are iterated, with shrinking the

neighborhood function area until the network gets to a steady state.

This algorithm of the MLP-mnSOM is a straight-forward extension of the batch version SOM

algorithm. In fact, if the MLP modules have only bias units, i.e., every module always outputs a

constant vector, then the above algorithm becomes the same as the conventional one. Therefore,

MLP-mnSOM includes the conventional case. If the modules represents linear operators, then the

mnSOM can be called as the operator map.

For the help of understanding the algorithm, it is worth noting some important points. First,

since the energy functionEk is determined for each module, each global minimum point is differ-

ent from all the others. Therefore MLP-modules are updated toward to different goals individually.

Second, it is important to stress that the energy functionEk(t) does not define the energy function

of the entire mnSOM. Of course the sum of the energy functionsE(t) =
∑

k Ek(t) is minimized

in the adaptive process, however, this total energyE(t) is only valid during the adaptive process

at calculation timet, in which the learning weights{ψk
i (t)} are fixed. In the next iteration, i.e., at

time t + 1,ψk
i (t + 1) is updated, consequently the energy functionEk(t + 1) is also updated.
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2.2 Generalized framework of mnSOM

Now let us try to describe more generalized cases, i.e., an mnSOM algorithm for more generalized

classes and for more generalized module types. Suppose that an mnSOM user is trying to map

a set ofI objects,O = {O1, . . . ,OI }. In the conventional SOM, each data vector is the mapping

object, whereas in the previous example of MLP-mnSOM, each object corresponds to each of

the functions. It is not necessary that the entities of objects are identified in advance, i.e., they

are generally assumed to be unknown. Instead, a sample dataset observed from each object is

assumed to be available. Thus, letDi = {r i,1, . . . , r i,J} be the dataset observed from theith object

Oi . In this paper, it is assumed that{r i, j} are vector data.

Suppose that the mnSOM haveK functional modules{M1, . . . ,MK}, which are designed to

have the ability of regenerating, or mimicking, the objects. In other words, a module is capable

of approximating an objectOi after training byDi . Suppose that the property of each functional

moduleMk is determined by a parameter setθk. Thus in the case of MLP-mnSOM,θk is the

weight vector of thekth MLP module. Suppose further that each functional moduleMk is given a

fixed positionξk in the map space. Thereforeξk assigns the coordinates ofMk in the map space,

while θk determines the position in the data space.

Under such a situation, the tasks for the mnSOM are (i) to identify the entities of{Oi} from

the observed datasets{Di} by adapting the functional modules{Mk}, and (ii) to generate a map

that shows, in parallel, the degrees of similarity and difference between the objects. Note that the

map generated by the mnSOM is expected to show the relationships between the entities of the

objects, and therefore direct comparisons between the datasets are meaningless.

The mnSOM user needs only to give an appropriate definition of a distance measure that

signifies the difference between two objects or between an object and a module,L(Oi ,Mk). By

using this distance measure, two important derivative definitions can also be determined. One is

the definition oferror between a data vector and a module. Suppose thatek
i, j represents the square

error between a data vectorr i, j and a moduleMk. Then the average error ofDi andMk can be

expected to be an approximation of the square distance betweenOi and Mk. Thus, the average

errorEk
i is regarded as the estimated square distanceL2(Oi ,Mk), as follows.

L2(Oi ,M
k) ' Ek

i ,
1
J

J∑

j=1

ek
i, j (10)

This definition of error is usually associated with the module, because the module employed here
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is supposed to have the ability to representOi . Thus, the module chosen by the user is expected

to minimizeEk
i by training withDi .

The other derivative definition is that of themass center of objects, determined as

Ō(ψ,O) , arg min
O

I∑

i=1

ψiL
2(Oi ,O). (11)

Ō is the mass center ofO = {Oi} with weightsψ = (ψ1, . . . , ψI ). Since the mass centerO is not

affected by the scaling of weights, hereψi are assumed to be
∑

i ψi = 1. It means that the distance

measure defined by the user also determines the definition of mass center. In other words, user

should define the distance measure so that the mass center of the given objects represents ‘the

intermediate objects’.

