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SYNOPSIS

In this paper we report the anomalous phenomena of total internal reflection of optical
plane waves at the boundary between lossless isotropic and lossless uniaxial anisotropic
dielectric media. When TE or TM plane waves impinge upon the interface from a high-
index isotropic medium region at a certain angle so as to be totally reflected, each amplitude
coeflicient of ordinary and extraordinary evanescent waves in anisotropic media diverges,
but they cancel out due to the phase difference of n. The total electromagnetic fields in
anisotropic media are, therefore, not divergent, but become indefinite at this incidence
angle. Moreover, the reflection coefficients also become indefinite at this angle because
of the boundary conditions. ,

This anomalous phenomenon occurs when the decay constants become equal of ordinary
and extraordinary evanescent waves in uniaxial anisotropic media whose optic axis lies
in the plane of boundary.

1. INTRODUCTION

Propagation of plane electromagnetic waves in lossless or lossy anisotropic media, and
reflection and transmission at the boundary between lossless isotropic and anisotropic
media have well been studied.!’2 And the phenomena of total internal reflection at the
boundary between two dielectric media have attracted much attention with respect to ray
shifts (Goos-Haenchen and Imbert shifts) upon reflection,34 waveguiding in thin-film
optical waveguides,’-¢ FTR spectroscopy,” and total reflection holography,? etc.

There are in general two characteristic (ordinary and extraordinary) waves in (uniaxial)
anisotropic media, to which two different indices of refraction belong. When a plane
electromagnetic wave is incident from an isotropic medium region, two characteristic
waves are, therefore, excited in an anisotropic medium, and they propagate with different
phase velocities. Except the cases where the direction of the wavenormal of incident
waves coincides with optic axis in lossless anisotropic media or with singular axis? in lossy
anisotropic media, to the author’s knowlegde, two refractive indices can not become
identical.

As will be shown in this paper, however, these two indices of refraction are able to
agree if the incidence angles are greater than two critical angles for total reflection of
ordinary and extraordinary waves in lossless uniaxial anisotropic media and the optic
axis lies in the boundary plane. The result is that the decay constants of ordinary and
extraordinary evanescent waves coincide, the amplitudes of each wave diverge, but two
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(ordinary and extraordinary) waves oscillate with out of phase. This causes the total
electric and magnetic fields in anisotropic media to be indefinite because the amplitudes
of the fields are expressed as 0/0. At the same time the reflection coefficients of the re-
flected fields in an isotropic medium region become also indefinite due to the boundary
conditions. ,

In 2 of this paper we give the reflection and transmission coefficients at the boundary
when TE or TM plane waves are incident upon a uniaxial anisotropic medium whose optic
axis lies in the boundary plane. In 3, the anomalies in the total internal reflection are
shown along with numerical examples, and the conditions for which the anomalies should
occur are derived in 4.

2. REFLECTION AND TRANSMISSION AT THE BOUNDARY

In Fig. 1 the upper half region (z <0) is occupied by a lossless isotropic dielectric with
refractive index n,, and the lower half region (z>0) filled with a lossless uniaxial aniso-
tropic medium whose indices of refraction are n, and #, for ordinary and extraordinary
waves, respectively. Permeability of each medium is assumed to be u, (permeability in
vacuum). For a monochromatic plane wave exp [i(wt—k-7)] (o: radian frequency,
k: wave vector, 7: position vector), Maxwell’s egs. in anisotropic media are reduced to
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Fig. 1 Geometry of the problem and the orientation { of optic axis. ¢, indicates the incidence (and
reflection) angle, and ¢, and ¢, are the refraction angles of ordinary (E,) and extraordinary (E,)
waves, respectively. O.A. denotes the optic axis.

kxE=pH, | (1a)
kxH=—g[£]E, (1b)

where E and H are electric and magnetic field vectors, respectively. ¢go[e] in (1b) (gq is a
permittivity in vacuum) denotes a dielectric tensor of uniaxial anisotropic media whose
optic axis lies in the boundary plane, and [¢] is given as

8ex =N2 c0s? { +n2sin? {

&y, =nZ sin? {4+ n2 cos? {

€. =" @
ey =8y =(n2—n2)sin{ cos {

Cyz Ty = Epy =8y, = 0
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where { is the angle between optic axis and positive y axis.
Suppose that a TE (EL) or TM (Ei,) wave

Bt = (Bl cos 0,, Ek, —Eisin8,) exp [ — ikx,z], (3a)

H!=Y(—x,EL, n,El, NEE) exp [—ikx,z], (3b)
is obliquily incident from an isotropic ‘medium region, tIAl.ere appear the reflected waves

