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Abstract

Pipe walls in sewer systems are prone to be damaged due to aging, traffic
and chemical reactions, through which inflow such as rainwater and ground-
water seeps into pipe systems. Regional city government reports state that
this inflow amounts to approximately 30% of the total flow. In addition
to the inflow of groundwater into the sewer pipes, outflow from damaged
systems also occurs, contaminating the surrounding environment.

Conventional inspection of a sewer pipe system is carried out using a
cable-tethered robot with an onboard video camera system. This robot is
connected to the outside of sewer system by a cable. The cable is used
for energy supply, transmission of commands from a human operator to the
device, data transmission back to an operator, a life-line in case the device
gets stuck in the pipe, and measuring the distance traveled. An operator
remotely controls the movement of the robot and the video system. By this
video-supported visual inspection, any notable damages or abnormalities are
recorded in video stream. The reliability of this system depends on the
experience of an operator. The system is also prone to human error, and tends
to be time consuming and expensive. Consequently, effective autonomous
robot capable of online identification and extraction of objects of interest
such as cracks from sensory signals is of immediate concern.

Based on the above, we design a prototype autonomous mobile robot,
KANTARO, for inspecting sewer pipes. It is able to move autonomously in
200-300mm diameter sewer pipes, to smoothly turn 90 degrees at a junction,
and to go down a step. KANTARO carries all required resources such as
a control unit, a camera, a 2D laser and an IR sensor. Damages or abnor-
malities in sewer pipes are detected based on recorded sensory data. In this
thesis, I focus on an automated fault detection system, navigation system,
and stereo vision system for autonomous inspection robots such as KAN-
TARO.

Robust detection of cracks and other faults in sewer pipes based on sen-
sory data is another important challenge. However, all related previous works
focused on specific types of faults in pipes, hence were unable to detect mul-
tiple types of faults. Accordingly, a truly automated fault detection system
is currently not available in the real world. I propose a method for detecting
faulty areas based on images, and an automated intelligent system designed
to facilitate diagnosis of faulty areas in a sewer pipes system. The system
utilizes image analysis and efficient techniques for providing the location and
the number of faults in a sewer pipe system. In contrast to the conventional



manual system, the proposed system can automatically detect faults and
move in real time. Its detection performance is 100%, when the false positive
rate is 34%. This ratio is said to be acceptable for sewer inspection, and the
reduction of time and cost is also realized.

Another central issue in developing an autonomous sewer robot is its
navigation. Navigation of an autonomous sewer robot based on a map of
sewer pipe system is not applicable as it is, because large slips in sewer
pipes tend to produce erroneous odometry information, causing unreliable
localization. It is to be noted that data from Global Positioning System
(GPS) are not available in underground sewer pipe systems. Accordingly,
an autonomous robot has to estimate the current position based on local
features.

Navigation of an autonomous sewer robot is composed of the following
tasks. Firstly, estimation of the current position based on salient local fea-
tures such as manholes, inlets and pipe joints. Secondly, finding a path.
Thirdly, following the path in the real sewer pipe system. Resulting maps
of the sewer pipe system describe pipes, manholes and other local features,
which contribute to localization. I propose a method for navigation of an
autonomous inspection robot based on fusion of single camera images and
IR sensor data. It is capable of self localization, which cannot be done by the
conventional methods. We also conduct experiments for sewer robot navi-
gation in a dry sewer test field at FAIS-RDSO, Kitakyushu. They succeed
in detecting local features and show high performance of self localization
by using sensory information. In additional to using a single camera in the
above proposed methods, I also use a stereo camera to see the performance
of stereo vision for navigation, which is described as follows.

Stereo matching is an essential issue in computer vision. Recently, many
stereo matching algorithms based on segmentation, graph cuts and so on
have been proposed. Because the disparities change continuously in sewer
environment, these methods are not applicable to sewer systems and are
computationally expensive. I propose a cooperative stereo matching algo-
rithm using Sum of Squared Differences (SSD) and Linear Computation (LC)
measures, which can be implemented in a real-time system. It is a robust
algorithm for sewer inspection in robot vision. The algorithm produces an
easy-to-understand distance map of the sewer, emphasizing the feature re-
gion. The computational time by this algorithm is about 1/5 compared with
that by other algorithms such as the conventional SSD. In order to reduce
the computational time, I also propose a fast stereo matching algorithm us-
ing interpolation. The computational time by the proposed algorithm is only
1/20 of those by the conventional algorithms such as the SSD. Hence it is
suitable for our real-time sewer vision system.

ii



The above stereo matching algorithm is utilized for proposing another
method for navigation which is based on stereo camera images and laser
scanner data. Experimental results of self localization show high perfor-
mance in providing the appropriate distance. We also design a new mobile
laser scanner for KANTARO. The locations of landmarks in sewer pipe sys-
tem are estimated successfully based on measurements. The laser scanner
is fast enough to continuously scan relevant pipe sections in the presence of
landmarks, while the KANTARO moves at ordinary inspection speed of less
than 15cm/s. Also moving the KANTARO in our sewer test field by using
the proposed method is done successfully.
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Chapter 1

Introduction

Pipe walls in sewer systems are prone to be damaged due to aging, traffic and
chemical reactions, through which inflow such as rainwater and groundwater
seeps into pipe systems. Regional city government reports state that this
inflow amounts to approximately 30% of the total flow. In addition to the
inflow of groundwater into the sewer pipes, outflow from damaged systems
also occurs, contaminating the surrounding environment.

Conventional inspection of a sewer pipe system is carried out using a
cable-tethered robot with an onboard video camera system. This robot is
connected to the outside of sewer system by a cable. The cable is used
for energy supply, transmission of commands from a human operator to the
device, data transmission back to an operator, a life-line in case the device
gets stuck in the pipe, and measuring the distance traveled. An operator
remotely controls the movement of the robot and the video system. By this
video-supported visual inspection, any notable damages or abnormalities are
recorded in video stream. The reliability of this system depends on the
experience of an operator. The system is also prone to human error, and tends
to be time consuming and expensive. Consequently, effective autonomous
robot capable of online identification and extraction of objects of interest
such as cracks from sensory signals is of immediate concern.

The purpose of this thesis is to elucidate the systems for detecting the
faults automatically and navigation system for autonomous sewer inspection
robot. The proposed systems can solve the “real-world” problems in civil
robots, such as, support the operator and reduce the human error, tends to
time and cost reduction.

In chapter 2, I will summarize the sewer systems and conventional sewer
robots and sewer sensors. Also, conventional inspection methods and their
difficulties will discusse here. An berif introduction to a prototype au-
tonomous mobile robot, KANTARO, will located at the end. In chapter
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3, I will introduce a method for detecting faulty areas based on images, and
propose an automated intelligent system designed to facilitate diagnosis of
faulty areas in a sewer pipes system. The experimental results and conclu-
sions of proposed method is explained at the end of this chapter.

In chapter 4, a navigation method based on single camera and IR sensors
is described. The proposed method is capable of self localization, which
cannot be done by conventional methods. Experimental results shows a high
performance in a dry sewer test field. To see the perfomance of stereo vision,
I also proposed a methed for navigation by using a stereo camera, which is
described at chapter 5.

In chapter 5, first, I will explain two differents stereo matching algorithms.
First stereo matching algorithm is utilized for proposing another method for
navigation which is based on stereo camera images and laser scanner data.
The proposed navigation method is explained in section 5.5.

In chapter 6, I will describe the conclusions from the results of these
proposed methods.
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Chapter 2

Overview of sewer systems and
inspection systems

2.1 Introduction

The usage of tethered, remotely controlled robot platforms in sewer pipes
has become widely accepted. Research and development in engineering have
moved the original application field of merely visual inspection to manipula-
tive tasks such as the actual repair of pipe sections, installation of cable, e.g.
for communication.

Despite all engineering advances in the mechanical design of the plat-
forms and improvements of the video equipment, these efforts are directed
to increase the quality of the data provided to the human operator. Yet the
potential for automatic processing and data analysis in combination with
hardware platform, as well as the application of IT technology for the devel-
opment of an integrated sewer information system is neglected.

In this chapter, we being with the introduction of the legal framework
together with the present inspection method, in which environment sewer
inspection is embedded. Further, we will point out critical issues involved
with the present inspection method.

Sewer systems are prone to damages due to aging, traffic, geological
change, to name a few. Due to these damages, the groundwater is increas-
ingly contaminated. Furthermore, heavy rainfall events may lead to inroad
of the systems, resulting in overflow. In the case of separate sewer system as
widely present in Japan (Table 2.1), this results in the undesired mixture of
wastewater and rainwater. Thus, in order to ensure an optimal functioning
sewer system, extensive inspection is necessary. Preceding repair are exten-
sive qualified diagnostic measurement. Tethered mobile robots used for visual
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inspection in municipal and industrial sewer networks are one example. Be-
yond this classic task of application of the tethered robot as an extended tool
of the human operator, new fields have emerged. Due to ongoing research
and development of the mechanical design, tethered robots are now able to
perform repair tasks with varying degree of complexity. Another emerging
fields of application are the installation of communication cable in the sew-
ersystem as well as the encasement of inner pipewalls during renovation or
repair 1.

Table 2.1: Division of sewer system.
separate sewer separate sewer combined sewer

(sanitary sewer) (rainwater)
73% 5% 22%

In Japan, matters regarding sewerpipes are regulated by the Sewage Wa-
ter Law. The municipal governments as owners of the facilities are responsi-
ble for installation and maintenance of the public sewersystem. In practice,
authorities such as the construction bureau will authorize local companies to
conduct inspections and after deciding upon the necessity also outsource the
repair.

Although inspection cycles are clearly defined and also governed in the
The sewage system book, in reality, inspections are done after the occurrence
of noticeable damages. Due to limitations in budget and equipment, the given
inspection intervals are not strictly adhered to. This can also be clearly seen
by comparison of actual inspected distance, 77km (Table 2.2) with total
length of applicable sewer pipes, 3,220,053m (Table 2.3), for the financial
year 2000. This gives us a ration of 0.0017%.

Table 2.2: Inspected sewer length per year at Kitakyushu city.
Year 1996 1997 1998 1999 2000 2001 2002

Length (m) 46,374 45,103 59,786 52,922 53,956 53,019 77,711

We have to distinguish between two different types of inspection. For
sewerpipe systems with an inner diameter larger than 800mm, human in-
spection is possible and conducted. The above mentioned tethered robot
inspection platforms are used for pipes with a diameter less than 800mm.

1Most of the materials presented in this chapter have been selected from the mate-
rial provided by“Steinbeis Japan Inc., Kitakyushu Foundation for the Advancement on
Industry, Science and Technology,”March 2002.
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Table 2.3: Present condition of sewer pipe length (diameter < 800mm) at
Kitakyushu city, (financial year 2000).

Diameter (mm) Length (m)
0 18,692

150 210,424
200 2,074,502
250 329,528
300 144,505
350 81,914
380 18,099
400 64,869
450 61,921
480 102
500 65,141
600 85,373
700 64,983

Sum (m) 3,220,053

Both inspection procedures common is the acquisition of damages by the
human inspector, either on loci or by means of video equipment.

Based on the above information, manual inspection is done at maxi-
mum 77km/year which would take more than 40 years to complete all of
the 3220km of pipes in Kitakyushu. In additional, reliability of the current
inspection method is depends on experience of an operator and it is also
prone to human error. Accordingly, an effective autonomous robot capable
of online identification and extraction of objects of interest such as cracks
from sensory signals is of immediate concern.

2.2 Sewer pipe system

A property owner’s sewer pipes are called service laterals and are connected
to larger local main and regional trunk lines. Service laterals run from the
connection at the home to the connection with the public sewer (including the
area under the street). These laterals are the responsibility of the property
owner and must be maintained by the property owner. Many city agencies
have adopted ordinances requiring maintenance of service laterals. Operation
and maintenance of local and regional sewer lines are the responsibility of
the city sewer/public works departments and public sewer districts [1].

5



Figure 2.1: Sewer pipe system in residental area[2].

2.3 Conventional sewer robots

PIRAT

PIRAT (Pipe Inspection Real-Time Assessment Technique) is a semi au-
tonomous tethered robot for the quantitative and automatic assessment of
sewer condition [3]. The PIRAT sewer inspection system has been developed
between 1993 and 1996 within a joint project of the Manufacturing Systems
and Automation Division of Australian CSIRO Manufacturing Science and
Technology and Melbourne Water. Just like a conventional sewer inspection
device, PIRAT (Fig. 2.2) is deployed to a sewer, and tele-operated from
a surveillance unit via a cable by a human operator. The maximum cable
length of 250m gives PIRAT a fair operating range. The added value of the
PIRAT system is its ability to perform automatic evaluation of its sensory
data.

PIRAT’s innovative instrument system contains a video camera and a
laser scanner. For flooded sewers, the latter can be substituted by a sonar
scanner, but at the price of less resolution and inspection speed. In 600mm
sewer pipes and at PIRAT’s usual inspection speed, the laser scanner pro-
duced a resolution of about 1.5mm radially and 4 mm axially and circumfer-
entially.

