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                               SYNOPSIS

  In this paper we report the anomalous phenomena of total internal refiection of optical
plane waves at the boundary between lossless isotropic and lossless uniaxial anisotropic
dielectric media. When TE or TM plane waves impinge upon the interface from a high-
index isotropic medium region at a certain angle so as to be totally reflected, each amplitude

coeMcient of ordinary and extraordinary evanescent waves in anisotropic media diverges,
but they cancel out due to the phase difference of n. The total electromagnetic fields in
anisotropic media are, therefore, not divergent, but become indefinite at this incidence
angle. Moreover, the reflection coeMcients also become indefinite at this angle because
of the boundary conditions.
  This anomalous phenomenon occurs when the decay constants become equal of ordinary
and extraordinary evanescent waves in uniaxial anisotropic media whose optic axis lies
in the plane of boundary.

1. INTRODUCTION
  Propagation of plane electromagnetic waves in lossless or lossy anisotropic media, and
reflection and transmission at the boundary between lossless isotropic and anisotropic
media have well been studied.i,2 And the phenomena of total internal reflection at the
boundary between two dielectric media have attracted much attention with respect to ray
shifts (Goos-Haenchen and Imbert shifts) upon reflection,3,4 waveguiding in thin-film
optical waveguides,5,6 FTR spectroscopy,7 and total reflection holography,8 etc.
  There are in general two characteristic (ordinary and extraordinary) waves in (uniaxial)

anisotropic media, to which two different indices of refraction belong. When a plane
electromagnetic wave is incident from an isotropic medium region, two characteristic
waves are, therefore, excited in an anisotropic medium, and they propagate with different
phase velocities. Except the cases where the direction of the wavenormal of incident
waves coincides with optic axis in lossless anisotropic media or with singular axis2 in lossy

anisotropic media, to the author's knowlegde, two refractive indices can not become
identical.

  As will be shown in this paper, however, these two indices of refraction are able to
agree if the incidence angles are greater than two critical angles for total reflection of
ordinary and extraordinary waves in lossless uniaxial anisotropic media and the optic
axis lies in the boundary plane. The result is that the decay constants of ordinary and
extraordinary evanescent waves coincide, the amplitudes of each wave diverge, but two
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(ordinary and extraordinary) waves oscillate with out of phase. This causes the total
electric and magnetic fields in anisotropic media to be indefinite because the amplitudes
of the fields are expressed as OIO. At the same time the refiection coeMcients of the re-
flected fields in an isotropic medium region become also indefinite due to the boundary
conditions.

  In 2 of this paper we give the reflection and transmission coeMcients at the boundary
when TE or TM plane waves are incident upon a uniaxial anisotropic medium whose optic
axis lies in the boundary plane. In 3, the anomalies in the total internal reflection are
shown along with numerical examples, and the conditions for which the anomalies should
occur are derived in 4.

2. REFLECTION AND TRANSMISSION AT THE BOUNDARY
  In Fig. 1 the upper half region (zÅqO) is occupied by a lossless isotropic dielectric with
refractive index n,, and the lower half region (zÅrO) fi11ed with a lossless uniaxial aniso-

tropic medium whose indjces of refraction are n. and n. for ordinary and extraordinary
waves, respectively. Permeability of each medium is assumed to be pto (permeability in
vacuum). For a monochromatic plane wave exp[i(tut-k'•r)] (to:radian frequency,
-k: wave vector, 7: position vector), Maxwell's eqs. in anisotropic media are reduced to
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Fig. 1 Geometry of the problem and the orientation C of optic axis. e. indicates the incidence (and

     refiection) angie, and 0. and 0, are the refraction angles of ordinary (E,) and extraordinary (E,)

     waves, respectively. O.A. denotes the optic axis.

                    -- -                    kxE=ptoH, , (la)
                    -- -                    kxH=-eo[e]E, (lb)
     --where E and H are electric and magnetic field vectors, respectively. so[e] in (lb) (6o is a
permittivity in vacuum) denotes a dielectric tensor of uniaxial anisotropic media whose
optic axis lies in the boundary plane, and [s] is given as

e.. = n3 cos2 4 + n2. sin2 4

s,, == nZ sin2 C+ ne cos2 4

e.. =nZ

e., = e,. == (n2. - n3) sin 4 cos 4

6yz= ezy= ezx = sx2 =O

(2)
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where 4 is the angle between optic axis and positive y axis.

