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Abstract

The estimation problems for the conventional step-up method (the observed break-

down voltages are not given at all) and the new step-up method (some of the observed

breakdown voltages are given) are analyzed when the underlying probability distribution

(of breakdown voltage level) is assumed to be gumbel distributions for minima and max-

ima. The new step-up test method has advantages compared to the conventional method:

(1) the confidence intervals of the estimates become smaller and (2) the estimates can be

obtained with higher probability. In some case of real step-up breakdown voltage test, a

fit of the gumbel distribution to the data case is found to be superior to that of the normal

distribution, which suggests the usefulness of the gumbel distribution for the underlying

distribution in the step-up breakdown voltage test.

Key Words : Impulse breakdown voltage, step-up test, up-and-down test, optimal

test, electrical insulation, gumbel distribution for minima and maxima, epidemiology.
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1. Introduction

To estimate the impulse breakdown voltage (or impulse flashover voltage) for electrical

insulation which has a self-restoring property such as air and SF6 gas, the up-and-down

test method by Dixon and Mood [3] is often used, where the underlying distribution is

assumed to be the normal distribution; this method is adopted in the insulation test

standards such as IEC Pub. 60-1 [10], JEC-0202 [11] because the observed breakdown

voltage is considered to follow the normal distribution when the insulation has a self-

restoring property. In addition, to know the mean value of the breakdown voltage is our

concern in designing the power network insulation system. The up-and-down test method

is as follows: (1) the initial voltage is set around the mean breakdown voltage level, say v0,

and (2) if the insulation is not broken at stress level v0, then the stress level is increased

by d amount, to a higher level v1 = v0 + d, otherwise the stress level will be set to a lower

level, v−1 = v0 − d, and this procedure continues for the prescribed number of times. This

technique has applicability to epidemiological data (e.g., in [1]), where at each “level” of

exposure to a toxin or a new medicine, some people die (or perhaps get better and leave

the study) and this would correspond to the insulation being broken.

When the electrical insulation does not have a self-restoring property such as epoxy

resin, the insulation will not be able to be used when it is broken; then, the impulse test by

increasing voltage is used. This is the step-up test method (see [5] in the normal distribution

case). The step-up test method is as follows: (1) the initial voltage is set to a sufficiently

low stress level (e.g., v0) where the insulation would not be broken and (2) the stress level

is increased by d amount, to a higher level v1 = v0 + d. The unit is tested m times at the

new stress level. If the insulation is not broken in m impulse tests, the voltage is again

increased by d amount and the procedure continues until the insulation is finally broken.

This test procedure may be favorable when we want to know the lower extreme value of

the breakdown voltage rather than to know the mean value because we observe the much

of data below the mean.

We have conventionally used only the two-valued information of breakdown and non-

breakdown in the step-up test method. However, because of recent improvements of the

high speed voltage measuring instrument, we can now measure the accurate value of the

breakdown voltage during the very short term of voltage increasing. If the breakdown

voltage measured just at the moment that the insulation is broken, the test method is

called the new step-up method, while it is not obtained, the test method is called the
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(conventional) step-up method (Hirose [6]). This new technique might have applicability to

epidemiological data, if the response of death or recovery can be instantaneously observed

during toxin or medicine injection increasing with a restriction of an upper limit.

When the impulse breakdown voltage follows a normal distribution, N(µ, σ), with

mean, µ, and standard deviation, σ, Hirose [6] first recommends the use of the parameters

of the underlying probability distribution rather than the use of the nominal breakdown

voltage, and second to use the new step-up method if the observed breakdown voltage itself

rather than the two-valued information of breakdown and non-breakdown is available, from

a viewpoint of stable and accurate parameter estimation. This paper deals with a similar

problem to [6], but the underlying distribution is assumed to be the two-parameter gumbel

distribution. As is well known, the insulation which does not have a self-restoring property

is observed to have the Weibull type breakdown probability distribution, which leads us

to investigate the case that the breakdown voltage follows the Weibull distribution (see