—*'=( —Efycos 8, Ex, — 154 sih 0,) exp tikk,,z] , . (4a)

I—"I’-—-Y(KI,E']'-._-, n,Ef, NEE)exp [iki,z], , | » | (45)
in the isotropic medium region, and the tranémitted (ordinary and extraordinary) waves

E'=3 0. (@ms bps Cp)Enm €xp [ — kK21, (5a)

H =Y 0. (= Bums G — N, buN)E,, exp [— ikic,z], (5b)
in the anisotropic medium region, where

Y = ol

k=2n/A (A is a wavelength in vacuum), ’

N=n,sin6,, (6)

K,=+/nz—N?, ‘ ‘ @)

Jn?—=N? (N<n,)

T R ®
—iq, (Nzn,), ‘ . ‘
Jn2—{cos? { + (n2[nZ) sin? {} N?
Ke= [ (N <n,n.//ncos? { +nZsin? {) )
—iq. (NZn,n,/\/n?cos? {+n? sin?(),
qo=VN*ns, (10)
qo=+/{cos? [+ (nZ[n2)sin> [(JN2—n?. (11)

In egs. (3) through (5) we choose the field representation so as to satisfy the continuity of
x component kN of wave vectors, and the common factor exp [i(wt — kNx)] is suppressed.
Relations (6) to (11) are derived from the dispersion relation in the medium. Imaginary
K, and k, give rise to the ordinary and extraordinary evanescent waves, respectively. In
eq. (5) ¥ designates the sum of ordinary (o) and extraordinary (e) waves, and the direction
cosines a, b, ¢ are given as follows.

a,= —K2%cos {/\/IK,|> + N2 cos? {
b,=x2sin {/\/|x,|*+ N? cos? { (12)
c,=k, N cos {/\/|K,|>+N?cos? {

o= — k2 sin {/\/(IKc,|* + N?|k,|?) sin? { + n§ cos? {
b= —n? cos {[\/(|k,|* + N?|k,|?) sin? { + nZ cos? { (13)
¢.=Nx, sin {//(|x,|* + N?|x,|?) sin? { + n? cos? {

Applying the boundary condition that the tangential components of electric and magnetic
fields be continuous at the interface, we can obtain the reflection and transmission coeffi-



cients. These coefficients are defined as follows.

Efy 1=[ Tmm Tume By |
Ef gm TEE { EL }
E, | | ton tor
E, 1 tem t‘eE
The matrix elements are '
te = DBl + ) {a (e ,— n2) — Niye,}

— by, 1) {a (i, — 1)~ Nicye ) IR (14)
e = (b1, — k) {a,(c rco + 1)~ Nicyc,)

— by 12,) {a (i + n2) = Nicyc IR (15)
Tpm=2n,K,b,b (K, —1,)/R (16)
s = 20,76, {0,,(k,— K)— N(a,c,— a,c)} R 17
tomr =2n,,b (K, + K,)/R (18)
ton = —2n,0¢,b,(1c, +x,)/R 19)
tor = —2x,{a (i k,+n2)— Nk,c.}/R (20)
ter =2K,{a, (K%, +n2)— Nx,c,}/R (21)
R=b(x,+x.) {a,(x,Kx,+nZ)— Nk,c,} — by(k,+x,) {a(x K.+ nﬁ)’ —Nx,c.} (22)

In case of total reflection, we have the following relations®
 Irgel = Il =,
[Teml =Irmel =7, (23)
ul+vi=1,
Sum+ Pee=Pme+ PemE 7,

where ¢ypm, Orrs Pmes and @gy stand for the phases of ry, e, I'me, and rgy, respectively.

3. ANOMALY IN TOTAL REFLECTION

To investigate the reflection and transmission coefficients given in 2 in the case of total
internal reflection, we introduce the relation between g, and g,. Egs. (10) and (11) give
rise to the following

93— qi=(n}—n2)(N?sin> {—nl)/n]. 249
Because of n,#n,, we have from eq. (24)
4o=4e 25
when
Nsin{=n,, ie., n,sinf,sin{=n,. (26)

Now take notice of R, the denominator of all amplitude coefficients, in eq. (22). As seen,
R is antisymmetric with respect to the subscripts 0 and e. Therefore, we obtain