The sensory data are evaluated by means of PIRAT’s interpretation sys-
tem, which is an expert system that runs on a Sun workstation in the mobile
surveillance unit. From both types of scanner data, the interpretation sys-
tem generated in a first step a three-dimensional model of the scanned sewer
pipe section. In a second step, the interpretation system uses techniques
from Artificial Intelligence to detect and classify damages on the basis of the
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Figure 2.2: The automated video inspection platform, PIRAT[4].

three-dimensional model data. The result is a sewer condition assessment
report that is readable for the human operator.

KARO

KARO (Kanalroboter - German for sewer robot) is an experimental semi-
autonomous carrier for sewer inspection sensory equipment [5],[6]. It was
developed by a group of research institutes and some industrial partners
in Germany. The project was partly funded by the German Ministry for
Research and Education (BMBF).

The monolithic KARO robot prototype (see Fig. 2.3) resembles much
a standard non-autonomous sewer inspection robot, and it is tethered via
a cable to a surveillance unit. Using inclinometers and an on-board control
program, KARO is able to automatically correct for tilt in its pose and wheel
slippage when driving inside a sewer pipe, thus freeing the human operator
from this crucial control task.

The main innovation of KARO is its wide range of novel inspection and
navigation sensors, namely, a microwave sensor and a 3D optical sensor,
complementing the standard video camera and some ultrasound transducers.
The method for 3D measurement of hollow spaces using axial symmetric
structured infrared light has been patented. It is applied for measuring pipe
deformations, larger pipe cracks and obstacles inside the pipe, the latter being
detected early by the US transducers. The microwave sensors are aimed at
detecting leakages.

KARO has been continued as an internal research project within Fraun-
hofer IITB at least until 2000. Most recent research deals with fuzzy methods
for data fusion of inspection sensors.
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Figure 2.3: The multi sensorial sewer inspection robot prototype, KARO.

KURT

The development of the experimental sewer robot test platform KURT (Kanal-
Untersuchungs-Roboter-Testplattform) started at the former GMD - now
Fraunhofer - institute AIS in 1995 [7]. KURT is a six-wheeled autonomous
un-tethered robot of approximate dimensions 30× 45× 30cm.

KURT version 1 has been successfully employed for navigating autonomously
in a dry sewer test net at the premises of the Fraunhofer campus in Sankt
Augustin. To achieve this, the robot is provided with a map of the test net,
representing the topology of the 80m of sewer pipes and the nine manholes
in between, with a start position (number of a manhole) and a goal manhole.
The robot can determine the sequence of manholes or pipe junction types,
respectively that it should pass on its path from start to goal. Since all pipe
junctions inside the sewer test net are ground level connections, the robot
is mechanically able to perform turns at such junctions. With its pivoted
ultrasound sensor, KURT1 is able to classify the type of a pipe junction, i.e.
whether it is L-shaped, X-shaped, or T-shaped. A special patented method
for navigation under uncertainty enables KURT1 to detect and correct errors
due to false classification or due to errors while performing turns at pipe junc-
tions [8]. This work has been complemented by a method for probabilistic
mapping of objects, like landmarks in the sewer [9].

Since its very first version, the KURT type robot platform has been fur-
ther developed for indoor applications. The current version KURT2 can be
equipped with a variety of sensors. The standard configuration includes in-
clinometers and sensors for odometry, either infrared or ultrasound distance
transducers for obstacle detection, and optional bumpers. Fig. 2.4 shows a
KURT2 system with a custom mounted 2D laser distance scanner and a note-
book computer “Toughbook” as CPU. Alternatively, an industry standard
PC/104+ CPU can be provided.
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Figure 2.4: The commercial research robot platform, KURT2.

MAKRO

MAKRO (Mehrsegmentiger Autonomer KanalROboter/multi-segmented au-
tonomous sewer robot) is the prototype of a fully autonomous, un-tethered,
self-steering articulated robot platform (Fig. 2.5). It is designed for au-
tonomous navigation in roughly cleaned sewer pipes within a diameter range
of 300 to 600mm at dry weather conditions.

Figure 2.5: Automated inspection platform, MAKRO.

MAKRO’s case design, consisting of six segments connected by five motor-
driven active joints, allows for simultaneously climbing a step and turning,
e.g. at a junction consisting of a 600mm pipe and a branching 300mm pipe
with equal top levels. MAKRO’s autonomy and its kinematic abilities extend
its potential mission range enormously, compared to conventional inspection
equipment that is limited by the cable and poor kinematics [10]. MAKRO
carries all the needed resources on-board. Standard NiCd batteries provide
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the power for its 21 motors, the sensors, and the electronics, including an
industry standard PC104 computer system and seven micro controllers [11],
allowing for an autonomous uptime of about two hours.

The robot MAKRO has been developed by a German group of two re-
search institutes and two industrial partners. The MAKRO project was
funded partly by the German Ministry for Research and Education (BMBF)
between 1997 and 2000. Since 2001, the MAKRO project is being continued
as internal projects at Fraunhofer AIS and FZI [12].

2.4 Sewer sensors

In this section, we review innovative sensors and sensor interpretation meth-
ods for sewer maintenance. The range of the depicted sensors ranges from
widely applicable sensors such as compasses for navigation, to general usage
sensor such as laser scanners up to especially for the application in sewer
system developed ground penetrating sensors. Besides sensor systems, inno-
vative methods of sewer maintenance, states of sewer pipes are of interest.
The fusion of these innovative sensors and application methods will ensure
that not only exhibited damage in the pipe in a narrow sense like a leak or
crack or a blockage, but are potential heralds of a growing damage, like a
bent or twisted pipe segment are successfully identified.

Laser scanners

Laser scanners are a technology that is in broad use in autonomous robots
in general. Originally, they were developed as security sensors for surveying
free space in production processes (such as protected areas around dangerous
machines). For indoor applications, they are available in many different
varieties at a highly developed technological level. The general principle is to
measure by run-time of a laser beam the distance from a laser source to target
objects. In scanners, the laser beam is deflected at different angles, measuring
distances along a plane or half-plane, depending on the rotation and form of
the deflecting mirror. The accuracy of the individual measurements is in the
order of 1mm, depending on the measuring device and the distance.

The application principle for sewer inspection is to mount the scanner
such that it scans radially the inner side of a pipe wall, see Fig. 2.6. If
the inspection device moves along the pipe while measuring, the laser beam
measures along a spiral on the pipe inside, where the resolution of the spiral
depends on the turn rate of the reflection mirror and the speed of horizontal
motion of the inspection device, typical turn rates being 1-2 turns per second.
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As a result, a model of the pipe geometry can be directly acquired, which
makes possible to detect deformations within the accuracy and resolution of
the measurement principle.

Recently, prototypes of such sewer laser scanners have become available
on the market. We mention two such systems here. Due to the precision
and simplicity of the measurement principle and due to the simplicity of
data interpretation, we expect laser scanners to become important sensors
on fully autonomous or semi-autonomous sewer inspection robots.

Figure 2.6: OMC pipe profiler (City University of London).
Measured distances (red) overlayed with the circle (blue) that would

represent the ideal pipe inside (profile image by Hytec).

-Hytec

The company Hytec (Montpellier, France) has developed a rotating laser,
which performs exact measurement of the pipe’s shape. It operates in pipelines
of with 200 to 1000mm. The software for deflection calculation is included;
the measured pipe profile can be viewed in real time on a PC color monitor.
The VSLPC laser systems comes as integrated with a color TV camera.

-Optimess

The company Optimess (Gera, Germany) offers the laser scanner OptiScan,
originally developed by MFPA in Weimar, Germany [13]. The variant Op-
tiScan200 (Fig. 2.7) operates in pipes from 200mm, at a measuring distance
of 5-100cm and an accuracy of ± 1mm (according to vendor). Again, the
software for calculating and visualizing the measured profile are available.
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Figure 2.7: OptiScan

Radar-like sensors

Ground Penetrating Radar (GPR) systems are in general heavy and power
consuming. The antenna systems are large with respect to the dimension of
a pipe robot.

A first use of GPR with a sewer system was announced by the developers
of the KARO. They developed a GPR small enough for a sewer system.
They also used a micro wave device to inspect anomalies behind the pipe
walls. They report that it is possible to distinguish from type of sources
of different anomalies based on bubbles of air or water, pipe couplings and
house connections.

Commercially available system are presented by Oyo and Burn Am. In
the case of Oyo, no data in regard to the applicability of this tool is available
(i.e. do the number and severity of hidden cavities balance the expense of
the radar).

In contrast, Burn Am has developed the Ground Penetrating Radar Sen-
sor to marketable stage. The present model is integrated to a tethered,
remotely controlled platform, Fig. 2.8.

Figure 2.8: Ground penetrating radar by Burn Am.
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Chemical sensors

An analysis of chemical and physical parameters in the sewage as well as
in the atmosphere in sewers may yield information about corroding and
poisonous substances in the sewage as well as damages in the pipe system
(ground water leaking in). Sensors for measuring isolated basic parameters
of that kind (temperature, acidity) are widely available. They can be made
small. Their energy requirements are normally negligible. Their handling
may be non-trivial for a fully autonomous robot, as sensors measuring in
fluids (such as sensors for the acidity level) can function for short periods of
time only, i.e., they need to be dipped actively into the sewage. We report
here on some sensor prototypes aimed at sensing a wider range of chemicals.

-“Nose on a chip”

The “nose on a chip”, which could be incorporated into household gas ap-
pliances, consists of an array of tiny sensors on one integrated circuit and
electronics on another. By selectively coating the micro cantilever arrays
with appropriate chemicals, the chip can be customized to detect virtually
any chemical or biological species. Developers say a single chip could detect
thousands of chemicals.

-KAMINA

KAMINA is a micro system for detecting and characterization of corrosive
and process gas or smell in the atmosphere. The“ Karlsruher Mikronase
(Karlsruhe micro nose)” is constructed as a micro chip array made out of
SnO2, WO3 a.o. based on measuring the electric conductivity of each ar-
ray element. In a cycle once per second, gases like CO, NO2, NH3, H2S or
organic gas and steam are detectable and quantifiable. The on-line evalua-
tion is based on modern pattern recognition techniques and is customizable
dependent on the purpose.

More sensors for navigation and motion control

Autonomous sewer robots must include sensors for their own control, naviga-
tion and localization, not only those for sewer state assessment and damage
detection. These sensors may overlap with the inspection sensors (e.g., a
camera may be used for both navigation and damage detection). Localiza-
tion is an issue not only for the proper robot control, so that the robot knows
where it is, but also for inspection, as detected damages have to be reported
with their location. Sensors in this direction are available in great varieties,
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and they are used as standard sensors in autonomous and semi-autonomous
robots in other areas than sewer robotics. Note that sewer robots have the
requirements in addition driver-less indoor transportation vehicles that their
sensors be physically small and energy efficient.

-Compass

For navigation purposes it is helpful to know the northern direction. Accord-
ingly, a compass may be of help. Electronic compasses are widely available
on the market. Note that compass readings may be noisy in a sewer robot
due to the many objects of city infrastructure that can typically be found
close to sewers (steel constructions, cables, etc.). Therefore, among available
electronic compasses, only those should be used on a sewer robot that report
possible disturbances of their readings.

-Inertial sensors

• Inclination sensors Essential for helping to control tilt in fully au-
tonomous or semiautonomous platforms. They are in use, e.g., in the
KURT, MAKRO and KARO systems reported elsewhere in this thesis.
They are widely available on the market, fitting the space and energy
requirements of a sewer robot.

• Accelerometers Essential for helping the localization and control of
fully autonomous robots.

• Gyroscopes Essential for measuring turns in autonomous robots. Widely
available, but highly precise sensors are costly and may be large in
build. All gyroscopes suffer from a systematical error of drift over time
caused by the earth rotation.

2.5 Conventional inspection methods

Over the past ten years, Closed Circuit Television (CCTV) is the most com-
monly used internal sewer pipe inspection method. This method is carried
out using a cable-tethered robot with an onboard video camera system. An
operator remotely controls the movement of the robot and the video system
(Fig. 2.9). By this video-supported visual inspection, any notable damages
or abnormalities are recorded in video stream(Fig. 2.10). The reliability of
this system depends on the experience of an operator.
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Figure 2.9: Diagram of visual inspection.

Figure 2.10: Operator with video monitor.

Recently, new and more accurate techniques have been fielded to con-
duct internal sewer pipe assessments. The methods used for inspecting pipe
condition, fall into three broad categories:

• Inspection of inner pipe surface

• Inspection of pipe structure and bedding conditions

• Inspection of the pipe bedding

The first category, with which most practising engineers are most familiar,
included CCTV (conventional, light line and computer assisted), laser scan-
ning and ultrasound techniques. The second and third categories include
micro deflection, impact echo and ground-penetrating techniques to assess
the conditions of the pipe outer layer and surrounding soil. The cost and
accuracy of these methods vary widely and some methods are only justified
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in very specific situations where other methods will not produce an accept-
able quality of information. Other inspection methods may be combined
with CCTV inspection to verify the pipe condition assessment [14]. These
methods may include soils testing, physical and chemical testing of removed
pipe segments [15].