[7]). The gumbel distribution is the limiting distribution of the Weibull distribution when

the Weibull shape parameter goes to infinity (see [2,4,9], e.g.), it is natural to use the

gumbel distribution as the underlying distribution function. It is known that there are

two kinds of distributions in the Weibull distributions; one is for minima and the other is

maxima. Thus, we consider the two distributions in the gumbel distribution here. This

paper describes the comparison between the conventional and new step-up methods in the

gumbel distribution model. Discussions for usefulness of the gumbel distribution for the

underlying distribution (of breakdown voltage level) are made using a real data case.

2. Step-up Test with Gumbel Distribution Model

Similarly to the normal distribution assumption for the breakdown voltage, we assume

that the underlying probability distribution for the breakdown voltage follows the two-

parameter gumbel distribution. That is, the random variable V which is the observed

breakdown value when the voltage is increasingly applied to the insulation follows the

gumbel distribution. The gumbel distribution has two types of the cumulative distribution

function; one is for minima and the other is maxima, expressed as,

pmin = P (V ≤ v) = Fmin(v;α, β) = 1 − exp
{
− exp

(v − β

α

)}
, (1a)

pmax = P (V ≤ v) = Fmax(v;α, β) = exp
{
− exp

(
−v − β

α

)}
, (1b)
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where α and β are scale and location parameters, respectively. The corresponding density

functions are,

fmin(V ) =
( 1

α

)
exp

(V − β

α

)
exp

{
− exp

(V − β

α

)}
, (2a)

fmax(V ) =
( 1

α

)
exp

(
−V − β

α

)
exp

{
− exp

(
−V − β

α

)}
. (2b)

We abbreviate Fmin and Fmax to F for simplicity, hereafter; similarly, fmin and fmax are

abbreviated to f . Then, mean, µ, and standard deviation, σ, are,

µ = β ∓ α · γ, σ =
απ√

6
, (3)

where, γ = 0.57722... is Euler’s constant, and compound expressions in sign are written in

order for minima and maxima. The impulse breakdown test by the step-up method starts

at a very low stress level v0 and continues until the insulation is broken at some stress

level vi = v0 + id. If each test piece is numbered as 1, 2, · · · , n, we obtain n sampled values

of vi(k), (k = 1, · · · , n). We note here for clarity that Fmin and Fmax are not referred to

the cumulative probability distribution for minimum and maximum value of the observed

breakdown voltages; they are just the two kinds of the distribution to be fitted to the

breakdown voltage data when the voltage is increasingly applied to the insulation.

3. Estimation Method

Suppose first that the breakdown voltage test is done by the conventional step-up

method. Then, the likelihood function for the test sequence is denoted as

LF =
n∏

k=1

lFk , (4)

and

lFk = F (vi(k)){1 − F (vi(k))}m(k)−1

i(k)−1∏
j=0

{1 − F (vj)}m, (5)

where m(k) denotes the number of strikes until the insulation is broken at the final stage

i(k) for sample k. The expression lFi(k) can be considered as the probability of an extended

geometric distribution that the insulation is first broken at stress level vi(k). We can see

that we are tracking the probability of each piece surviving the m trials in each of the

i(k) steps until it gets to the m(k)th one. Here, the notation F is used both to Fmin and
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Fmax, and we can use one of these two distribution functions for the underlying probability

distribution.

Suppose next that the breakdown voltage test is done by the new step-up method.

Then, the likelihood function for the test sequence is denoted as

Lf =
n∏

k=1

lfk , (6)

where

lfk = f(Vi(k)){1 − F (vi(k))}m(k)−1

i(k)−1∏
j=0

{1 − F (vj)}m, (7)

The random variable Vi(k) is obtained under the condition that Vi(k) ≤ vi(k). The difference

between (6) and (7) is just to use F (vi(k)) or f(Vi(k)); vi(k) is the preset value and the Vi(k)

is the random variable less than vi(k).