R=0 @7
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when g,=¢g, (Note that. we have a,/a,=b,/b.=c,Jc, if q,=q.; see eq. (28)). . In this case
the amplitudes of the transmission coefficients t ) to t,g of egs. (18) through (21) are seen
to diverge, for. the numerators don’t vanish. On the other it is easy to see that the re-
flection coefficients ryy to ryg of egs. (14) through (17) become indefinite (0/0) because
the numerators of these coefficients also become null when g,=¢q,. From now on we shall
call the incidence angles 6, which satisfy eq. (26) the anomalous incidence angles.
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Fig. 2 Transmission coefficient t,) of ordinary Fig. 3 Transmission coefficient t.; of extraordi-
evanescent wave for TM wave incidence. nary evanescent wave for TM wave in-
The solid and broken lines denote the cidence. Refer the caption of Fig. 2 as to
magnitude |t,;;| and the phase ¢,y, the lines and the parameter. Note that at
respectively. The phase variation is so the marked points (-) the phase differences
small that the plots of ¢,y are shown for between t,y and t,y are precisely 180°
{=80° and 45°. Though |t,, | becomes (see Fig. 2).

infinite and ¢,y is indefinite at sin 6,=
0.9183 and 0.9624 for {=80° (or 100°)
and 70° (or 110°), respectively, there is
no such anomalous behavior for {=45°
(or135°).

Now under eq. (25) we check how the fields are in uniaxial anisotropic media. From
eq. (5) it is seen that the wave-vectors of ordinary and extraordinary waves are precisely
the same. Substiution of eq. (25) into egs. (12) and (13) results in the folowing

a,: b,: c,=a,: b,: c,, (28)

which means the same direction of vibration of ordinary and extraordinary evanescent
waves. Next look into the amplitudes of ordinary and extraordinary evanescent waves.
To do this, the transmission coefficients t,,, and t,,, for the case of TM wave incidence
are plotted against sin 0, the sine of incidence angle in Figs. 2 and 3 with the rotation
angle { of optic axis as a parameter. These figures show that the magnitudes of t,,, and



t. diverge at the anomalous incidence angles corresponding to the paticular values of (.
Note that for {=45° or 135° there is no incidence angle at which the magnitudes of t,,,
and t,,, are infinite. - The reason will be made ¢lear in next 4. Moreover, as evident from
eqs.-(18) and (19), the magnitudes of the numerators of t,,, and t,, coincide perfectly when
4,=4q,, but the differénces of their phases are just 7 rads.® . The total fields which are the
sum of ordinary and extraordinary waves turn, therefore, indefinite in uniaxial anisotropic
media because the amplitudes have the form of 0/0. ‘

But the total fields are not divergent. This point is confirmed from the boundary
conditions. For example, in case of TM wave incidence, the following

I'em= botoM + beteM ‘ (29)

must always be satisfied for the y component of electric fields. rgy, however, is finite as
in Fig. 4.

The situations mentioned above are the very same for the case of TE wave incidence,
as seen from egs. (20) and (21), although the plots of t,z and t,; are not given here.
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Fig. 4 Conversion coefficient rgy for TM wave Fig. 5 Phase of reflection coefficients ryy and rgg.
incidence. There is no apparent feature The solid lire indicates ¢, which is almost
of anomaly, but at the marked points independent of {, and the other broken
() the values are not determined. curves denote ¢pz. At the marked points

(=) the values are indefinite.,

Now examine the reflected waves in an isotropic medium region. As mentioned before,
at the anomalous incidence angles, not only R of eq. (22) but also the numerators of
Twmms Teps Tem» and Iy become null.  This causes the amplitudes of reflected waves to be
indefinite. We show the plots of rgy(= —ryg) and the phases ¢y and ¢gg versus sin 6,
in Figs. 4 and 5, respectively. As inferred easily from Fig. 4 and the relation (23), the
magnitudes of ry, and rgg are nearly equal to unity, and hence omitted in Fig. 5.
Although there is no apparent anomalous features in these figures, there exist the anomalous
incidence angles as mentioned just above. In these figures, the dependence of ryy, I'ep,
and rgy on { is based upon the fact that for large incidence angles the main component of



electric fields of TM waves is the z component E, which does not “see’’ the effects of uni-
axial anisotropy due to ¢,, of eq. (2), while the E, of TE waves does ““see’’ the optic axis
through e,,. .

4. CONDITIONS FOR ANOMALOUS TOTAL REFLECTION

In precedi'ng 3 we have implicitly assumed that egs. (25) or (26) holds good. Now con-
sider the conditions for which eq. (26) be actually realized. Following inversely the process
of derivation of eq. (26), we notice that there is no necessity for x, and x, to be imaginary
in order to get eq. (26). As shown right below, however, eq. (26) is not satisfied in practice
for the real x, and «,; this implies that the anomaly of total reflection does take place only
when both ordinary and extraordinary waves are evanescent.