Methods of inspecting the inner sewer wall surface

-CCTV inspection systems

Standard pipe inspection systems are based on Closed Circuit Television
(CCTV) cameras in a large range of application fields such as waste pipes and
drains. The CCTV method consists of a mobile, remotelyoperated platform
usually equipped with a colour, high-resolution video camera and a lighting
system. The camera platform is connected via a multi-core cable to a remote
inspection station with video recording facilities situated over ground. An
engineer then assesses the recorded images off-line.

There are two basic types of the CCTV system. Each uses a television
camera in conjunction with a video monitor, video cassette recorders and
possibly other recording devices. In one case the inspection is performed
using a stationary or zoom camera mounted at a manhole so that it looks
into the sewer, while in the other a mobile, robotic system is placed within
the sewer itself. Either form of CCTV inspection may miss certain types of
defects, especially those that are hidden from the camera by obstructions as
it looks down the sewer. Slight deformations of the sewer may go unnoticed,
and any defects hidden beneath water inside the sewer will definitely not be
found.

This is a subjective and time-consuming task that considerably increases
the inspection costs. Moreover, only gross anomalies are evident to the hu-
man eye, which reduces the detection of faults at early stages. Another
drawback associated with those systems in these particular environments is
the lack of visibility inside the pipes and the poor quality of the acquired im-
ages that hinders a complete assessment of the pipe condition and sometimes
even the detection of large defects.

-Stationary CCTV systems

Stationary video cameras mounted at a manhole are limited with respect to
what they can see. Defects that are close to the manhole will be found, but
the farther into the sewer a defect is, the harder it will be to identify and
evaluate. Defects beyond the range of the camera would be missed entirely
unless they cause secondary effects that can be identified at the manhole
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(such as changes in water flow within the pipe between two manholes). One
vendor of this technology suggests that the equipment be used as part of a
screening process to determine which sewer sections should be completely
examined by mobile CCTV systems. Stationary CCTV’s usefulness in this
respect will depend on whether the damage that can be detected by this type
of system near a manhole in a sewer line is representative of that throughout
the entire section of sewer line.

A survey of defects by IRC [16] indicates that, based on structural factors
alone, stationary CCTV can readily be used to inspect vitrified clay sewers.
In brick sewers the most efficient use of stationary CCTV would be to restrict
it to inspecting sewer lines that are shorter than 50 metres in length, although
a slightly greater factor of safety in the inspections would be produced by
using the technique only on pipe sections that are less than 40 metres in
length. While the results suggest that concrete pipes may be inspected in
the same manner as vitrified clay pipes, too few concrete pipes were examined
for a definitive conclusion to be reached.

-Mobile CCTV systems

Mobile CCTV systems are the most common means of inspecting sewer
lines.This type of CCTV system uses a camera mounted on a robot that
enters the sewer system. The camera generally looks forward as the robot
system moves along the sewer axis, allowing the operator to examine and
evaluate the entire length between a pair of manholes. It is possible to mod-
ify this type of CCTV system to overcome many of the limitations of CCTV
inspection discussed above. Some CCTV systems have“pan and tilt”cam-
eras attached to the robot, which can find defects hidden from a forward
looking camera behind connections and other obstructions within the sewer
line. Sonar or ultrasound systems are often attached to robots to examine
the sewer below the waterline. It is also possible to obtain CCTV equipment
with a“ light line”attachment to assist in quantifying smaller sewer defor-
mations. This system projects a line of light around the circumference of the
sewer being examined in order to assist in assessing the shape of the sewer.

Inspecting within the pipe wall and the bedding condition

Although CCTV, laser and ultrasonic systems provide images of the inside
surface of a pipe wall, they do not indicate what is happening within the pipe
wall or behind it. While in some cases the observed damage to a pipe is due
to internal problems such as erosion, in many others the damage is caused by
external forces. The following inspection techniques allow the sewer owner
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to examine the overall condition of an entire pipe wall, the soil behind a pipe
or the pipe-soil system. Their ability to look beyond a pipe wall surface gives
sewer owners opportunities to evaluate sewer condition in ways that are not
possible with CCTV and similar techniques.

-Wall micro-deflections and natural frequency of vibration

Measurements of wall micro-deflections and the natural frequencies of vibra-
tion of sewer lines are being developed specifically as a means of diagnosing
brick sewer condition. The methods give information on the overall mechan-
ical condition of the sewer line, rather than identifying specific defects.

A micro deflection in a pipe wall surface is created by applying pressure
to the inside surface of the wall to very slightly deform it. In this case the
intent is to measure the change in position versus the increase in pressure
applied to the wall in order to indicate how well the grout between the bricks
has been applied or whether the walls of a concrete or brick pipe have been
damaged. It would be expected that a well grouted brick wall would expand
continuously (although not equally) in all directions as the pressure increases,
provided the pressure is below that which would damage the grouting. A
similar, equal increase would be seen in an undamaged concrete or vitrified
clay pipe.

Increasing in micro deflection in one direction while decreasing in another
or a sudden change in the slope of a graph of applied force versus micro
deflection would suggest that the wall was damaged. The major difficulty
with this technique is determining the maximum safe pressure for use on a
brick wall so that the inspection method does not damage it. This pressure
will depend on the pre-existing condition of the sewer. While these pressures
can be readily calculated for an undamaged sewer, the accuracy of such
calculations is dependent on knowledge of the strength of the mortar or
concrete at any given point in the sewer. This will vary depending on the
age and condition of each sewer section. Care must therefore be taken to
avoid damaging sewer sections that have below normal strength but are still
able to function properly. This safety consideration is not as important
for concrete pipes, where the strength of the pipe material is more uniform
around the pipe circumference. Micro delfections are restricted in use to
rigid pipes where an entire pipe wall will be deflected by the applied force.
Plastics such as PVC and HDPE can not be inspected using this method as
local deformation of the pipe wall would tend to provide a false indication
of the pipe condition. The restriction of the technique to materials such as
brick, concrete, metal and vitrified clay means that it is only sensitive to the
wall condition, rather than that of the surrounding bedding. Measuring the
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natural frequency of vibration also gives information about the mechanical
behaviour of a pipe wall, but in this case the process involves vibrating the
wall at a range of frequencies and determining which frequency gives the
largest vibrations (the natural frequencies). A section of good wall would be
expected to have certain characteristic natural frequencies, while deviations
from those frequencies would indicate that the wall or surrounding bedding
was deficient in some manner. The application of this technique depends on
the development of an understanding of exactly how the natural frequencies
of different types of pipe wall would be expected to change with increasing
damage. However, other factors can also affect the results of the natural
frequency measurement, including changes in bedding material or quality,
the amount of water in the pipe and the height of ground water around the
pipe. Considerable research is needed to determine if these effects can be
separated from those produced by actual damage to the pipe wall.

-Impact echo/spectral analysis of surface waves

These closely related techniques they have been successfully applied to the
inspection of large, empty concrete pipes and large brick water lines. The
SEKISUI Company has made a sewer inspection robot with a hammer and
microphone. The apparatus consists of a source of controlled impacts, such
as a falling weight or a large pneumatic hammer and one or more geo phones
that are mounted against the wall of the pipeline. Low frequency surface
waves are produced when the wall of the pipe is struck by the hammer or
weight. These waves are then detected by the geo phones. The major dif-
ference between the two techniques is that impact echo generally looks only
at the actual waveform produced by the impact, while spectral analysis of
surface waves (SASW) uses more geo phones and separates the waves into
different frequency components [17]. These different components travel at
different speeds and penetrate to different depths in the soil beyond the
pipe, allowing more information to be gathered about the condition of the
pipe and surrounding soil.

Although the two techniques are similar, the use of the additional sensors
and analysis in SASW means that it is possible to easily separate effects
produced by soil conditions from those produced by problems in the pipe wall.
SASW therefore is the most flexible of all the techniques discussed in this
section since it is capable of investigating both pipe wall and soil condition
at the same time. A drawback of Impact Echo and SASW inspection is that
they are currently only available for manual use in large diameter tunnels
that are easily accessible by human operators. Both techniques need to be
automated to increase their inspection rate and allow deployment in smaller
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diameter pipelines. A second drawback is that cleaning of the pipe walls is
likely to be required before they can be used.

Detecting conditions behind the pipe wall

Although some of the inspection techniques described previously can give
information about conditions behind a pipe wall, their primary use is likely
to be in determining the structural soundness of the wall itself. By contrast,
ground penetrating radar may occasionally give information about delami-
nations in concrete sewers, but its major use in sewer lines is in detected
potential problems behind the sewer walls.

-Ground penetrating radar

Ground Penetrating Radar (GPR) is a geophysical method that has been
developed over the past thirty years for shallow, high-resolution, subsurface
investigations of the earth. GPR uses high frequency pulsed electromagnetic
waves (generally 10 MHz to 1,000 MHz) to acquire subsurface information.
Energy is propagated downward into the ground and is reflected back to
the surface from boundaries at which there are electrical property contrasts,
Fig. 2.11 shows a diagram of the process. GPR is a method that is com-
monly used for environmental, engineering, archaeological, and other shallow
investigations.

Figure 2.11: Ground penetrating radar schema.

Radar is well known for its ability to detect airplanes or other flying ob-
jects, but with significant adaptations it can also penetrate rocks, sand and
other solid materials to detect buried objects and voids. GPR is widely used
in locating lost utilities, environmental site characterization and monitoring,
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agriculture, archaeological and forensic investigation, unexploded ordnance
and land mine detection, groundwater, pavement and infrastructure charac-
terization, mining, ice sounding, permafrost, void, cave and tunnel detection,
sinkholes, subsidence, etc.It may be deployed from the surface by hand or
vehicle. It has the highest resolution of any geophysical method for imaging
the subsurface, with centimetre scale resolution sometimes possible.

Resolution is controlled by wavelength of the propagating electromag-
netic wave in the ground. Resolution increases with increasing frequency
(shorter wavelength). Depth of investigation varies from less than one meter
in mineralogical clay soils like montmorillonite to more than 5,400 meters
in polar ice. Depth of investigation increases with decreasing frequency but
with decreasing resolution. Typical depths of investigation in fresh-water
saturated, clay-free sands are about 30 meters. Depths of investigation (and
resolution) are controlled by electrical properties through conduction losses,
dielectric relaxation in water, electrochemical reactions at the mineralogical
clay-water interface, scattering losses, and (rarely) magnetic relaxation losses
in iron bearing minerals. Scattering losses are the result of spatial scales of
heterogeneity approaching the size of the wavelength in the ground (like the
difference between an ice cube and a snowball in scattering visible light).

The ability of GPR to detect subsurface voids has lead to an interest in
using it to evaluate the condition of sewers and other pipes. While delami-
nations in concrete sewers could be detected by GPR systems, much of the
interest in the technique is due to its ability to examine the bedding behind
the pipe wall. Voids, rocks and regions of water saturation produced by ex-
filtration should all be readily detectable by the technique. Recent research
on this application has investigated its use in brick sewers [18], transport
tunnels and small diameter sewer lines [19].

Radar systems work by emitting a coherent beam of radio waves [20].
These waves travel through space, air or the ground until they reach an
object with differing conductivity and dielectric constant, such as an airplane,
a void in the ground or an area saturated with water. Part of the radar
wave is reflected off the interface between the two objects and propagated
back to the transmitter. The rest of the wave passes into the new object
and continues to travel in the original direction. Radar beams can also be
attenuated by the nature of the material through which they travel. Materials
that are highly conductive, have high dielectric constants, or are magnetic
will rapidly attenuate the radar beam. As a result radar is attenuated very
rapidly in metals, giving essentially zero penetration, but can travel very long
distances in air and space.

Sand, asphalt, clay and ice fall between these two extremes, with the de-
gree of attenuation dependant on amount of liquid water and salts present in
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the material. Ice is essentially transparent to GPR, allowing the technique
to be used to map the bottoms of glaciers. It can also penetrate deeply in
dry sand. However, the depth of penetration in wet sand is much less, and
in clays the penetration is further reduced [21]. In these materials the pres-
ence of water increases the conductivity, while clays can also have significant
dielectric constants. The presence of salt in the ground increases the soil con-
ductivity and therefore further decreases the maximum penetration depth of
a GPR system.

Radar can be used to locate leaks in buried water pipes either by detecting
voids in the soil created by leaking water as it circulates near the pipe, or
by detecting segments of pipe which appear deeper than they are because of
the increase in the dielectric constant of adjacent soil saturated by leaking
water. Ground penetrating radar waves are partially reflected back to the
ground surface when they encounter an anomaly in dielectric properties, for
example, a void or pipe. An image of the size and shape of the object is
formed by radar time-traces obtained by scanning the ground surface. The
time lag between transmitted and reflected radar waves determines the depth
of the reflecting object.

In sewer pipes application, a radar antenna moves inside the sewer and
is cable connected to a recording unit above ground. GPR may be used to
detect water leaks in two ways:

• Identifying soil cavities created by the turbulent flow of leaking water.

• Identifying pipe segments, which appear deeper than expected because
of the increase of the dielectric constant of adjacent soil, saturated by
leaking water.

Despite a number of problems GPR has been employed in the condition
assessment process for sewer lines in France since the early eighties. Data
inspection requires substantial experience and training because the radar
output is very difficult to interpret.