The estimates, α̂ and β̂ for the conventional step-up method, can be obtained by

solving the log-likelihood equations,

∂ log LF /∂α = 0, ∂ log LF /∂β = 0. (8)

Some iterative methods, e.g., the Newton method, can be used to obtain the estimates

of the parameters. Their confidence intervals are computed using the observed Fisher

information matrix. However, (8) may not have solutions in a mathematical sense when

B-level < 2 (see [5]) because the maximum likelihood method is ill posed (indefinite).

For the new step-up method, the solution can be obtained by solving the log-likelihood

equations

∂ log Lf/∂α = 0, ∂ log Lf/∂β = 0. (9)

It should be noted that (9) has the solutions with probability 1, unlike the log-likelihood

equations in the conventional step-up method. This beneficial property in the new step-

up test procedure is also true, similarly to the case that the underlying distribution is a

normal type.

Example 1

Suppose that the breakdown voltages are obtained as shown in Table 1. The starting

stress level is 500; the step-up stress is 50, and m = 1. For example, test piece 1 is not

broken at level 500, then the preset value is raised to 550. The insulation is not broken

5



also at this level. This procedure is continued until level 2650. With preset value, 2650, of

the impulse application, test piece 1 is first broken at the voltage of 2184 during voltage

increasing. Test piece 1 is broken after 44(= {(2650 − 500)/50} + 1) impulse strikes.

Then, the maximum likelihood estimates for the conventional step-up method are such

that α̂ = 287.5 and β̂ = 3110 in the gumbel distribution for minima. The approximate

standard errors for α̂ and β̂ using the observed Fisher information matrix are 59.13 and

157.0. In the case of the new step-up method in the gumbel distribution for minima,

the maximum likelihood estimates are α̂ = 262.6 and β̂ = 3045 and their approximate

standard errors are 41.94 and 116.6. The standard errors for the estimates in the new

step-up method seem to be smaller than those in the conventional step-up method. This

tendency is generally true as will be shown in the next section. This is the second beneficial

property in the new step-up method.

(INSERT TABLE 1 ABOUT HERE.)

3. Optimal Test Procedure

Let us define, the asymptotic errors, s(α) and s(β), for α and β by the square root of

each diagonal element of the inverse matrix of I, where

I = −

(
E(∂2 log L

∂α2 ) E(∂2 log L
∂β∂α )

E(∂2 log L
∂α∂β ) E(∂2 log L

∂β2 )

)
. (10)

If the insulation is not broken at level i, the expectation of surviving at level i for 1 test

piece is

E(w0
i ) =

i∏
j=0

{1 − F (vj)}m. (11)

If the insulation is broken at level i, the expectation of failure at level i for 1 test piece is

E(w1
i ) = F (vi){1 − F (vi)}m(i)−1

i−1∏
j=0

{1 − F (vj)}m. (12)

Therefore, each element of I for the conventional step-up test is expressed as

E

(
∂2 log LF

∂θa∂θb

)
=

∑
i

E(w0
i )E

(
∂2 log(1 − F (vi))

∂θa∂θb

)
+

∑
i

E(w1
i )E

(
∂2 log F (vi)

∂θa∂θb

)
,

(13)
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and that for the new step-up test is expressed as

E

(
∂2 log Lf

∂θa∂θb

)
=

∑
i

E(w0
i )E

(
∂2 log(1 − F (vi))

∂θa∂θb

)
+

∑
i

E(w1
i )E

(
∂2 log f(Vi)

∂θa∂θb

∣∣∣Vi < vi

)
,

(14)

where θa or θb denotes α or β for brevity. More specifically,

E

(
∂2 log F (vi)

∂α2

)
= − 1

p2
i

(
∓ 1

α
yizi exp(−zi)

)2

± 1
pi

[
1
α2

yizi{yi(1 − zi) + 2} exp(−zi)
]

,

E

(
∂2 log F (vi)

∂α∂β

)
= − 1

p2
i

(
∓ 1

α
yizi exp(−zi)