From the second form of eq. (26) we obtain, using the relation sin { <1, -

12 sin0,>n,/n,=sin6,., (30)

where 8,, is the critical angle for total reflection of an ordinary wave. The relation of
inequality (30) requires that n, should be larger than n, and the incidence angle 6, be
greater than 6,,.; the ordinary waves must be evanescent. This leads the extraordinary
waves to be also evanescent, for egs. (25) or (26) cannot be obtained if the ordinary wave is
evanescent and the extraordinary wave is not, or vice versa. The second of eq. (26) gives
also the following relation '

1>sin{>nn,, (31)

which provides the ranges of C in which the anomahes occur for 0°<6,<90°. 1In case of
sin{=1 we have a null g, and then the anomalies will not result because only an ordinary
wave is excited in uniaxial anisotropic media by the 1mp1ngement of TE waves, and only
an extraordinary wave by the 1nc1dence of TM waves. ~Becatise we choosé the following
materials '

n,=1.830 (SF optical glass),
n,=1.655, n,=1.485 (calcite),
at 1=0.6328 um in the example, the anomalies take place in the range
64.74° < <115.26° (£{£90°). 32

Dispersion curves of ordinary and extraordinary waves are depicted in Fig. 6 with {
as a parameter, in which the ordinate denotes «, and x, (the quarter- circle and ellipses
stand for the real k, and «,, respectively, and the parabolas for the magnitudes g, and ¢,
of imaginary x, and «,, respectively), and the abscissa indicates the x component N of the
normalized wavenumber. Solid curves belong to the ordinary waves, and the other to the
extraordinary waves. For {=45° or 135°, the parabolas of the ordinary and extraordinary
evanescent waves are crossed at the point N=2.3405 where eq. (26) should be satisfied.
But as seen from Figs. 2 to 5, the anomaly does not occur in this case because { does not
satisfy the relation (32). On the contrary for {=70° (or 110°) and {=80° (or 100°) which
satisfy the relation (32), two parabolas are crossed (see the inset in the Fig. 6), and then
the anomalies should really take place at the anomalous incidence angles. Although there
are also crossing points between the parabolas of the extraordinary evanescent waves and
the circle of the ordinary waves, it has no meaning because at these points x, is real while %,
is imaginary. It is inferred from Fig. 6 that two parabolas of ordinary and extraordinary
evanescent waves agree at N =n, for {=90°, and at infinite N for {=0. Consequently if
we are permitted to obtain the substances with very high-index of refraction n, with respect



) 14 )
0 2.0 N 3.0
Fig. 6 Dispersion curves of ordinary (solid lines) and extraordinary (broken curves) waves. Note that
for the part of eqauter- circles and ellipses #, and «, are real, but for the semi-parabolas
£, and «, are imaginary (x,= —iq,, £.=—iq.). In the inset g, and g, are depicted only near
the anomalous incidence angles for { =70° and 80°. At the crossed points between ¢, and g,
the anomalies take place.

to the indices n, and n, of a uniaxial anisotropic material, these anomalies would take place
for all incidence angles greater than two critical angles of the ordinary and extraordinary
waves, corresponding to the direction angle { of optic axis.

5. CONCLUDING REMARKS

In this paper we present theoretically the anomaly in total internal reflection along with
numerical examples. It takes place when TE or TM plane waves impinge upon the inter-
face from a high-index isotropic medium region at certain angles so that the decay constants
q, and g, become equal of ordinary and extraordinary evanescent waves in uniaxially
anisotropic media whose optic axis lies in the boundary plane. In the case that g, is nearly
equal to g,, the ordinary and extraordinary evanescent waves become almost identical and
the amplitudes of each evanescent wave diverge. But the cancellation between them occur
to make the total fields in anisotropic media finite. When ¢, equals exactly to q,, i.e.,
the ordinary and extraordinary waves are perfectly phase-matched, not only the total
electromagnetic fields in uniaxial anisotropic media but the reflected waves in isotropic
media become indefinite because the amplitudes have the form of 0/0. We have also



given the conditions for which these anomalies should occur.

That the ordinary and extraordinary waves are identical should mean that the anisotropic
media behaves as if they were isotropic, for there is no meaning in the distinction between
“ordinary’’ and “extraordinary’’ waves. Further investigations are needed.

In this paper we have discussed only the case where optic axis is in the boundary (x—y)
plane, because the relation (26) essential to the anomaly is not satisfied in the other cases
where the optic axis is contained in y—z or z—Xx plane.

In conclusion the anomaly of this type would also take place in biaxial anisotropic media,
and in the stratified structures containing the anisotropic media in which the ordinary
and extraordinary waves are evanescent.
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