The generalized algorithm of mnSOM also consists of the four processes described above for

the case of MLP-modules. In theevaluative process, the distance of every combination ofOi and

Mk is estimated by evaluating the average errorEk
i . The succeeding competitive and cooperative

processes are identical to those of the MLP-module case. In thecompetitive process, the BMMs

are determined by (4), and then the learning weights{ψk
i } are calculated by (5) and (6) in the

cooperative process. Then the energy function of thekth module at timet is defined as

Ek(t) =

I∑

i=1

ψk
i (t) Ek

i '
I∑

i=1

ψk
i (t) L2(Oi ,M

k). (12)

Finally, in theadaptive process, all modules are updated so as to be the mass center of the objects

with the weightsψk(t) = (ψk
1(t), . . . , ψk

I ). Ideally,Mk is expected to be innovated as

Mk(t + 1) = Ō(ψk(t),O) = arg min
M

I∑

i=1

ψk
i (t) L2(Oi ,M). (13)

Note that (13) cannot be evaluated directly due to the lack of information regarding the entity

of {Oi}. Instead, it can be estimated by substituting the average errorEk
i for the square distance

L2(Oi ,Mk), as shown in (10). Consequently, the update algorithm is obtained as

θk(t + 1) = arg min
θ

I∑

i=1

ψk
i (t)E

k
i (θ) = arg min

θ
Ek(θ). (14)

Though the implementation of (14) depends on the learning algorithm of the modules, in most

cases it would be a natural modification of the algorithm that originated from the module type

because the module algorithm is supposed to minimizeEk
i whenDi is given to the module. This

point is discussed in more detail later. Finally, these four processes are iterated until the network

gets to a steady state.
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In this generalized mnSOM algorithm, users need to choose an appropriate distance measure,

which is usually accompanied by the module architecture. Since the backbone algorithm of the

SOM is kept untouched, the generalized SOM is regarded as a SOM in the object space defined

by the distance measure.

2.3 How to avoid local minima

For MLP-mnSOMs, local minima cause a serious problem because the modules that are caught by

local minima destroy the continuity of the map at those points. To make matters worse, the chance

of falling into a local minimum increases when the number of modules increases. Therefore an

additional algorithm for avoiding local minima is necessary.

As shown in (7), the task of thekth module is to minimize the energy functionEk =
∑

i ψ
k
i Ek

i .

This means thatMk is expected to minimizeEk among all modules. Now suppose that the module

Mk is replaced by the other moduleMk′ temporarily. If the energy functionEk is improved by this

replacement, it can be reasoned thatMk has likely fallen into a local minimum. In such a case,

Mk can be ‘rescued’ by copyingθk′ to θk. This algorithm is formulated as follows.

θk(t) := θk′ (t) if Ẽk,k′ < βEk (15)

Ẽk,k′ ,
I∑

i=1

ψk
i Ek′

i (16)

HereẼk,k′ is the energy function whenMk is replaced byMk′ temporarily, andβ is a safety factor

which is usually around 0.8–0.9. By making such comparisons between neighborsbefore the

adaptive process, the MLP module in the local minimum is reset to a better initial state given by

the neighbors, and after that, the module is updated toward to its own global minimum point.

By employing this additional algorithm, the chance of falling into local minima will decrease

as the number of modules increases because the chance of rescue also increases. Therefore this

algorithm turns the disadvantage of having many MLPs into an advantage. In addition, this al-

gorithm has no adverse effect, since this algorithm does not modify the energy function at all.

The neighbors only lend a hand to the module in trouble, by giving a better restart point for the

module. Once after escaping a local minimum, then the module can be updated toward to its own

target, which is different (but similar) from its neighbors. Thus the algorithm increases the chance

of success without affecting the succeeded result.
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3 Simulations and results

3.1 Maps of cubic functions

A simulation study was undertaken to examine the performance of mnSOM in some examples.