)(
− 1

α
zi exp(−zi)

)
+

1
pi

[
1
α2

zi{yi(1 − zi) + 1} exp(−zi)
]

,

E

(
∂2 log F (vi)

∂β2

)
= − 1

p2
i

(
−1

1
α

zi exp(−zi)
)2

± 1
pi

[
1
α2

zi(1 − zi) exp(−zi)
]

,

(15)

E

(
∂2 log(1 − F (vi))

∂α2

)
= − 1

q2
i

(
± 1

α
yizi exp(−zi)

)2

∓ 1
qi

[
1
α2

yizi{yi(1 − zi) + 2} exp(−zi)
]

,

E

(
∂2 log(1 − F (vi))

∂α∂β

)
= − 1

q2
i

(
± 1

α
yizi exp(−zi)

)(
− 1

α
zi exp(−zi)

)
− 1

qi

[
1
α2

zi{yi(1 − zi) + 1} exp(−zi)
]

,

E

(
∂2 log(1 − F (vi))

∂β2

)
= − 1

q2
i

(
− 1

α
zi exp(−zi)

)2

∓ 1
qi

[
1
α2

zi(1 − zi) exp(−zi)
]

,

(16)

E

(
∂2 log f(Vi)

∂α2

∣∣∣Vi < vi

)
=

1
pi

∫ vi

−∞

∂2 log f(v)
∂α2

f(v)dv,

E

(
∂2 log f(Vi)

∂α∂β

∣∣∣Vi < vi

)
=

1
pi

∫ vi

−∞

∂2 log f(v)
∂α∂β

f(v)dv,

E

(
∂2 log f(Vi)

∂β2

∣∣∣Vi < vi

)
=

1
pi

∫ vi

−∞

∂2 log f(v)
∂β2

f(v)dv,

(17)
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∂2 log f(v)
∂α2

=
1
α2

{1 + 2yi − yizi(yi + 2)} ,

∂2 log f(v)
∂α∂β

= ± 1
α2

{1 − zi(yi + 1)} ,

∂2 log f(v)
∂β2

= − 1
α2

zi,

(18)

where yi = (vi − β)/α for minima, yi = −(vi − β)/α for maxima, zi = exp(yi), and

pi = F (vi) = 1− qi. Compound expressions are written in order for minima and maxima.

Here, we define the asymptotic unit errors, e(α) and e(β) as,

e(α) = s(α)/α, e(β) = s(β)/α (19)

Figures 1 and 2 show e(α) and e(β) against d/σ in the gumbel distribution for minima,

and Figures 3 and 4 for maxima, when m = 1 for both the conventional and new step-up

methods; the thick line expresses the case when some level vj is equal to µ, and the thin line

expresses the case when µ is located in the middle of vj−1 and vj ; the dotted line expresses

the case of the conventional step-up method; the solid line expresses the case of the new

step-up method. Why we use d/σ and not use other parameters as the horizontal axis is

that this index is considered to be general to all the (unimodal) probability distributions;

it is originally used in Dixon and Mood [3]. Also, we may compare the results here to

those in other distribution cases. The following is suggested from Figures 1 and 2.

(1) The asymptotic unit errors in the new step-up method, en(α) and en(β), become

smaller than those in the conventional step-up method, ec(α) and ec(β).

(2) The optimal test for ec(β) can be realized around 0.5 ≤ d/σ ≤ 1.5, but that for en(β)

can be realized for larger d/σ.

(3) The asymptotic unit error in the new step-up method, en(α), becomes considerably

smaller than that in the conventional step-up method, ec(α). For example, the dif-

ference between en(α) = 0.6477 and ec(α) = 0.8749 means that the samples in the

conventional step-up method requires samples about twice as large as in the new step-

up method to obtain the equivalent confidence interval, when some level vj is equal

to µ and d/σ = 1.0.

(4) The optimal test for en(α) does not depend on d/σ, while the optimal test for ec(α)

can be realized at smaller d/σ.