These techniques may be used from either the ground surface or from
within the pipe but does not provide specific information on the pipe wall
condition. For above ground use the technique is used to either identify
the presence of pipe segments or the presence of voids surrounding the pipe,
both by measuring the changing dielectric of the soil, cavities and pipes. For
within pipe use the technique is used to identify cavities in the soil behind the
pipe wall. In traditional above ground penetrating radar techniques, both
transmitting and recording devices are mounted on the ground surface above
the pipe.
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2.6 Difficulties in conventional systems

The conventional inspection systems used for inspecting pipe condition in
three broad categories are described in section 2.5. Among them, we fo-
cus on inspection of inner pipe surface and discuss about the difficulties in
coventional systems.

Each of the systems for inspecting the inner surface of the pipe wall pro-
vides similar types of information to the manager of a sewer system. Con-
ventional CCTV’s long history of use means that new systems inspecting
the same area must provide substantial advantages in the quality of informa-
tion provided or in lower costs before they will be adopted for common use.
Table 2.4 summarises the advantages and disadvantages of each inspection
methods.

The described modifications to conventional CCTV can assist in inter-
preting the results of a CCTV inspection, but are unlikely to be widely
adopted unless their cost is not significantly higher than that of conventional
CCTV alone. Stationary CCTV cameras are therefore the most likely appli-
cation to enter common use, as they offer the opportunity to do preliminary
examinations of the shorter pipes in a city’s sewer system without cleaning.
Mobile CCTV systems offer noticeable advantages in identifying the pres-
ence of deformation, but are essentially an evolutionary enhancement of the
standard CCTV system, rather than a revolutionary improvement.

2.7 Autonomous sewer robot platform, KAN-

TARO

The sewer system, which is inherently narrow, slippery, and dirty and wet, is
not an easy place for a robot. A robot is supposed to move through long pipes
quickly with minimum consumption of energy, and to turn at narrow and
slippery junctions with minimum mechanical wear. Due to remaining water
in sewer system during inspection, the robot must be waterproof. Taking
these requirements into account, we design a novel mechanism satisfying all
the requirements.

The conventional sewer robots are able to move through straight pipes,
but unable to smoothly turn at junctions. Robots capable of smooth turning
at junctions are desired.

We design novel and compact moving mechanism, KANTARO(Fig. 2.12)
for sewer pipe inspection robots based on passive adaptation of wheels to the
bends of pipes [66, 68, 72]. This is accomplished by proper wheel orientation
and passive damping of springs. A robot with this new moving mechanism
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Table 2.4: Summarises the advantages and disadvantages of conventional
inspection methods.
Methods
CCTV inspection systems Advantage

- standard technique.
- considerable body of knowledge.
- available to aid in interpreting results.
- relatively cheap.
- evaluates the entire length of sewer.

Disadvantage
- substantial operator interpretation of results.
- difficult to accurately compare two evaluations
of the same sewer conducted at different times.
- may miss defects hidden behind obstructions or
under water.

Stationary CCTV systems Advantage
- cheaper than CCTV.
- possibly useful as a screening mechanism for
other techniques.

Disadvantage
in addition to those listed for CCTV;
- only examines the sewer near manholes.
- long brick sewers are likely to be incorrectly.
- classified as undamaged.

Mobile CCTV systems Advantage
As for conventional CCTV except;
- better estimation of sewer deformation.

Disadvantage
As for conventional CCTV except;
-greater expense than conventional CCTV.
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Figure 2.12: An autonomous sewer robot platform, KANTARO.

is able to carry a controller, electronics, motors and sensors, and to move
through any bends of the pipes, to move through different sized pipes, to
step down, and to pass obstacles without sensors and intelligent control.

To realize less wiring and easy assembling/disassembling of a robot, KAN-
TARO designed as a modular type robot. Fig. 2.13 illustrates the robot
consisting of two parts, i.e., the upper box and the lower box, connected to
each other by the main connector.

Figure 2.13: The KANTARO mechanism.

Sewer inspection is done while the water level in the pipe is low. Still,
we need a robot waterproofed to prevent sensitive boards and sensors from
damage. To satisfy this requirement, KANTARO’s upper box and lower box
are waterproofed.
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Chapter 3

A vision-based automated fault
detection system

3.1 Introduction

Automation is an important issue in industry, particularly in inspection
works of underground facilities. This section describes an intelligent sys-
tem for automatically detecting faulty areas in a sewer pipe system based
on images. The proposed system can detect various types of faults and be
implemented in a real time system. The present paper describes system ar-
chitecture and focuses on two modules of image preprocessing and detection
of faulty areas. The proposed approach demonstrates high performance in
detection and reduction of time and cost.

Pipe walls in sewer systems are prone to be damaged due to aging, traffic
and chemical reactions, through which inflow such as rainwater and ground-
water seeps into pipe systems. Regional city government reports [22] state
that this inflow amounts to approximately 30% of the total flow. In addition
to the inflow of groundwater into sewer pipes, outflow from damaged systems
also occurs, contaminating the surrounding environment [23]-[25].

Basically, maintenance or inspection process starts by collecting informa-
tion about the utility. It highlights useful information about conditions of
the utility such as the number and the location of faults.

Conventional inspection of a sewer pipe system is carried out using a
cable-tethered robot with an onboard video camera system. An operator
remotely controls the movement of the robot and the video system (Fig.
2.9). By this video-supported visual inspection, any notable damages or
abnormalities are recorded in video stream. The reliability of this system
depends on the experience of an operator. The system is also prone to human
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error, and tends to be time consuming and expensive. Consequently, effective
automated online techniques to identify and extract objects of interest such
as cracks are of immediate concern.

Most previous works[26] focused on specific types of faults in sewer pipes
such as displaced joints and surface cracks. Carino [27] gives a detailed
overview of crack detection strategies such as infrared thermography, stress
wave propagation methods and a ground-penetrating radar. Many detec-
tion strategies are developed assuming specific pipe materials. Since widely
used materials such as concrete and clay have heterogeneous compositions,
it makes applications of simple fault detection methods problematic.

Widely used techniques for steel pipes such as the one by Stavroulakis
et al.[28] are not applicable to PVC or concrete pipes due to their noncon-
ducting characteristics. Given feature detection methods with appropriate
sophistication and sensitivity, low cost and general-purpose systems such as
video cameras can play an important role in fault detection of sewer pipes.

Robust detection of cracks and other faults in sewer pipes based on sen-
sory data is an important challenge. Bernatzki et al. [29] introduced a
method for detecting small cracks in oil and gas pipelines. Raw ultrasonic
data were transformed to time-frequency representation by the wavelet trans-
form. Edges were detected by the real part of wavelet coefficients. Artificial
neural networks were also used for classification.

Yoshimura et al. [30] described applications of an inverse analysis method
based on neural networks and a finite element method to the identification
of cracks in solid objects using laser and ultrasonic sensors. They used Error
Propagation Coefficients to evaluate the accuracy of a neuro-based method
for crack identification. They are able to identify surface defect with a detec-
tion error rate of 2.4%-12.0%, and the depths with an accuracy of 0.6%-4.1%.

For high dimensional spatially distributed data, wavelets may provide
useful feature detection. Mojsilovic et al.[31] used Haar wavelets for decom-
position and classification of myocardial tissue images. Gunatilake et al. [32]
introduced a mobile robot platform that provided images in real time for
remote aircraft surface inspection. A widely practiced crack detection algo-
rithm is applied under directional lighting. It is a two-step multi-resolution
edge detection method: a region of interest (ROI) is first converted into those
with multiple resolutions by successive smoothing, followed by edge detection
at each resolution. Wavelet-based filters are used for the conversion of ROI
into those with multiple resolutions and for estimation of intensity variation
for multi-resolution edge detection.

All above previous works focused on specific types of faults in pipes and
none of them propose a method for detecting various types of faults. Ac-
cordingly, an automated fault detection system is not available in the real
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world. We propose a method for detecting faulty areas based on images, and
proposes an automated intelligent system designed to facilitate diagnosis of
faulty areas in a sewer pipes system. The system utilizes image analysis and
efficient techniques for providing the location and the number of faults in a
sewer pipe system [74, 78].

3.2 Types of faults in the sewer pipe system

Japan Sewage Works Association (JSWA)[33] classfied three ranks (A,B and
C) for various faults in sewer pipe system. Most visible faults defined as rank
A, visible faults as rank B and hardly visible faults as rank C (see Fig. 3.1).
Table 3.1 shows the differents faults classifications.

Rank A Rank B Rank C

Figure 3.1: An example of differents ranks of crack.

Also, JSWA defined the corresponding task to be done for each rank in
Table 3.2.

Based on the above table, we can say, the automated system which is able
to detect the faults in rank A and B is acceptable for sewer pipe inspection.

3.3 Proposed system

As we mentioned in Introduction, in the conventional inspection systems,
any notable damages or abnormalities in sewer pipe are detected by human.
This system, therefore, is prone to human error, and tends to be time con-
suming and expensive. To overcome this difficulty, we propose an automated
intelligent fault detection system. An overview of the proposed system is
shown in Fig. 3.2.

Digital images of sewer pipes taken by the camera system on the inspec-
tion robot are given to the fault detection system. The system, then, extracts
a ring ROI image to which edge enhancement is applied as preprocessing.
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Table 3.1: The differents faults classifications.

Category A rank B rank C rank
Crack The width of crack The width of crack The width of crack

is more than 5mm is more than 2mm is up to 2mm
in circumference in circumference in circumference
direction direction direction

Water Blown out Flown out Exuded
infiltration
Root Invade more than Invade less than Invade less than
invasion 50% of pipe 50% of pipe 20% of pipe
Pipe break Heavy damage Having cracks Crack detection

entirely other than rank B
Joint and Coming off entirely Coming off partially small gap
gap
Mounting Project more than Project between 25% Project less than
pipe 50% of the diameter and 50% of the 25% of the diameter
projection of the pipe diameter of the pipe of the pipe
Adhesion Covered more than Covered between 10 Covered less than
of mortar 30% of the diameter and 30% of the 10% of the diameter

of the pipe diameter of the pipe of the pipe
Foreign Blocked up by Mixed with obstacle An obstacle itself
substance other than filth and others such as a cement bag
Adhesion Block up more than Block up less than Block up less than
of grease 50% of the diameter 50% of the diameter 20% of the diameter

of the pipe of the pipe of the pipe

Table 3.2: Corresponding task to be done for each rank.

Levels The inspection result Corresponding task to be done
1 too much rank A faults repair immediately
2 too much rank B faults + by a simple maintenance,

a few rank A faults repairing can be extend by 5 years
3 too much rank C faults + by a simple maintenance,

a few rank B faults + repairing can be extend
no rank A faults more than 5 years
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Figure 3.2: An overview of the automated intelligent fault detection system.

Next, a newly defined measure of similarity is computed in order to ex-
tract candidates for visible faulty area in the ring ROI areas. Conjecture here
is that the measure of similarity between images without faulty area is large.
Hence, we focus on the area where the similarity value is smaller than a hor-
izontal threshold, thh, ranged between 0 and 1. The horizontal threshold is
a value between 0 to 1 and change of this value directly effect to the number
of detected faulty images in this step. Next, we extract a rectangular ROI
and compute the autocorrelation value in the candidate faulty areas. Here,
the area with autocorrelation value smaller than a vertical threshold, thv, is
defined as a faulty area. The proposed approach can detect even faint faults
in this rectangular ROI area. The fault detection module demonstrates high
detection performance based on the similarity in ring ROI and rectangular
ROI areas. Finally the detected faults and its locations are compiled as a
report. Here the location information on faults is provided by sensors on the
robot such as an encorder, IR and a laser scanner.

Image preprocessing

At this step, the system first extracts ring ROI images. The panoramic image
from the extracted ring ROI image is created by converting the luminosity of
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each pixel at (x, y) into that at (r, θ) in the panoramic image (Fig. 3.3).The
relation between them is;

x = r cos θ, y = r sin θ (3.1)

Figure 3.3: Extraction of the ring ROI.

Because of the variation of brightness in a faulty area in sewer pipes, edge
enhancement in the following steps is applied to the panoramic image.

1. Convert the RGB into the brightness (Y).

Y = 0.3×R + 0.6×G + 0.1×B (3.2)

2. Use a Gaussian filter to reduce noise.

3. Detect edges. There are many methods for edge detection. Most of
them are grouped into two categories: Gradient and Laplacian. In
this paper, we use the Sobel and Prewitt gradient operators, and the
Laplacian operator.

Detecting faulty areas

In the last step, the panoramic image (width=942 pixel, height=50 pixel) is
created from the extracted ring ROI image. We define an average image of
the panoramic image with the width, w1 = 50 pixel, and the height, h1 = 50
pixel. Then, we use a measure of similarity between the average image and
panoramic image (Fig. 3.4) by the following equation.
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Figure 3.4: Horizontal similarity computation.

Suppose we have a set of images without fault. A conjecture here is
that the measure of similarity between images without faulty area is large.
Hence, the area with small similarity than a horizontal threshold, thh, can
be detected as a candidate faulty area.