In this paper, the module architecture was limited to MLP cases, though some other architectures

have been examined previously. The first example is concerned with a family of cubic functions

y = ax3 +bx2 +cx, shown in Fig. 2. The simulations were made under two different conditions. In

the first case, there was a small number of classes (I = 6, indicated by thick frames in Fig. 2) with

a large number of data vectors per class (J = 200), whereas in the second condition there was a

large number of classes (I = 126, all functions in Fig. 2) with a small number of data vectors per

class (J = 8). Each datasetDi = {(xi, j , yi, j)} was sampled randomly, with the probability density

function of p(x) distributed uniformly between [−1,+1]. In addition, Gaussian white noise was

added to{yi, j} (σnoise = 0.04).

Fig. 3 shows some of the datasets used in the simulations. Fig. 3 (a), (b), and (c) are the

datasets used in the first case, while (d) to (f) were used for the second case. In the first case,

it is easy to estimate individual functions from the given datasets. Under this condition, the

mnSOM is expected to interpolate between given functions. In contrast, it is hard to estimate

individual functions under the second condition due to the deficiency of the sample data. In

this case, the mnSOM is expected to estimate these functions while making neighbor classes as

clues for the estimation. The MLP module has three layers with one input, eight hidden, and

one output units. The neighborhood function was reduced fromσ0 to σ∞ exponentially, i.e.,

σ(t) = σ∞ + (σ0 − σ∞) exp[−t/τ]. Other details are presented in Table 1. Fig.2 about here.

Fig.3 about here.

Table 1 about here.
Fig. 4 (a) and (b) show the results of the first and the second case respectively. The curve

depicted in each box represents the function acquired by the corresponding module after training.

In both cases, the mnSOM generated similar maps. The modules on the diagonal corners showed

opposite functions, and the modules located in the center of the map showed flat functions. The

modules indicated by thick frames in Fig. 4 (a) are the BMMs of the given classes. All other

functions acquired by the rest of the modules were interpolated by the mnSOM so as to make a

continuous map. In the second case (Fig. 4 (b)), the mnSOM also succeeded in generating a map

of cubic functions, despite the small number of data vectors. The validity of these maps generated

by the mnSOM is discussed later. Fig.4(a) and Fig.4 (b)

about here.
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3.2 Map of meteorological dynamics

The second set of material is a meteorological dataset available in a bulletin published by the

Meteorological Agency of Japan. The dataset consists of daily records of weather attributes, such

as atmospheric pressure, temperature, humidity, and sunlight hours, during a period of 100 days

of the year 2000 at 20 cities in the Kyushu area of western Japan. The data shown in Fig. 5 were

recorded at cities ‘B’ and ‘m’. Such time-series data of 10 of the 20 cities (A–J in Fig. 7 ) were

given to the mnSOM for training, whereas the data for the remaining 10 cities (k–t in Fig. 7) were

used for testing. Fig.5 about here.

The module architecture is shown in Fig. 6. The input data was a 12-dimensional vector that

consisted of the weather data of three consecutive days, and the desired output was the weather

of the fourth day. Prior to the simulation, each time series record was normalized so that the DC

component was removed. Thus, the MLP module was expected to learn the weather dynamics

fluctuating around the average. In addition to the MLP module, there was a four-dimensional

static vector, which was expected to learn the average level, i.e., the DC componet. For this

reason, this architecture was a hybrid of a conventional SOM and an mnSOM. Other details are

shown in Table 2. Fig.6 about here.

Table 2 about here.
During the learning phase, training data of the 10 cities were given to the mnSOM. When

learning had succeeded, the training was terminated. Then the data from the test cities were

given to the mnSOM, and the BMMs of those cities were identified. Fig. 5 shows the predicted

time courses (indicated by dashed lines) of a training and a test city (cities B and m in Fig. 7,

respectively). The BMMs predicted the weather of the test cities as well as the training ones. The

map of the weather dynamics generated by the mnSOM is shown in Fig. 8. The labeled modules

represent the BMMs determined by the training (A–J) and the test (k–t) cities of Fig. 7. In the

feature map, all cities for testing were allocated to appropriate positions, in such a way as to

interpolate between the BMMs of the training cities. Thus, the mnSOM succeeded in generating

“a weather map of the Kyushu area,” preserving the topology of the geographical map (Fig. 8).