(5) The asymptotic unit errors, en(α), en(β), ec(α), and ec(β), do not depend on the

starting point x0, when d/σ < 1.0.
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Also, the following is suggested from Figures 3 and 4.

(6) The asymptotic unit errors in the new step-up method, en(α) and en(β), become

smaller than those in the conventional step-up method, ec(α) and ec(β).

(7) The optimal test for ec(β) can be realized around 0.5 ≤ d/σ ≤ 1.5, but that for en(β)

can be realized for wider range of d/σ.

(8) The asymptotic unit error in the new step-up method, en(α), becomes considerably

smaller than that in the conventional step-up method, ec(α). For example, the dif-

ference between en(α) = 0.7263 and ec(α) = 1.157 means that the samples in the

conventional step-up method requires samples about twice as large as in the new

step-up method to obtain the equivalent confidence interval, when some level vj is

equal to µ and d/σ = 1.0.

(9) The optimal test for en(α) and en(β) do not depend on d/σ, while the optimal test for

ec(α) and ec(β) can be realized at smaller d/σ.

(10) The asymptotic unit errors, en(α), en(β), ec(α), and ec(β), do not depend on the

starting point x0, when d/σ < 1.0.

In short, the new step-up method markedly improves the reliability of the estimates

of α and β compared to the conventional step-up method. The larger the d/σ, the smaller

the asymptotic unit errors as long as d/σ ≤ 2.0 in the distribution for minima, and the

asymptotic unit errors show almost constant values in the distribution for maxima. For

the estimate of α, about a half of the sample size in the new step-up method is sufficient

for obtaining the equivalent reliability to the conventional method. This is the result for

the case of m = 1, but this tendency is also true for m is 2 or 3; such a value is often used

in the field.

(INSERT FIGURES 1 TO 4 ABOUT HERE.)

5. Monte Carlo Simulation

A Monte Carlo simulation study is done in order to investigate the asymptotic prop-

erties of the estimates for the conventional and new step-up methods. The simulation

conditions are as follows:

(1) The very first stress step, x0, is set to around the point that satisfies F (x0) = 10−15,

and some stress level is set just to α = vj because the errors are not affected by the

starting point as long as d/σ < 2.

(2) The number of samples, n, is 100, 50, 20, 10.
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(3) The step-up distance to σ, d/σ, is 0.1, 0.2, 0.5, 1.0.

(4) The parameter values are α = 1 and β = 0.

(5) The number of repetition times of strikes at the same stage is m = 1.

(6) The number of trial times is 1000.

Here, we define the biases and standardized unit errors as,

θ̄ =

(
1
M

M∑
i=1

θ̂i

)
, bias(θ̂) = θ̄ − θ, (20)

S(θ̂) =

√√√√ 1
M

M∑
i=1

(
θ̂i − θ

)2

,

sue(α̂) =
√

nS(α̂)
α

, sue(β̂) =
√

nS(β̂)
α

,

(21)

where, M denotes the number of successful estimation cases. Table 2 and 3 show the

bias(θ̂) and sue(θ̂) for the estimates α̂ and β̂ in the gumbel distribution for minima, and

Table 4 and 5 for maxima. Comparing the unit asymptotic errors in Figures 1 to 4 with

the simulation results, mean and standardized error in the simulation agree well with the

asymptotic values as long as n is larger than 20. It can be seen that the cases in which

we cannot obtain the estimates (not numerically, but mathematically) are not rare in the

conventional step-up method when n is small such as n ≤ 10.

(INSERT TABLES 2 TO 5 ABOUT HERE.)

6. Discussion

6.1 Example in real data case

In the introductory section, it is noted that the gumbel distribution model is more

realistic in impulse breakdown of electrical insulation which does not have a self-restoring

property similarly to the Weibull case. In this section, some real data case is provided and

the usefulness of adopting the gumbel distribution is explained.