C(x) =
1

w1 × h1 × 255

w1∑

i=1

h1∑

j=1

(255− |I(i + x, j)− Ī(i, j)|)

Ī(i, j) =
1

N1

N1∑

k=1

I(i + k, j) x = (0, 25, ......, 875) (3.3)

where I(i, j) is the brightness of the pixel at (i, j), and x is the pixel co-
ordinate in the horizontal axis in the panoramic image. Ī is the average of
brightness at the average image and N1 is the number of images used for
creating the average image and defined as follows;

N1 = width of panoramic image− w1 = 942− w1 (3.4)

Then, we focus on the candidate faulty area. We extract a rectangu-
lar ROI and compute the similarity value in vertical direction (Fig.3.5) to
improve the detection rate based on the following equation.

Figure 3.5: Vertical similarity computation.
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C(y) =
1

w2 × h2 × 255

8∑

m=0

w2∑

i=0

h2∑

j=0

(255− |I(i, j + y)− I(i, j + 5m)|)

y = (0, 5, ......., 40) (3.5)

where w2 = 50 pixel, h2 = 10 pixel and N2 = 50− h2. Finally, the area with
similarity smaller than a vertical threshold, thv, is detected as a faulty area.
The proposed approach can detect even faint faulty areas in this rectangular
area.

3.4 Experimental results

We evaluate the proposed method for detection of faulty areas using 253
images with 9 types of faults in Table 3.3 provided by a sewer inspection
company. The image size is 640× 480 pixel.

Table 3.3: The number of categorized images used for evaluation.

Category The number A rank B rank C rank
of images images images images

crack 34 23 7 4
water infiltration 6 4 1 1

root invasion 25 17 6 2
pipe break 27 23 3 1

joint and gap 16 10 4 2
mounting pipe projection 8 5 1 2

adhesion of mortar 13 9 2 2
foreign substance 11 7 3 1
adhesion of grease 7 4 2 1
Non-Faulty Image 106

Total 253

We use 3 types of edge detection operators, Sobel, Prewitt and Laplacian,
for comparison of the ability of detection in ring ROI area. Here,“true posi-
tive” is defined as the ratio of the number of correctly detected faulty images
to the total number of faulty images. Similarly, “false positive” is defined as
the ratio of the number of non-faulty images classified as faulty to the total
number of non-faulty images. Fig. 3.6 illustrates false positive versus true
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positive for different edge detection operators when horizontal threshold is
changed from 0.8 to 1 by increment of 0.1. In ring ROI areas, the Sobel and
Prewitt operators show almost the same performance, and is superior to the
Laplacian operator.

Figure 3.6: Performance of detection in the ring ROI area for different edge
detection operators when horizontal threshold is changed from 0.8 to 1 by
increment of 0.1.

Fig. 3.7 illustrates examples of detection of faulty areas by the Sobel
operator in ring ROI areas. Figs. 3.7(b) and (d) show the successfully
detected cases, marking the faulty areas with green circles. Failure sometimes
occurs due to the false positive rate of 50% in ring ROI area. (Fig. 3.7(f))

As in the traditional statistical test, we aim at maximizing the true pos-
itive rate, keeping the false positive rate at a predetermined level called the
level of significance.

To achieve high detection rate, we choose a high horizontal threshold value
in the similarity computation to detect a wide variety of faults in ring ROI.
Computation of the autocorrelation value in rectangular ROI area enables
detection of even faint faults. Fig. 3.8 illustrates examples of detection of
faint faults in rectangular ROI area.

Fig. 3.9 shows the performance of detection in rectangular ROI areas
using Sobel operator for four different horizontal thresholds when vertical
threshold is changed from 0.8 to 1 by increment of 0.1. Horizontal threshold
value of 0.97 provides good performance.

34



(a)The sewer image with the crack (b)The detected crack (successful)

(c)The sewer image with the root invasion (d)The detected root (successful)

(e)The sewer image with the crack (f)The detected crack (failure)

Figure 3.7: Examples of detecting faulty areas in ring ROI area by proposed
method.

(a)The sewer image with the crack (b)The detected crack (successful)

Figure 3.8: Examples of detecting faint faulty areas in rectangular ROI area
by proposed method.
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Figure 3.9: Performance of detection in rectangular ROI areas using Sobel
operator for four different horizontal thresholds when vertical threshold is
changed from 0.8 to 1 by increment of 0.1.

Next, we focus on different ranks when horizontal thresholds is set to
0.97 and vertical threshold is changed from 0.8 to 1 by increment of 0.1. The
performance of this evaluation is shown in Fig. 3.10. When the false positive
rate is 34%, the true positive rate is 100% for rank A and B, and 98% for
rank C. The vertical threshold at this point is 0.96.

As we mentioned in section 3.2, the automated system which is able
to detect the rank A and B faults is acceptable for sewer pipe inspection.
Supposing the false positive rate of 34%, we can attain the true positive
rate of 100% by the proposed algorithm for the sewer pipe images. We also
showed this results to Water Environmental Section in Kitakyushu City, and
they also confirmed 100% detection with 34% false positive rate is acceptable,
and we can say that the proposed method succeeds in attaining 100% true
positive rate and in the reduction of time and cost in sewer inspection.

3.5 Conclusions and discussions

We have proposed an intelligent system for detecting faulty areas automat-
ically and implemented it in a real time system to solve the “real-world”
problems in civil robots. In contrast to the conventional manual system, the
proposed system can automatically detect faults and run in real time. It’s
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Figure 3.10: Performance of proposed method for different ranks when hori-
zontal thresholds is set to 0.97 and vertical threshold is changed from 0.8 to
1 by increment of 0.1.

detection performance is 100%, when the false positive rate is 34%. This
ratio is acceptable for sewer inspection, and the reduction of time and cost
are also realized.

Future work should aim at further decrease in the false positive rate by
keeping high true positive and to find other superior techniques for fault
detection.

37



Chapter 4

Navigation based on single
camera and IR sensors

4.1 Introduction

One of the central issues in developing an autonomous sewer robot is its
navigation. Detecting landmarks such as manholes, inlets and joints in a
sewer pipe system is an important task in navigation.

Various methods have been proposed for the detection of landmarks.
Hertzberg and Kirchner conducted experiments on navigation of a sewer
robot in a dry sewer test field at GMD, Sankt Augustin [34]. They succeeded
in detecting local features by ultrasonic sensors. The detected landmarks
were then scanned by a different, pivoted ultrasonic transducer. Finally, lo-
cal features obtained by the scanner are classified using a specially trained
artificial neural network. Although this method has a high rate of classifica-
tion (75 out of 81 samples), it lacks the capability of locating an individual
manhole.

Schonherr et al. [35] proposed a pivoted ultrasonic transducer that per-
manently scans the walls of the upper half section of pipes for detecting inlet.
This procedure is time consuming. Paletta et al. proposed a method for de-
tecting inlets from grayscale images taken by an onboard CCD camera [36].
Although it involves a time consuming training phase, the detection of inlets
by trained neural networks is fast.

In a real sewer pipe system, a robot is required to explore unknown sewer
area during the training phase. This property of time consuming training is
undesirable from a practical point of view. To automatically detect damages
in sewer pipes, Campbell et al.[37] and Clarke[38] proposed pipe profiling
methods for 3D reconstruction. Using sensor devices mounted on a teleop-
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Figure 4.1: Landmarks in the sewer pipe system.

erated sewer robot, data evaluation is performed in a stationary surveillance
vehicle.

Our method is capable of self localization and landmark detection by
using an IR and single camera sensors [69]. In our method, the images are
captured by a CCD camera at the front of a robot. The distance between
robot and landmarks are estimated based on image data. The exact locations
of the landmarks are compute by IR sensor data. Finally, information on the
locations of a robot and landmarks are used for fault localization and robot
navigation.

4.2 Landmarks in sewer pipe system

Ordinary in sewer pipe systems, any changing in the direction of pipe or any
intersection between three or more pipes is called pipe-bend. In according
the rule of sewer pipe construction, there is a manhole over each pipe-bend.
Pipe-bends in sewer pipe system can be classified in three main types depend
on their construction and shape; Curves, Joints, T-Junctions. Fig. 4.1 il-
lustrates the sewer pipe construction with the manhole over each pipe-bend,
inlets from houses, and joints connecting two pipes.

For navigation in a sewer pipe system, a robot needs distinctive land-
marks. Elements like manholes, junctions, inlets and pipe joints are well
suited for this purpose. As shown in Fig. 4.2, manholes are always located
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(a)Manhole (b)Joint (c)Inlet

Figure 4.2: Location of the landmarks in the sewer images.

in the upper part of the sewer image, while joints and inlets are always in
the central and upper half of the sewer image. This makes easy the extrac-
tion of their positions from the image. The fact that the maximum length
of a plastic or ceramic pipe is less than 2m makes capturing landmarks still
easier. The resulting map has descriptions on manholes, inlets, pipe joints,
the distance between them and so forth.

4.3 Methodology

Autonomous sewer robots must include sensors for their own control, naviga-
tion and localization, not only those for sewer state assessment and damage
detection. These sensors may overlap with the inspection sensors (e.g., a
camera may be used for both navigation and fault detection). Localization
is an issue not only for the proper robot control, so that the robot knows
where it is, but also for inspection, as detected faults have to be reported
with their location.

We propose a method to cover self localization and landmarks detec-
tion for an autonomous robot by fusing of IR and camera sensors data. As
we mention in 4.2, four landmarks are exist in sewer pipe systems and the
robot may stop or changing its moving direction in two of them, manholes or
junctions. Therefore we involved IR sensor to detect this two landmarks ap-
proximately. Fig.4.3 illustrates the overview of the proposed method. First
a sewer pipe image is provided to the system and four ROI images are ex-
tracting. By computing the self localization, the distance between robot and
landmarks will estimate and if this distance value is less than 10cm, the
system check the IR sensors value. Here if the sensor value is less than a
threshold then the exact location of two landmarks will detect.
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Figure 4.3: Overview of the proposed method.

Computation of self localization

In this step, we use Hough Transform (HT) for self localization computing.
The Hough transform is a feature extraction technique used in digital image
processing. The classical transform identifies lines in the image, but it has
been extended to identifying positions of arbitrary shapes such as circle and
curve. The underlying principle of the hough transform is that there are
an infinite number of potential lines that pass through any point, each at a
different orientation. The purpose of the transform is to determine which of
these theoretical lines pass through most features in an image, that is, which
lines fit most closely to the data in the image.

In our case, the hough transform is used for extracting of circles, the
shapes of landmarks in sewer images. A circle in the image space can be
described by, (xi − a)2 + (yi − b)2 = r2, where (xi, yi) is the poin on the cir-
cumference of circle. An infinite number of circle is possible to pass through
any point on the circumference, with differents center (a, b) and radius r (Fig.
4.4). (a, b, r) are three parameters which span a 3D hough space (Parameter
space).

Any point (xi, yi) in the image space corresponds to a cone shaped surface
in the 3D parameter space. Each point in the cone is said to vote for a set
of bins corresponding to the circles that pass through it. By finding the bins
with the highest value, the most likely circles can be extracted, and their
geometric definitions read off.

In details, four ROI images will extract from input images. Then, The
cany edge operator is applied to input images for edge detection in each ROI
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Figure 4.4: Hough transform for circle.

(a) Sewer image (b) Binary image (c) Hough transform (d) Find the corresponding radius

Figure 4.5: An example of self localization computing with pipe joint image.

images and convert to binary images. Next, we define 3D hough matrix
with 3 unknown parameter, (a, b, r). To help for fast computing, we reserve
the range of r in hough matrix. The hough transform will perform and the
local maximum value in (a, b) will indicate the correspond r for the circle.
Finally, we estimate the distance between the robot and landmarks based on
compared each circle radius with corresponding radius-distance data in field
test by KANTARO. Fig. 4.5 show an example of self localization computing
with pipe joint image.

Detection of landmarks by an IR sensor

Self localization computing based on image data still has some error, hence
the IR sensors data are applied to detect manholes and junctions exact lo-
cation. These two landmarks must be executed with high precision, because
misperception such as early turning action in junctions causes damage to
robot, so, we involved three IR sensors as shown in fig.4.6. Fig.4.7 and Fig.
4.8 verified the IR sensor values shows a large variation when the robot is at
one of these two landmarks.
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Figure 4.6: Position of IR sensors and camera.

Figure 4.7: IR-1 sensor value when the robot is at the manhole.

Figure 4.8: IR-3 sensor value when the robot is at the junction.
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4.4 Experimental results

Figure 4.9: Dry sewer test field at the FAIS-RDSO.

Images of KANTARO moving through the pipe are acquired in the dry
sewer test field at the FAIS-RDSO in Fig.4.9. The dry sewer test field is
designed by plastic pipes with the diameter ranging from 250 to 300 mm.
We evaluate the proposed algorithm using 74 images in 3 different sewer
pipes with 3 types of manholes, inlets and joints. The image has 704× 480
pixels and is captured manually from video frames (Fig. 4.10).

Table 4.1 presents the percentage of correctly computed distance in com-
paring with the real distance. Here the distance error less than 5cm is as-
sumed to be correct. On the average about 100% of input sewer image
provides correct distance.