In this simulation, the mnSOM played three roles: (1) it identified the weather dynamics of

the cities by training, (2) it estimated the weather dynamics of “intermediate cities,” i.e., tested

but not trained cities, (3) it generated a “self-organizing weather map” that reflected similarities

in geo-meteorological dynamics. It should be emphasized here that the map organized by the



12

mnSOM is no longer a static map, as the mnSOM organized an assembly of weather forecast

systems, each of which is specialized to a particular city in the area. Fig.7 about here.

Fig.8 about here.

4 Discussion

4.1 Relations between mnSOM and SOM

As mentioned in the theory section, the algorithm of mnSOM is not merely a modification of a

conventional SOM, but rather it is a generalization that absorbs the conventional one. Thus, an

mnSOM not only inherits many properties from a conventional SOM, but it also adds several new

original properties. Therefore, it is important to confirm what the similarities and differences are

between an SOM and an mnSOM. For example, there is the question of whether the mnSOM

inherits the statistical properties of the conventional SOM.

To this end, we shall re-visit a case of cubic functions. In the simulation, the mnSOM gen-

erated a feature map of a cubic function family from a set of input-output data. The data were

sampled randomly from the given functions, and they were presented to the mnSOM in random

order. Practically speaking, this learning style is very natural for real problems, such as the case of

weather data. However, in an artificial situation, such as with a case of cubic functions, it is also

possible to vectorize the function shapes since the experimenter knows those functions in advance

(of course such information is not given to the mnSOM at all). This means that the feature map

of the cubic function family can be generated by the conventional SOM as well. One question

then arises: is there any difference between the features map generated by the mnSOM and that

generated by the conventional SOM? To answer this question, we consider a case in which an

orthonormal functional expansion is employed for vectorization. Thus, let{φn(·)} be a set of or-

thonormal functions. Then the functionf (·) is transformed to a coefficient vectora = (a0, · · · ,an),

where

f (x) = a0φ0(x) + a1φ1(x) + · · · + anφn(x). (17)

The terms higher than thenth order are assumed to be negligible. Under this condition, the

distance in function space is identical to that in coefficient vector space. Thus,

L2
f ( fi ,g

k) = (ai,0 − bk,0)2 + · · · + (ai,n − bk,n)2 (18)

= L2
v(ai , bk). (19)
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Here,L2
f andL2

v are the square distances in function and vector space, andai andbk denote the

coefficient vectors of the givenith function and thekth module of mnSOM, respectively. In this

situation, mnSOM and SOM should produce the same result since the learning algorithm, i.e., (1)–

(9), becomes identical for both types of SOM. That is, the mnSOM and the conventional SOM

share the same properties of the feature map. This fact means that a great amount of previous

work by conventional SOMs can be imported to MLP-mnSOMs.

In the case of the cubic functions,p(x) was set to be uniform between [−1,+1]. Therefore,

normalized Legendre polynomials are best suited for the orthonormal expansion in this case.

Thus, thenth orthonormal functionφn(x) is described by thenth Legendre functionPn(x) as

φn(x) =
√

n + 1/2Pn(x). (20)

By using this set of orthonormal functions, the set of six functions indicated by the thick frames

in Fig. 2 were expanded to their corresponding coefficient vectors{ai} = {(ai,1,ai,2,ai,3)}. The

feature map generated by a conventional SOM for{ai} is shown in Fig. 9 (a). The figure shows

the position of each reference vector in the coefficient vector space. The corresponding map

generated by the mnSOM are shown in Fig. 9 (b) and (c). Fig. 9 (b) shows the map of the global

minimum point of each MLP module evaluated by (8). In simple terms, it can be regarded as a

‘map of teacher signals’ generated in the mnSOM. Meanwhile, Fig. 9 (c) is a map of the actual

functions acquired by the MLP-modules of the mnSOM. Thus, Fig. 9 (c) was obtained by making