Example 2

We provide a second example data case when the solid insulation is used for the step-

up breakdown voltage test; this case is exactly the same as introduced in Example 2 in

Hirose [6]. To make more understandable, we added the breakdown strength information

in Table 6 because the thickness of the insulation differs from each other. In the table, the
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final impulse voltage vk and the breakdown voltage Vk, and the corresponding strengths

for them, uk and Uk, (k = 1, · · · , 15), are shown. The very first impulse voltage is v1,0 = 45

and the step-up voltage is 1.5; the impulses applied three times at each stage (m = 3). All

the insulation is broken by the first impulse at the final stage.

As explained in Hirose [6], the insulation is broken at wave head or wave tail/peak.

We regard the former case as the complete data case using f(Vi(k)), and the latter as the

incomplete data case using F (vi(k)). Thus, the likelihood function for this case is used as

if likelihood functions (4) and (6) were mixed.

If we assume the gumbel distribution for maxima for the underlying distribution, α and

β are estimated to be α̂ = 746.85 and β̂ = 2875.9 in breakdown strength; the corresponding

log-likelihood value is −112.708. If we assume the normal distribution N(µ, σ2) for the

underlying distribution, the maximum log-likelihood function becomes −113.550, which

means that the gumbel distribution for maxima is superior to the normal distribution in

this real data case. This does not imply that we should use the gumbel distribution (for

maxima) in all the real data cases; the gumbel distribution (for minima) might be better

to some other real data cases.

Figure 5 shows the optimally fitted log-likelihood values in the Weibull distribution vs.

the shape parameter using the method shown in Hirose [7]. When the location parameter

is set to 950, then the log-likelihood is maximized to −112.712 with the shape parameter

value 4.437; the lower tail shape of this distribution is very similar to that in the gumbel

distribution for maxima, as shown in Figure 6.

(INSERT TABLE 6 ABOUT HERE.)

(INSERT FIGURES 5 AND 6 ABOUT HERE.)

6.2 Comparison to other distributions

In reliability distributions, we often use the normal, Weibull/Fréchet, gumbel, gamma,

log-normal, generalized extreme-value distributions, and etc. In this paper, we discussed

the case in the gumbel distribution. It would be helpful for the reader to compare the

results obtained in these reliability distributions. However, this attempt will provide a

bulky report. Thus, we intended to describe the major points in the gumbel distribution

here. Some other comparative research will be informative if the comparison is focused

on some points. For example, Hirose [8] focused the estimation problem for the lower
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percentile point; although other cases, e.g., the comparison for mean or median can also

be informative, we, however, want to wait for the future work.

7. Concluding Remarks

To estimate the impulse breakdown voltages accurately for non-self-restoring electrical

insulation, the new step-up test method is recommended when the underlying probability

distribution (of breakdown voltage level) is assumed to be a gumbel distribution models

for minima and maxima. This paper first recommends the use of the parameters of the

underlying probability distribution, e.g., the scale and location parameters. Second, it

is advantageous to use the new step-up method if the observed breakdown voltage itself

rather than the two-valued information of breakdown and non-breakdown is available. Us-

ing the new step-up method, the number of test specimens can be substantially reduced

comparing to that in the conventional step-up method for the estimate of location param-

eter. The optimal test procedure is obtained with larger d/σ. Comparing the maximized

log-likelihood value in the gumbel distribution to that in the normal distribution in some

case of the real step-up breakdown voltage test, a fit of the gumbel distribution to the data

case is found to be superior to that of the normal distribution, which suggests the useful-

ness of the gumbel distribution for the underlying distribution in the step-up breakdown

voltage test.
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Table 1. Simulated breakdown voltages by the step-up method.

testpiece number final breakdown stress final setup stress

1 2184 2650
2 2267 2600
3 2343 2950
4 2363 2600
5 2253 2400
6 2020 2950
7 2371 2450
8 1621 1900
9 2228 2600
10 1428 1450
11 2328 2350
12 2244 2350
13 2614 2700
14 2099 2100
15 2460 2550