Table 4.1: Performance of self localization computing with error less than
5cm.

Images type The number of images Rate(%)
Manhole 28 100

Joint 28 100
Inlet 18 100
Total 74 100

4.5 Conclusions and discussions

We have presented a method for self localization and landmarks detection of
an autonomous sewer robot in sewer pipes based on fusion of data from an IR
sensors and a single camera. It is capable of self localization, which cannot
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Figure 4.10: Location of captured images using in our experiments.

be done by conventional methods. We also conducted experiments for sewer
robot navigation in a dry sewer test field at FAIS-RDSO, Kitakyushu. They
succeed in detecting local features by using sensory information.

Based on these experimental results, we can say single camera as a vision
sensor is suitable for fault detection and navigation purposes. In additional,
we also test the stereo camera to observe the performance of navigating,
which is described in next chapter.
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Chapter 5

Navigation based on stereo
camera and laser scanner

5.1 Introduction

Robot localization and navigation is one of the fundamental issues involved
in robotics. Using different type of sensors such as ultrasonic sensor, camera
and laser scanner, by mean of sensor fusion, to compile information about
robots location is applied to a wide range of the robot task. With the re-
striction of the environment, the task of detemining the robot position can
be pose a wide range of problems and difficulties. Dynamic, fast changing
environmets, moving obstacles as well as potential noisy sensor information
make the position estimation task very difficult.

The present environment of a sewer system facilitates this task to some
degree, since boundary restrictions in the environment eliminate a number of
problems. Due to the closed geometry, drifting of the robot does not occur to
such a highlight degree, moving obstacles do not occur. Further the limited
number of distinct local features such as manholes, junctions, pipe joints and
inlets make their identification easier.

In this chapter, firstly, we propose two stereo matching method, which
is suitable for sewer images. Then, we propose a navigation method using a
parts of first proposed method and laser scanner data for detecting landmarks
and estimating the location of a mobile robot.

5.2 Design of a new mobile laser scanner

It is difficult to use the conventional laser scanner on mobile robots such as
KANTARO because of its size and weight. Therefore, we design the new laser
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Figure 5.1: The newly developed laser scanner.

Figure 5.2: Errors in distance measurement.

scanner in Fig. 5.1 for Kantaro. The sensor is mounted on the rear-center of
KANTARO and IR beam is emitted from the top of a rotary segment. The
microcontroller calculates the distance, the laser scanner angle and so on.
Data are transmitted to a computer at the sampling speed of 10KHz via the
network with the maximum transmission rate of 1Mbps. Fig. 5.2 illustrates
the errors in distance measurement. Table 5.1 describes the specification of
the 2D laser scanner.

The diameter of the typical manhole is larger than that of the connected
pipe by 50cm, and inlet size is between 10 and 15cm. Sewer landmarks are
not uniformly distributed along the pipe perimeter. Rather, they appear in
the upper part, left side and right side of pipes. This allows to restrict the
search to the angle width of 15 degrees for each candidate as shown in Fig.
5.3, and to design the size and position of each scanning window. By full
rotation of the laser scanner, the mirror rotates 360 degrees and the distance
is measured at the right, top and left scanning windows.
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Figure 5.3: Scanning directions.

Table 5.1: Specification of the laser scanner.
Scanning directions 360 degree

Scanning speed 0-1800 (rpm)
Distance range 70-190 (mm)

Accuracy ±1 (mm)
Beam radius 0.5 (mm)

Transmission method Full duplex serial transmission (2Mbps)
Sampling speed More than 10 KHZ

Measured signals output Distance, Scanning angle
Weight 200 g

Size 37 × 48 ×166 (mm)
Power ±12V(0.5A) +5V(1A)

5.3 A cooperative stereo matching algorithm

As is well known, stereo matching is an essential issue in computer vision. An
excellent survey by Scharstein et al. [39] grouped existing approaches into
orders, introduced an evaluation metric, and provided data for comparative
studies. They also presented the rankings for most stereo matching algo-
rithms at Middlebury website [45]. Most of them are based on segmentation,
graph cuts [46]-[50] and other computational techniques [51]-[53]. Some of
these methods have attracted much attention due to their excellent experi-
mental results.

Segmentation is made based on the assumption that disparities are almost
the same in one segment. The graph cuts method is also based on the same
assumption. However, because the disparities change gradually in the sewer
image, it is hard to segment the sewer image based on this assumption.
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(a)Image of sewer inside (b)Segmentation of (a)

Figure 5.4: Sewer image and its segmentation.

We used a powerful segmentation algorithm named a shift mean algorithm
[40] for the sewer image. It overcomes the difficulty of the gradual change
of disparities. Fig. 5.4 show the images of sewer inside and the resulting
segments, respectively. Due to the lack of illumination in the distant area, a
large dark area always exists in the central part of the sewer image. This dark
area in the sewer image tend to cause wrong segmentation. Furthermore,
methods based on segmentation and graph cuts cost much computational
time, hence do not have real-time characteristics. Although realtime stereo
matching algorithms based on correlation, dynamic programming and other
methods [54]-[56] have been proposed, they also suffer the above mentioned
difficulties. Accordingly, they are not effective for the sewer image, either.

The above characteristics necessitate a suitable method which is fast and
effective in our sewer environment. Scharstein describes a simple yet powerful
method [41] to perform stereo matching for a feature group using the gradient
of the images. This method provides a strong response in the edge part. He
also claims that the ramp image can only be matched by comparing absolute
brightness [42].

5.3.1 Proposed algorithm

It is desired that a stereo matching process in a sewer system be robust in
both the feature group and the non-feature group. In other words, the feature
group such as edges and cracks be clearly visible, and the matching measures
in both groups be accurate. The computational time should also be small,
i.e., in seconds. The proposed algorithm, which satisfies these requirements,
is described below. We proposes a new cooperative algorithm using a new
matching measure of linear computation (hereafter referred to as LC) for a
feature group and the conventional Sum of Squared Differences (SSD) with
constraints for a non-feature group [76]. In this algorithm, the reference
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Figure 5.5: Classification of groups.

image is divided into the feature pixel group and the non-feature pixel group.
The LC measure, which has similarity with the gradient but requires less
computational cost, is used in the feature group, and the conventional SSD
with neighboring similarity and other constraints is applied to the non-feature
group.

Group classification

At this stage, pixels are divided into two groups by setting a threshold for
group classification, T0. We can also regard this stage as a simple but special
segmentation that classifies the image into a feature “region” and a non-
feature “region.” In Fig.5.5, the light pixels constitute the feature region and
the dark pixels constitute the non-feature region. The difference between two
neighboring pixels, D(x, y), is given by:

D(x, y) =| I(x, y)− I(x− 1, y) | (5.1)

where I(x, y) is the brightness of the pixel at (x, y). If D(x, y) ≥ T0, the
pixel, (x, y), is treated as a feature pixel, else it is treated as a non-feature
one.

Matching of feature pixels

We first applied the conventional gradient measure for stereo matching [41]
to our sewer image. The resulting disparities provide the distance map using
the geometry of a stereo camera [57]. This distance map is represented by
the brightness of pixels; the larger the distance is, the darker the pixel is.
However, because of the shadow, we found that the conventional gradient
measure produced some fringes of the edges and cracks in the distance map
as in Fig. 5.6(a).
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To overcome this difficulty, we propose a new measure which is partly sim-
ilar to the conventional gradient measure. To compare locations in two im-
ages, most existing methods depend on similarity reflecting the resemblance
of the corresponding locations of two images, and sometimes on distinctiveness
reflecting the likelihood of the correctness of the match. Our measure com-
bines the similarity and the distinctiveness into a single measure of match-
ing. Since only the horizontal shifts need to be considered in the stereo
matching, the differences of the brightness between horizontally neighbor-
ing pixels are calculated. The differences between two neighboring pixels
in left-eye and right-eye images are DL(x, y) = IL(x, y) − IL(x − 1, y) and
DR(x, y) = IR(x, y)− IR(x− 1, y), respectively.

We calculate the sum of their absolute values, Cd(x, y) = |DL(x, y)| +
|DR(x+d, y)|, to represent the distinctiveness, and the minus of the absolute
value of their difference, −Gd(x, y) = −|DL(x, y)−DR(x+d, y)|, to represent
the similarity at the displacement, d. We define the matching measure as
the sum of these two terms: Ed(x, y) = Cd(x, y)−Gd(x, y). In summary, for
a given displacement, d, the matching measure, Ed, is:

Ed(x, y) = |DL(x, y)|+ |DR(x + d, y)| − |DL(x, y)−DR(x + d, y)| (5.2)

To find the best match for an isolated pixel, we maximize Ed with respect
to d under consideration. It is not hard to understand why our method
generates strong responses at the feature pixels. If the matching pixel is a
non-feature one, the difference of brightness between horizontally neighboring
pixels is small. As a result, both DL(x, y) and DR(x+d, y) have small values.
Hence, Ed also has a small value. On the contrary, if the matching pixel is
a feature one, it has a large difference of brightness horizontally. This will
result in a large value of Ed. Therefore, this method is expected to work well
in the matching of feature pixels.

Fig.5.6 demonstrates that the resulting distance map by the proposed
measure provides better view of the feature pixels than that by the conven-
tional gradient refined measure.

Matching of non-feature pixels

At this stage we use the conventional SSD with constraints for the matching
of non-feature pixels for the following two reasons. Firstly, Scharstein [42]
presented that a pair of ramp images have no local texture variation, hence
have constant gradient almost everywhere except for the boundaries. A pair
of two images can only be matched by comparing the absolute brightness,
hence any algorithm based on band-pass filters or gradient will fail (as is the
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(a)Gradient method (b)LC method

Figure 5.6: Distance maps.

human visual system). The other reason for the choice of the SSD is its small
computational cost, because SSD is a simple area-based algorithm.

The best match with a given pixel in the image is found by comparing
a square window centered at this pixel against the windows of the same
size centered at the corresponding candidate pixels in the other image. The
sum of the squared differences of brightness between the windows is used
as a measure of dissimilarity. The pixel with the minimum dissimilarity is
considered to be the best matching pixel.

In the proposed algorithm, we introduce constraints to reduce matching
error based on the following assumptions. Marr and Poggio [43] [44] first
introduced assumptions in stereo matching to the effect that the disparity
has a unique value and is continuous almost everywhere. These assumptions
are also applicable to our case.

For the resulting disparity, d, we modify it by imposing a neighboring
constraint based on the position of pixels. It is assumed that if two pixels
are adjacent neighbors, they have similar disparities.

If the difference between disparities of two neighboring pixels is larger
than an empirically set threshold, T , we modify the disparity of the current
pixel as:

dm = dpre + sgn(dcur − dpre)× T/2 (5.3)

where dm is the modified disparity, dcur and dpre are the disparity at the
current pixel and that at the immediate left pixel, respectively. The sign
function, sgn(x), is defined as:

sgn(x) =

{
+1 ifx ≥ 0
−1 else

(5.4)

The calculation of the disparity involves correlating the window for the
left-eye image with those for the right-eye images with various disparities,
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d. Fig.5.7 illustrates the relation between the value of the matching measure
and the disparity. Let the curve over disparity axis be called a matching
measure curve here. The disparity at which the matching measure is the
smallest corresponds to the pixel with the largest matching. In areas with
non-salient texture, a matching measure curve becomes nearly flat over the
disparity axis. A matching measure curve with multiple minima suggests a
repetitive texture.

Figure 5.7: Values of the matching measure, Ed(x, y).

Noises in the image tend to cause wrong decisions. Let E1 at (x1, y1) be
the smallest measure value, and E2 at (x2 , y2) be the second smallest measure
value, and (x1 , y1) is not adjacent to (x2 , y2). The relative difference of the
measure can be defined as:

Ed = (E2 − E1)/E1 (5.5)

Almost the matching measure values represent a curve with a few changes,
because the disparities change gradually in the sewer image. A large Ed

means that the smallest measure value is far from the second smallest measure
value, which can be caused by a noises in the image. In order to overcome
this difficulty, if Ed is bigger than a threshold for function value constraint
Te, we choose E2 instead of E1 as the best matching measure. The threshold
Te, is set empirically.

5.3.2 Experimental results

To evalute the effectiveness of the proposed algorithm, we capture the stereo
images in Figs. 5.8 and 5.9 in the dry sewer test field (Fig. 4.9), which is
made by plastic pipes with the diameter ranging from 250 to 300mm. The
former pair in Fig. 5.8 are under bright illumination and the latter one in
Fig. 5.9 are under dimmed illumination.

53



(a)Left image (b)Right image

Figure 5.8: The first pair of stereo images under bright illumination in our
experiment.

(a)Left image (b)Right image

Figure 5.9: The second pair of stereo images under dimmed illumination in
our experiment.