Legendre expansions of the functions shown in Fig. 4 (a). The map generated by a conventional

SOM and that of the teacher signal of an mnSOM (Fig. 9 (a) and (b)) were identical as it is assured

by the theory. The map of the actual functions of the MLP-modules (Fig. 9 (c)) was also fairly

equal to the other two maps, while small errors remained that were presumably caused by the

additive noise and by the limitation of approximation ability of the MLPs. The mean square error

of outputs between the ideal result obtained by SOM (Fig. 9 (a)) and the actual mnSOM result

with additive noise (Fig. 9 (c)) was 1.08× 10−3. This error approximately corresponds to 3% of

the output range, while the training data contains 4% noise. This result may encourage the users

of mnSOMs because the theoretical properties of the MLP-mnSOM have been assured by past

works conducted on the conventional SOM (e.g., Cottrell, Fort, & Pages, 1998; Dersch, & Tavan,

1995). This fact also means that all advantages and disadvantages of the conventional SOM are

inherited to mnSOM, such as the difficulty of defining the energy function (Erwin, Obermayer &
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Shulten, 1992).

Finally, it is worth noting that such orthonormal expansionbefore trainingwill not be possible

in most practical cases, in which the mapping objects are unknown. Therefore, the conventional

SOM is not available in such practical cases. On the other hand, the mnSOM can solve the

simultaneous problem of estimating the unknown functions and generating their maps. This is

another important advantage of mnSOM. Fig.9 about here.

4.2 On designing modules

In this paper, only MLP-mnSOMs were used in the simulations, although we have tried other

module types previously. For example, some preliminary results with recurrent networks such

as Elman Net (Elman, 1991) and with autoassociative neural networks (Oja, 1991) have been

reported (Furukawa, Tokunaga, Kaneko, Kimotsuki, & Yasui, 2004; Tokunaga, & Furukawa,

2005). Since these architectures are variations of MLP, the algorithms of the mnSOM with these

modules are almost the same as that of the MLP-mnSOM. We have also developed a SOM-

module-mnSOM (Furukawa, 2005a; Furukawa, 2005b). The algorithm of the SOM-module-

mnSOM, which we call ‘SOM2,’ looks quite different from that of the MLP-module, but the

algorithm can also be derived from the generalized SOM algorithm described in this paper. The

algorithm of SOM2 will be described elsewhere.

One may then raise the question of how the algorithm of an mnSOM should be designed

when a user employs a new module type. Since there are a number of existing architectures

and algorithms, developing a generalized protocol seems like a hopeless task. Fortunately, how-

ever, distance measures or energy functions are often accompanied by the module architectures.

Therefore what users have to do is to replace the energy function by (12). To minimize the en-

ergy function, it would be also possible to use the evolutionary algorithm as well as the gradient

method (Villmann, 2002).

On designing the mnSOM module and its learning algorithm, mnSOM users need to know the

following two points. First, users should be mindful of the consistency between their purpose, the

module architecture, and the algorithm. To better explain this point, let us consider a case in which

two mnSOM users are trying to make a map from a set of time series data. Suppose that one user

tries to make a map of the waveforms, and the other wants to get a map of the dynamics. In such

a case, the former user needs to define the distance measure in the signal space, whereas the latter
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user should define it in the system space. Furthermore, the selection of the module architecture

and algorithm should be consistent with their purpose. The users need to be careful because a

small change in the system dynamics causes a big difference in the waveforms. The mnSOM will

generate a sort of map even if the distance and algorithm are not defined appropriately. However,

there is no assurance that the generated map will fit the user’s purpose in such cases. Therefore,

the consistency of the definitions and the user’s purpose should be checked in all cases. One of

the best ways is to check whether the algorithm generates desired ‘intermediate’ objects for user’s

purpose. By giving two objectsA and B to a single module with learning weightsψA andψB

(ψA + ψB = 1), the user can see whether the module represents an intermediate object between

A andB. Only user knows what is the desired middle point, user should therefore accept these

responsibilities as a compensation for the freedom given by the mnSOM.