The first stress is 500, and the step-up distance is 50.
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Table 2. bias(θ̂) and sue(θ̂) of the estimates in the conventional step-up method.
in the gumbel distribution for minima

d/σ n M bias(α̂) sue(α̂) bias(β̂) sue(β̂)

0.1 ∞ 0.78108 2.28838
0.1 100 1000 −0.00907 0.76075 −0.03178 2.28912
0.1 50 1000 −0.01881 0.76908 −0.05523 2.24918
0.1 20 1000 −0.03616 0.78273 −0.10755 2.24484
0.1 10 1000 −0.07674 0.82474 −0.24834 2.46076

0.2 ∞ 0.78515 1.83243
0.2 100 1000 −0.00925 0.78326 −0.02015 1.81696
0.2 50 1000 −0.01004 0.81858 −0.02927 1.86622
0.2 20 1000 −0.03910 0.80954 −0.08591 1.88819
0.2 10 1000 −0.07616 0.83693 −0.18548 1.98077

0.5 ∞ 0.81080 1.36242
0.5 100 1000 −0.00911 0.84407 −0.01344 1.40660
0.5 50 1000 −0.01022 0.81932 −0.02400 1.34834
0.5 20 1000 −0.04582 0.84200 −0.06837 1.40093
0.5 10 1000 −0.07339 0.83114 −0.11163 1.44712

1.0 ∞ 0.87491 1.20501
1.0 100 1000 −0.00672 0.91308 0.00234 1.20474
1.0 50 1000 −0.01550 0.86128 −0.02620 1.22938
1.0 20 997 −0.04550 0.94075 −0.05269 1.31424
1.0 10 948 −0.03478 1.13718 −0.04333 1.28479

M : number of estimates successfully computed.
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Table 3. bias(θ̂) and sue(θ̂) of the estimates in the new step-up method.
in the gumbel distribution for minima

d/σ n M bias(α̂) sue(α̂) bias(β̂) sue(β̂)

0.1 ∞ 0.61857 1.92692
0.1 100 1000 −0.00482 0.60450 −0.02113 1.94439
0.1 50 1000 −0.01109 0.61066 −0.03626 1.90500
0.1 20 1000 −0.02521 0.60552 −0.08206 1.83269
0.1 10 1000 −0.04578 0.65556 −0.17475 2.09476

0.2 ∞ 0.62217 1.59686
0.2 100 1000 −0.00793 0.61542 −0.01810 1.59925
0.2 50 1000 −0.00493 0.65684 −0.02092 1.63692
0.2 20 1000 −0.02494 0.64257 −0.06361 1.65923
0.2 10 1000 −0.04962 0.64038 −0.14599 1.69866

0.5 ∞ 0.63247 1.24633
0.5 100 1000 −0.00389 0.64174 −0.00886 1.27366
0.5 50 1000 −0.00531 0.65049 −0.02076 1.24978
0.5 20 1000 −0.02284 0.63684 −0.05088 1.29741
0.5 10 1000 −0.04930 0.63469 −0.09987 1.31836

1.0 ∞ 0.64769 1.07884
1.0 100 1000 −0.00632 0.68225 −0.00125 1.07434
1.0 50 1000 −0.00913 0.62327 −0.02393 1.10698
1.0 20 1000 −0.03342 0.66388 −0.04975 1.13774
1.0 10 1000 −0.04464 0.65500 −0.06826 1.11844

M : number of estimates successfully computed.
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Table 4. bias(θ̂) and sue(θ̂) of the estimates in the conventional step-up method.
in the gumbel distribution for maxima

d/σ n M bias(α̂) sue(α̂) bias(β̂) sue(β̂)

0.1 ∞ 0.94277 0.94376
0.1 100 1000 −0.00482 0.96621 −0.00073 1.00044
0.1 50 1000 −0.02445 0.96577 −0.01504 0.93948
0.1 20 1000 −0.04263 0.96512 −0.03470 0.93940
0.1 10 1000 −0.10052 0.94433 −0.07025 0.92815