Firstly, we use a Gaussian filter for smoothing the images to reduce quan-
tization errors and noises. The image is 640×480 pixels. Values of parameters
used in the experiment are:

a) Threshold for classification of groups, T0: 10;
b) Threshold for function value constraint, Te: 0.2;
c) Threshold for neighboring constraint, T : 10;
d) The window size for SSD is 7 × 7 pixels.
We randomly choose a rectangle of 8 × 8 pixels comprising both the

feature and the non-feature pixels near the manhole, and obtain the distance
map from them. A PC of Pentium4 with 3.0GHz and 1.0GB memories is
used here. The distance error in the experiment is given by:

error = |d− d0| (5.6)

where d0 is the real distance from the camera to a point under consideration
in the sewer. The distance error in Fig.5.10 is the average over two pairs
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Figure 5.10: Distance errors in feature pixels.

Figure 5.11: Distance errors in non-feature pixels.

of stereo images using the gradient and LC in the feature pixels. The dis-
tance error using our LC measure is significantly smaller than that by the
conventional Gradient measure in the feature pixels.

Fig. 5.11 illustrates the distance error using the conventional SSD and
the proposed SSD with constraints in the non-feature pixels. The proposed
SSD with constraints also significantly decreases the distance error compared
with the conventional SSD in the non-feature pixels. Fig. 5.12 presents the
average computational time over 10 trials using the above four measures.
The computational time by the LC measure is about 1/5 compared with
that by other measures.

5.3.3 Conclusions

We have developed a cooperative stereo matching algorithm using SSD and
LC measures and it can be implemented in a navigation system. It is a ro-
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Figure 5.12: Computational times.

bust algorithm for sewer inspection in robot vision. The algorithm produces
an easy-to-understand distance map of the sewer, emphasizing the feature
region. The computational time by this algorithm is about 1/5 compared
with that by other algorithms such as the conventional SSD.

5.4 A fast stereo matching algorithm using

interpolation

In section 5.3, we proposed a suitable cooperative stereo matching algorithm
for autonomous inspection robots. The proposed method is shown a good
performance in computational time, but, for real-time execution of a task by
inspection robots, a fast algorithm is desired.

Many conventional matching methods are exsist and some of them at-
tracted much attention due to their excellent performance. However, we
found that most of them are computationally expensive [50, 58, 59, 56, 42,
52, 53, 48]. Although several real-time stereo matching algorithms based on
correlation, dynamic programming and other methods [47, 54, 60] have been
proposed, they are not effective enough for sewer images. Mayer describes a
simple yet powerful algorithm [61] to perform stereo matching by combining
many methods. It attracted attention due to its simplicity and good perfor-
mance in stereo matching. Although, it is applicable to our case, it does not
work in real-time.

In this section, we propose a fast algorithm using cubic interpolation
and providing superior performance for autonomous inspection robots [67].
The proposed algorithm is regarded as a combination of a revised Mayer’s
algorithm and interpolation. At the outset, an image is divided into many
blocks. Then, a combined measure of the Sum of Squared Differences (SSD)
and cross-correlation is calculated at only the four corner points of the blocks.

56



A downsampled sewer disparity image is composed of only the corner points.
Finally, we extend the downsampled sewer disparity image into a regular-
sized disparity image by the cubic interpolation [62], taking advantage of
continuous change of disparities in the sewer environment.

5.4.1 Proposed algorithm

Stereo matching in sewer system is expected to be robust and efficient. The
proposed algorithm provides high accuracy with small computational cost.
The overview of the proposed algorithm is shown in Fig. 5.13. It is com-
posed of two major parts: a combined measure using the SSD and the cross-
correlation, and the cubic interpolation for extending a downsampled sewer
disparity image into a regular-sized sewer disparity image. In the first part,
we divide an image into 8× 8 blocks. Then, a combined measure of SSD and
the cross-correlation is applied to the four corner points in each block. A
downsampled sewer disparity image is composed of only the corner points.
In the second part, we use the cubic interpolation [62] for extending the
downsampled sewer disparity image into a regular-sized sewer disparity im-
age.

Combined measure

Scharstein claimed that a ramp image can only be matched with other images
by comparing absolute intensities or correlation [39]. In our case, a sewer
image can be treated as a ramp image. Mayer [61] found that the performance
of SSD was in almost all cases worse than that of absolute differences. He
used truncated differences in calculating absolute differences. Finally he
found that failure characteristics based on normalized cross-correlation seem
to be different from those based on absolute differences, and suggested that
it might be useful to combine both.

We utilize this finding in our proposed method. We define the following
SSD matching measure, SSDd(x, y), for a disparity, d.

SSDd(x, y) =
M−1∑

i=0

N−1∑

j=0

(IL(x + i, y + j)− IR(x + i + d, y + j))2 (5.7)

where IL(x, y) and IR(x, y) are the brightness of the pixel at (x, y) in the left
image and right image, respectively. M and N are the number of vertical
pixels and that of horizontal pixels of the window, respectively.

We, then, define the SSD′
d(x, y) by 1−SSDd(x, y)/pa, where pa is a pa-

rameter for adjusting the influence of SSDd(x, y). To find the best match for
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Figure 5.13: Overview of the proposed algorithm.

an isolated pixel, we maximize SSD′
d(x, y) with respect to d under consid-

eration. Among all possible disparity for the pixel (x, y), the one that gives
the maximum SSD′

d(x, y) is selected as the estimated disparity by SSD.

disparitySSD′(x, y) = argmaxd {SSD′
d(x, y)} (5.8)

We define the following cross-correlation, Cord(x, y), between right and
left images.
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Cord(x, y) =

∑M−1

i=0

∑N−1

j=0
(left−ĀL)(rightd− ¯ARd

)√∑M−1

i=0

∑N−1

j=0
(left−ĀL)2×

∑M−1

i=0

∑N−1

j=0
(rightd− ¯ARd

)2

left = IL(x + i, y + j), rightd = IR(x + i + d, y + j)

ĀL = 1
M×N

∑M−1
i=0

∑N−1
j=0 IL(x + i, y + j)

ĀRd
= 1

M×N

∑M−1
i=0

∑N−1
j=0 IR(x + i + d, y + j)

(5.9)

We maximize Cord(x, y) with respect to d to find the best match and
define the following estimated disparity by cross-correlation.

disparityCor(x, y) = argmaxd {Cord(x, y)} (5.10)

Because cross-correlation works better for strong texture regions with
large horizontal gradient, we give a weight ω to disparityCor(x, y) by;

ω =
Gh

G0

(5.11)

where Gh is horizontal gradient and G0 is that for the standard case. The
combined measure Comd(x, y) and the corresponding estimated disparity are
computed at the four corner points in each block by the following equation.

Comd(x, y) =
SSD′

d(x, y) + ωCord(x, y)

1 + ω

d(x, y) = argmaxdComd(x, y) (5.12)

d(x, y) = disparitySSD′ (x,y)+ωdisparityCor(x,y)

1+ω

Finally, the downsampled sewer disparity image composed of only the
corner points is represented by the following equation. Then, we use cu-
bic interpolation to extend the downsampled sewer disparity image in the
following subsection.

disparity(x, y) =
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(a)Downsampled disparity image (b)Nearest-neighbor interpolation

(c)Linear interpolation (d)Cubic interpolation

Figure 5.14: Different interpolation images of downsampled sewer disparity
image.




ds(0, 0) ds(7, 0) · · · ds(640, 0)
ds(0, 7) ds(7, 7) · · · ds(640, 7)

...
...

. . .
...

ds(0, 480) ds(7, 480) · · · ds(640, 480)




(5.13)

where ds(x, y) at the corner points are given by Eq. 5.12.

Interpolation

Interpolation techniques are used to estimate disparities at pixels other than
the corner points by extending the downsampled sewer disparity image.
There are various interpolation methods such as linear interpolation, nearest-
neighbor interpolation and cubic interpolation. The simplest method among
them is linear interpolation, but it is not very precise. The nearest-neighbor
interpolation method assumes that the value of a point equals that of its
nearest neighbor point. The cubic interpolation is the simplest method that
provides smooth change in disparities using a polynomial of the third order.
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Figure 5.15: Key’s cubic interpolation kernel.

We evaluate these interpolation methods in interpolating the downsampled
sewer disparity image shown in Fig. 5.14. The cubic interpolation pro-
vides smooth change in disparities in sewer environment. In order to obtain
smoother interpolation, several alternative interpolants have been proposed.
The cubic interpolation kernel proposed by Keys [62] is given by the following
equation and is shown in Fig. 5.15.





f0(d) = 3
2
|d|3 − 5

2
|d|2 + 1, if0 ≤ |d| ≤ 1

f1(d) = −1
2
|d|3 + 5

2
|d|2 − 4|d|+ 2, if1 ≤ |d| ≤ 2

0, else
(5.14)

where d is the distance between a pixel to be estimated and one of the
surrounding 16 pixels. An example of the calculation of the new pixel value
is shown in Fig. 5.16. To compute diparity value at (x, y), we use the
surrounding 16 pixels with known disparity values in the downsampled sewer
disparity image. Note that fig.5.16 uses local coordinate system in contrast
to global coordinate system in Eq.(5.13). As shown in Fig. 5.16, firstly, the
average disparity value for each horizontal line is calculated by Eq.(5.15),
where f1(d) and f0(d) are given by Eq.(5.14).

dave(1, y) = ds(1, 1)× f1(1.7) + ds(1, 2)× f0(0.7)

+ds(1, 3)× f0(−0.3) + ds(1, 4)× f1(−1.3)

dave(2, y) = ds(2, 1)× f1(1.7) + ds(2, 2)× f0(0.7)

+ds(2, 3)× f0(−0.3) + ds(2, 4)× f1(−1.3)

dave(3, y) = ds(3, 1)× f1(1.7) + ds(3, 2)× f0(0.7)

+ds(3, 3)× f0(−0.3) + ds(3, 4)× f1(−1.3)
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Figure 5.16: An example of the calculation of the new pixel value.

dave(4, y) = ds(4, 1)× f1(1.7) + ds(4, 2)× f0(0.7)

+ds(4, 3)× f0(−0.3) + ds(4, 4)× f1(−1.3)

(5.15)

Secondly, we use the average disparity value of the four new value, dave(1, y),
dave(2, y), dave(3, y) and dave(4, y), to compute the disparity value at new pixel
d′(x, y), as follow.

d′(x, y) = dave(1, y)× f1(1.7) + dave(2, y)× f0(0.7)

+dave(3, y)× f0(−0.3) + dave(4, y)× f1(−1.3)

(5.16)

5.4.2 Experimental results

To evaluate the performance of the proposed algorithm, we use two stereo
images shown in Figs.5.17 and 5.18. The images in Fig. 5.17 are under bright
illumunation and the images in Fig. 5.18 are under dimmed illumination.

Before matching, we first use a gaussian filter (windows size 7 × 7, σ = 3)
for smoothing the images to reduce quantization errors and noises. The
image is 640 × 480 pixels. Values of parameters used in the experiment are
as follows:
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(a)Left image (b)Right image

Figure 5.17: The first pair of stereo images of sewer pipe under bright illu-
mination.

(a)Left image (b)Right image

Figure 5.18: The second pair of stereo images of sewer pipe under dimmed
illumination.

1. We divide image into several 8×8 blocks;

2. The window size for calculating both the SSD and the cross-correlation
is 7×7 pixels.

3. Weighting parameter G0 is 32.

Fig. 5.19 illustrates the disparity images obtained by the conventional
SSD, the cross-correlation and the proposed method under bright and dimmed
illumination . To evaluate the error of the distance, we randomly choose a
set of pixels near the feature area such as the manhole in the images. Then
distance error in the experiment is given by;

error = |d− d0| (5.17)

where d0 is the real distance between the camera and a point under con-
sideration in the sewer and d is the corresponding estimated distance. The
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distance errors of various methods are shown in Fig. 5.20. The distance er-
rors by our method is significantly smaller than those by other conventional
methods.

(a)The conventional SSD (b)The conventional SSD
(under bright illumination) (under dimmed illumination)

(c)The cross-correlation (d)The cross-correlation
(under bright illumination) (under dimmed illumination)

(e)The proposed method (f)The proposed method
(under bright illumination) (under dimmed illumination)

Figure 5.19: Disparity images.

We also evaluate the distance errors for different interpolation methods
in our proposed method in Fig.5.21. NN (nearest-neighbor) has much larger
error than those by linear and cubic interpolation. Also the error of cubic
interpolation is smaller than that of linear, but not much difference in com-
putational time as shown in Table 5.2. Here, we focus on the distance error,
hence choose the cubic interpolation in our method due to the smallness of
distance errors.

Fig. 5.22 presents the average computational time using the above meth-
ods. The computational time by the our method is much smaller; only about
1/20 compared with those by other measures.
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Figure 5.20: Distance errors of various methods.

Figure 5.21: Distance errors for different interpolation methods in our pro-
posed method.

5.4.3 Conclusions

We have developed a fast stereo matching algorithm using cubic interpolation
in this paper. The algorithm successfully produces a good visible distance
image of the sewer. Cubic interpolation drastically reduces the computational
cost. The computational time by our algorithm is only 1/20 of those by the
conventional algorithms such as the SSD. Hence it is suitable for our real-
time sewer vision system. The average error of the sewer evidently decreased
down to 5.3cm.