The second point is that users are recommended to check the module parameters before it is

built into an mnSOM. Thus, it is better to check the ability of one module with one class of data

in advance since an mnSOM usually has a lot of parameters that require adjustment. Once the

user finds a good parameter set for a single module, then the remaining parameters are almost the

same as those for the conventional SOM. Therefore, users will not feel difficulties in adjusting

parameters if they employ this two-stage adjustment.

In this paper, MLP-module cases were introduced as representative cases since MLP is one of

the most popular architectures among neural networks and the principle of gradient descendent

algorithms is also a common method. For practical tasks, however, other architectures such as

RBF networks can be expected to produce better results.

5 Conclusion

An extension of SOM using a modular network structure has been presented in this paper. Our

mnSOM is a natural extension of a conventional SOM stemming from Kohonen, and we describe

our mnSOM in a more general framework. One of the advantages of mnSOMs is that every

module in an mnSOM has the capability of information processing. Thus, an mnSOM forms a

dynamical map that consists of an assembly of functional modules. Therefore, one might draw

analogies between the mnSOM and the functional map of our cortex, which continuously pro-

cesses the data flowing into it. The mnSOM also provides a way of fusing a supervised and an
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unsupervised learning algorithm. For example, an MLP-mnSOM is trained by a supervised learn-

ing algorithm, i.e., the backpropagation at the MLP module level, while the upper SOM level is

described in an unsupervised manner. Thus, the mnSOM provides an ‘unsupervised supervised

learning’ method. These abilities have been newly added by mnSOM, and therefore, the mnSOM

is not an improvement or a modification of the conventional SOM at all, but rather it has extended

and widened the ability of the conventional SOM further.
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Figure Legends

Fig. 1 The architecture of an mnSOM with MLP-modules.

Fig. 2 A family of cubic functions used in the first simulation. The six functions indicated with

thick frames were used in the first case, while all functions were used in the second case.

Fig. 3 Examples of datasets used in the first simulation. (a)–(c) Datasets for the first case. The

number of data points is 200 for each class. (d)–(f) Datasets for the second case. The

number of data points is 8 for each class.

Fig. 4 Two maps of cubic functions generated by mnSOMs. (a) The map of the first case with 6

training functions. (b) The map of the second case with 126 training functions.

Fig. 5 Examples of time series data of the four weather attributes at cities ‘B’ and ‘m’ in Fig. 7.

Solid and dashed lines represent the actual and the predicted weather.

Fig. 6 The module architecture of the mnSOM for learning the meteorological dynamics.

Fig. 7 A map of Kyushu area in Japan. The weather data of cities A–J were used for training,

while the data of cities k–t were used for testing.

Fig. 8 A weather map of Kyushu area generated by the mnSOM.

Fig. 9 The feature map of cubic functions plotted in the coefficient parameter space of Legendre

expansion. (a) A map generated by a conventional SOM. The labels 1–6 represent the

BMMs of the training fuctions indicated with thick frames in Fig. 2. (b) A ‘map of teacher

signals’ generated in the mnSOM. (c) A map of the actual functions acquired by the MLP-

modules in the mnSOM.

Table 1 Parameters used in the simulations with cubic functions.

Table 2 Parameters used in the simulation with the meteorological data.
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Table 1.

Parameters of MLP module

Number of units

Input layer 1

Hidden layer 8

Output layer 1

Learning constantη 0.05

Parameters of mnSOM

Map sizeK 100 (10× 10)

Neighborhood function size

σ0 10.0

σ∞ (case 1) 2.0

σ∞ (case 2) 1.0

τ 300

Safety factorβ 0.9
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Table 2.

Parameters of MLP module

Number of units

Input layer 12

Hidden layer 5

Output layer 4

Bias part 4

Learning constantη 0.01

Parameters of mnSOM

Map sizeK 225 (15× 15)

Neighborhood function size

σ0 15.0

σ∞ 2.0

τ 300

Safety factorβ 0.9
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