0.2 ∞ 0.97543 0.87451
0.2 100 1000 −0.01020 0.98767 −0.00838 0.86429
0.2 50 1000 −0.02645 0.98914 −0.01891 0.87292
0.2 20 1000 −0.04736 0.95961 −0.02570 0.88096
0.2 10 1000 −0.09748 0.98808 −0.03859 0.82818

0.5 ∞ 0.97543 0.87451
0.5 100 1000 −0.01396 1.03059 −0.00458 0.86587
0.5 50 1000 −0.02779 1.08397 −0.00424 0.84150
0.5 20 1000 −0.05149 1.03684 −0.00150 0.83604
0.5 10 994 −0.10296 1.10395 −0.01017 0.85197

1.0 ∞ 1.15733 0.98549
1.0 100 1000 −0.01142 1.12439 −0.00036 0.95961
1.0 50 999 −0.02126 1.17396 0.00723 0.98912
1.0 20 985 −0.05156 1.22354 0.00586 1.02935
1.0 10 860 −0.04766 1.58684 −0.00239 0.98867

M : number of estimates successfully computed.
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Table 5. bias(θ̂) and sue(θ̂) of the estimates in the new step-up method.
in the gumbel distribution for maxima

d/σ n M bias(α̂) sue(α̂) bias(β̂) sue(β̂)

0.1 ∞ 0.66485 0.81898
0.1 100 1000 −0.00073 0.67262 0.00085 0.86412
0.1 50 1000 −0.01481 0.68021 −0.01028 0.80933
0.1 20 1000 −0.02550 0.69375 −0.02661 0.84138
0.1 10 1000 −0.05947 0.68646 −0.05095 0.82778

0.2 ∞ 0.67901 0.80282
0.2 100 1000 −0.00279 0.67430 −0.00519 0.78821
0.2 50 1000 −0.01643 0.68647 −0.01608 0.79576
0.2 20 1000 −0.03195 0.70047 −0.02449 0.83208
0.2 10 1000 −0.05995 0.69577 −0.03468 0.78625

0.5 ∞ 0.70134 0.81408
0.5 100 1000 −0.00696 0.68692 −0.00802 0.82349
0.5 50 1000 −0.01620 0.73055 −0.00653 0.78306
0.5 20 1000 −0.02975 0.69985 −0.01208 0.79197
0.5 10 1000 −0.06508 0.73575 −0.02998 0.80803

1.0 ∞ 0.72634 0.84791
1.0 100 1000 −0.00556 0.70940 −0.00189 0.81756
1.0 50 1000 −0.01045 0.73341 −0.00364 0.86080
1.0 20 1000 −0.03283 0.74440 −0.00924 0.85165
1.0 10 1000 −0.07689 0.75680 −0.02272 0.85401

M : number of estimates successfully computed.
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Table 6. Actual step-up test data case in the solid electrical insulation.

testpiece final impulse final impulse final breakdown final breakdown breakdown
number voltage strength voltage strength point

1 139.5 1647.28 138.8 1639.01 head
2 135.0 1725.98 135.0 1725.98 tail/peak
3 127.5 1596.82 123.8 1550.48 head
4 148.5 2234.24 135.1 2032.63 head
5 151.5 1957.32 142.8 1844.92 head
6 148.5 1878.81 142.6 1804.16 head
7 150.0 1980.18 131.1 1730.68 head
8 121.5 1678.08 121.5 1678.08 tail/peak
9 142.5 1766.56 142.5 1766.56 tail/peak
10 157.5 2174.88 157.5 2174.88 tail/peak
11 148.5 2074.78 148.5 2074.78 tail/peak
12 145.5 1963.90 145.5 1963.90 tail/peak
13 160.5 2383.86 160.5 2383.86 tail/peak
14 123.0 1698.78 119.2 1646.30 head
15 141.0 1841.36 141.0 1841.36 tail/peak
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