5.5 Fusion of camera and laser scanner

Sewer environment is composed of cylindrical pipes, in which only a few land-
marks such as manholes, inlets and pipe joints are available for localization.
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Table 5.2: Mean error and computation time.
Measure Mean error (cm) Computation time (s)

NN 14.7 6.1
Linear 7.4 6.4
Cubic 5.3 8.9

Figure 5.22: Comparison of computational time.

In this section, we present a method for navigation of an autonomous inspec-
tion robot in a sewer pipe system based on detection of landmarks [65, 71].
In this method, location of an autonomous sewer inspection robot in the
sewer pipe system is estimated from stereo camera images. The laser scan-
ner data are also used to ensure accurate localization of the landmarks and
reduce the error in distance estimation by image processing. The method is
implemented and evaluated in a sewer pipe test field using a prototype robot,
demonstrating its effectiveness.

The proposed method in Fig. 5.23 is composed of two stages: estimation
of the location of a mobile robot and detection of landmarks. Firstly, a stereo
sewer image is captured by the stereo camera on KANTARO. Secondly, we
extract two rectangular Region of Interest(ROI) images for the manholes,
inlets and joints, and detect edges in each ROI image. Thirdly, a fast and
accurate stereo matching measure (LC) is applied to these ROI images to
estimate the distances between the robot and landmarks. Fourthly, we refine
the estimated distances using a threshold elimination function. If the refined
distance is less than 10cm, we check the laser scanner data to detect the
landmark. Finally, the refined estimates of location of the robot and the
landmarks are used for navigation.
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Figure 5.23: Overview of the proposed method.

(a)The rectangular ROI image (b)The rectanglular ROI
for the manhole and inlet image for the joint

Figure 5.24: Original image and the extracted rectangular ROI images.

Edge detction in extracted rectangular ROI image

In sewer pipe systems, manholes, inlets or joints are always located in partic-
ular parts of the sewer image; the manholes and inlets are always in the upper
part of the sewer image, and the joints are always in the central part of the
image. Fig. 5.24 illustrates the original image and the extracted rectangular
ROIs of manholes, inlets and joints.

After the extraction of ROI, we use the canny edge detector to get the
edges in ROI. The Canny edge detection algorithm [63] is known to be the
optimal edge detector in terms of error rate. It introduced two kinds of
threshold for the gradient with hysteresis, i.e., the lower threshold T1 and
the higher threshold T2. The values of the threshold are determined based
on the following requirements. The first requirement is that edges in im-
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ages should not be overlooked and that non-edges should not be detected
as edges. The former corresponds to the error of the second kind, and the
latter corresponds to the error of the first kind in mathematical statistics.
The second requirement is that the edges be well localized. In other words,
the distance between the detected edge and the actual edge be minimum.
The third requirement is to produce only one response to each edge. This is
included because the first two are not enough to eliminate multiple responses
to an edge.

Based on these requirements, the canny edge detector firstly filters the
image to eliminate noise. It then finds the image area with large spatial
derivatives. The algorithm then tracks along these regions and any pixel in
an edge list with the gradient larger than the higher threshold is classified as
a valid edge. Pixels connected to a valid edge and with the gradient larger
than the lower threshold are also classified as an edge. The small value of the
higher threshold tends to increase the number of spurious and undesirable
edge fragments, hence should be avoided.

Distance measurement by stereo matching

An application of the conventional gradient measure for stereo matching [41]
to our sewer image generates disparities, which provide the distance map
based on the geometry of stereopsis [57]. The resulting distance map is
represented by the brightness of pixels; the larger the distance is, the darker
the pixel is. Due to the shadow, however, the conventional gradient measure
tends to produce fringes of the feature pixels in the distance map as in Fig.
5.6.

To overcome this difficulty, we propose a new measure (See 5.3.1) which
is suitable for matching of feature pixels.

Refinement of the measured distance

Fig. 5.25 illustrates two linear fits of the number of edge points by our
method. For computing the linear fits, we use a plenty of training images.
Firstly, the edges of training images are extracted by the Canny edge detector
using two sets of thresholds for the gradient, (T11 ,T21) and (T12 , T22). True
distances between the camera and landmarks are measured manually, and are
used for ground truth. Then, we make two linear fits between the number
of edge points extracted by two sets of thresholds for the gradient and the
corresponding true distance. Finally, a shorter distance τ1 is estimated by
the linear fit in Fig. 5.25(a), given the number of edge points. Similarly, a
longer distance τ2 is estimated by the linear fit in Fig. 5.25(b), given the
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(a) T11 = 50 and T21 = 150 (b) T12 = 50 and T22 = 250

Figure 5.25: Two linear fits of the number of edge points for two sets of
thresholds for the gradient.

number of edge points. These shorter and longer distances play a major role
in the subsequent computation.

We can estimate the distance between the robot and each landmark by
the stereo matching. We use the following threshold elimination function to
obtain refined distance by averaging estimated distances.

ρ(x) =





x (if τ1 ≤ x ≤ τ2)
τ2 (if x > τ2)
τ1 (if x < τ1)

(5.18)

Suppose the estimated distances between the robot and features of a
landmark are D = {d1, . . . , dNf

}, where Nf is the number of feature pixels
in ROI image. The refined distance, dr, is given by:

dr =
1

Nf

Nf∑

i=1

ρ(di) (5.19)

Detection of landmarks by a laser scanner

At the last stage, we compute the distance between the robot and each
landmark. In other words, when the robot reaches one of the landmarks, the
distance becomes zero and the system can detect it. However, the computed
distance based on stereo image still has some error, hence the laser scanner
data are applied to improve its estimation. If the refined distance is less
than 10cm, we regard that the robot is close enough to the corresponding
landmark. Then, the system checks the laser scanner data for still better
estimation.

As shown in Fig. 5.3, the laser scanner has three scanning windows at the
right, top and left. During one rotation of the laser scanner, the IR beam
passes three windows and provides three distance values. Table 5.3 gives
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(a)The manhole (b)Inlet at the right
side range of scanning

Figure 5.26: Typical landmarks detected.

estimation of landmarks based on the status of the distance measurements.
Our robot is designed for the pipes with the diameter ranging from 250
to 350mm. When the robot is moving inside the sewer pipe, the distance
measurement is between 125mm and 175mm. The distance value larger than
175mm is regarded as a distance measure at the landmarks.

Table 5.3: Estimation of the type of landmarks based on measurements.
Status No. Distance value larger than 175mm Estimated landmark type

0 none no landmark
1 at the top window manhole
2 at the left window inlet at the left
3 at the right window inlet at the right
4 at the top and at manhole with junction

the right or left window
5 at the top,

at the right window, robot is outside of the pipe
and at the left window

Fig. 5.26 illustrates typical places where the KANTARO detects the
manhole and inlet in moving through the pipe with diameter 300mm. The
rotation starts from the horizontal line (counterclockwisely).

5.6 Experimental results

To evaluate the effectiveness of the proposed method, we did a series of
experiments by running the KANTARO in the sewer test field.
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Figure 5.27: Samples of stereo images captured by KANTARO during its
movement in the sewer test field.

Self localization

This test demonstrates the accuracy of self localization by capturing stereo
images with size of 640×480 pixels such as shown in Fig.5.27. We used
the lower threshold T1 = 50 and the higher threshold T2 = 200 for edge
detection in each ROI images. Then the distance of feature pixels computed
by LC measure. Next, we used two differents sets of thresholds value for the
gradient, (T11 = 50, T21 = 150) and (T12 = 50, T22 = 250) for computing the
linear fit, as shown in Fig. 5.25. Finally, the distance error between refind
distance, dr, and the true distance between the camera and a point under
consideration in the sewer defined as the following;

error = |dr − d′| (5.20)

Table 5.4: The percentage of estimation of the distance with error less than
5cm.

Images type The number of images Rate(%)
Manhole 32 96.87

Joint 26 88.46
Inlet 12 91.66
Total 70 92.33

Table 5.4 presents the percentage of estimated distances with error less
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than 5cm. On the average, about 92% of input sewer images provide the
distances with small errors. Although the unstable illumination condition
in the real sewer pipe system may effect a large errors in the estimation of
the distance. We still have to perform further experiments to fine tune the
values of parameters used for edge detection to reduce the errors.

Navigation through sewer test field

(a)Route 1 (b)Route 2

Figure 5.28: Examples of test navigation routes.

This test demonstrates KANTARO’s ability in moving through a sewer
pipe to the goal by using the proposed method. This experiment requires
two basic perceptual abilities: detecting the landmarks and self localization.
Both must be executed with high precision, because misperception such as
turning action in straight pipe causes damage to KANTARO.

The mission of reaching the goal starting from the initial position is given
by a human operator. Fig. 5.28 provides two different routes in navigation.

When the robot moves along the route 1, it makes a turning action at
the first detected manhole with junction. Due to the position of the laser
scanner on KANTARO, the manhole is detected when the robot fully entered
into the manhole. At this moment, the robot can’t turn, because the front
wheel passed the junction entrance. To slove this problem, we modified the
action as follows; if the robot enters into the manhole and is to turn it moves
backward by 40cm and turns.

This mission is successfully achieved in our sewer test field with the max-
imum speed of 15cm/s.
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5.7 Conclusions and discussions

We have proposed a method for navigation in sewer pipe systems using the
robot platform, KANTARO. Our method uses stereo camera images and
laser scanner data for detecting landmarks. It is capable of self localization
of the sewer inspection robot, which cannot be done by the conventional
methods. The results of self localization experiment shows high performance
in providing the appropriate distance. We also design the new mobile laser
scanner for KANTARO. The locations of landmarks in sewer pipe system
are estimated successfully based on measurements. The laser scanner is fast
enough to continuously scan relevant pipe sections in the presence of land-
marks, while the KANTARO moves at ordinary inspection speed of up to
15cm/s. Also moving the KANTARO in our sewer test field by using the
proposed method was done successfully.
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Chapter 6

Conclusions

The purpose of this thesis is to elucidate the systems for detecting the faults
automatically and navigating system for autonomous sewer inspection robot.
The proposed systems can solve the “real-world” problems in civil robots,
such as, support the operator and reduce the human error, tends to time and
cost reduction. Below, I will summarize the contributions of the results from
each chapter.

In section 3.3 of chapter 3, I proposed an intelligent system for detecting
faulty areas automatically and implemented it in a real time system to solve
the “real-world” problems in civil robots. In contrast to the conventional
manual system, the proposed system can automatically detect faults and
run in real time. The experimental results of proposed method in section
3.4 showed high detection performance, 100%, when the false positive rate is
34%. This ratio is acceptable for sewer inspection, and the reduction of time
and cost are also realized.

The proposed method for navigation of an autonomous sewer inspection
robot is described in section 4.3 of chapter 4. It is capable of self localiza-
tion and landmark detection by using an IR and single camera sensors. In
our method, the images are captured by a CCD camera at the front of a
robot. The distance between robot and landmarks are estimated based on
image data. The exact locations of the landmarks are compute by IR sensor
data. Finally, information on the locations of a robot and landmarks are used
for fault localization and robot navigation. We also conducted experiments
for sewer robot navigation in a dry sewer test and results is shown in section
4.4. The experimental results showed high self localization computing perfor-
mance, 100%, and I conclude the single camera as a vision sensor is suitable
for our system. But, I also used stereo camera to observe its performance for
navigating, which is described in chapter 5.

In chapter 5, I proposed two stereo matching algorithms and I fused some

74



parts of first algorithms with laser scanner data to propose a method for nav-
igation of an autonomous sewer inspection robot. In section 5.3, I proposed
a new cooperative algorithm using a new matching measure of linear compu-
tation for a feature group and the conventional Sum of Squared Differences
(SSD) with constraints for a non-feature group. In this algorithm, the ref-
erence image is divided into the feature pixel group and the non-feature
pixel group. The LC measure, which has similarity with the gradient but
requires less computational cost, is used in the feature group, and the con-
ventional SSD with neighboring similarity and other constraints is applied to
the non-feature group. The computational time by this algorithm is about
1/5 compared with that by other algorithms such as the conventional SSD
(section 5.3.2). In section 5.4, I proposed a fast algorithm using cubic in-
terpolation and providing superior performance for autonomous inspection
robots. The proposed algorithm is regarded as a combination of a revised
Mayer’s algorithm and interpolation. At the outset, an image is divided into
many blocks. Then, a combined measure of the Sum of Squared Differences
(SSD) and cross-correlation is calculated at only the four corner points of
the blocks. A downsampled sewer disparity image is composed of only the
corner points. Finally, we extend the downsampled sewer disparity image
into a regular-sized disparity image by the cubic interpolation, taking ad-
vantage of continuous change of disparities in the sewer environment. The
computational time by our algorithm is only 1/20 of those by the conven-
tional algorithms such as the SSD. Hence it is suitable for our real-time sewer
vision system (section 5.4.2).

In section 5.5, I presented a method for navigation of an autonomous
inspection robot in a sewer pipe system based on detection of landmarks. In
this method, location of an autonomous sewer inspection robot in the sewer
pipe system is estimated from stereo camera images. The laser scanner data
are also used to ensure accurate localization of the landmarks and reduce
the error in distance estimation by image processing. The method is im-
plemented and evaluated in a sewer pipe test field using a prototype robot,
demonstrating its effectiveness (section 5.6).
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