  Suppose that a TE (Ek) or TM (Efu) wave

            'E-'i =(EM cos e,, EE, -- EKf sin e,) exp [- ikK,z], (3a)

            ilii =Y(-K.Ek, n.EM, NEk) exp [-ikK,z], (3b)
is obliquily incident from an isotropic medium region, there appear the reflected waves

            E-'r =(-- EM cos e,, ErE, -- EM sin e,) exp [ikK,z], (`la)

            .            H' :Y(K.E',, n,EM, NE'E) exp [ikK,z], (4b)
in the isotropic medium region, and the transmitted (ordinary and extraordinary) waves

             .            E' == 2.=.,. (a., b., c.)E. exp [-- ikK.z], (5a)
            .            H' "Y 2...,.(-' b.K., a.K. -- C.N, b.N)E., eXP [-"- ikK.z] , (5b)

in the anisotropic medium region, where

            Y = : V'eo/pto ,

            k == 2z/A (Z is a wavelength in vacuum) ,

            N=n, sin e., (6)
            K,=Vn;-N2, . , (7)
             .. ,,,I vtn2 -- N2- (NÅqno) (s)
                 K - i9o (N -År-- no),

                  VnZ -- {cos2 C+(n2.ln:) sin2 C}N2

             K.= (NÅqnone/Vn3 cos2 4+n2.sin2 4) (9)
                  - ige (N Z- n.n./VnZ cos2 C+ nZ sin2C),

             qo-,/?{7 2-=iiZ, (10)
            q. == vt{cos2 g+(ni/nZ) sin2 C}N2-nZ. (l 1)
In eqs. (3) through (5) we choose the field representation so as to satisfy the continuity of
x component kN of wave vectors, and the common factor exp [i(tut -- kNx)] is suppressed.
Relations (6) to (11) are derived from the dispersion relation in the medium. Imaginary
K. and K. give rjse to the ordinary and extraordinary evanescent waves, respectively. In
eq. (5) Z designates the sum of ordinary (o) and extraordinary (e) waves, and the direction
cosines a, b, c are given as follows.

ao= -K2 cos 41VlK.l2+N2 cos2 4

b.=: KZ sin 41 IK.I2 + N2 cos2 C

co :K. N cos 41"vllrc.l2+N2 cos2 4

a. : -- KZ sin 41v'(lK.l`+N21K.I2) sin2 4+ n8 cos2 4

b. = -" nZ cos CIV(1K.1`+N2IK.12) sin2 g+n2 cos2 4

(12)

c. =NK. sin 4/V'(lK.1`+N2lK.12) sin2 4+n2 cos2 4

(13)

  Applying the boundary condition that the tangential components of electric and magnetic
fields be continuous at the interface, we can obtain the reflection and transmission coeM-
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cients. These coeMcients are defined as follows.

                        E rMM rME rESf]
                        ErE rEM rEE LEEJ .

  ' .. Eo toM toE                         /tt                                             '                                  '

The matrix elements are

     rMM = [b.(Kp + Ke) {a,(KpK. -- n3) - NKpc,}

            -bo(Kp+Ko) {ae(KpKe'n3)-NKpCe}]/R (1 4)
     rEE = : [be(Kp -- K.) {a.(KpK. + np2) - NKpc.}

            -bo(Kp ""' Ko) {ae(KpKe+n;) -' NKpCe}]/R (15)

     rEM == 2npKpbobe(Ke-Ko)IR (16)
     rME=2npKp{a.a.(K.-K.) -- N(a.c.-a.c.)}/R (17)

     toM :2npKpbe(Kp+Ke)IR (18)
      teM :'2npKpbo(Kp+Ko)/R (19)
      toE="2Kp{ae(KpKe+nB)-NKpCe}/R (20)
      t.E=2K.{a.(K.K.+n;)-NK,c.}/R (21)
      R = be(Kp + rce) {ao(KpKo + n;) - NKpCo} - bo(rcp+ Ko) {ae(KpKe + n;),"NKpCe} (22)

  In case of total reflection, we have the following relations6

lrEAi = lrMMI = u ,

lrEMl=:lrMEI = v,

u2+v2 == 1,

ipMM + ÅëEE = ipME + ipEM Å} n ,

(23)

where diMM, diEE, ipME, and toEM stand for the phases of rMM, rEE, rME, and rErvi, respectively.

3. ANOMALY IN TOTALREFLECTION
  To investigate the reflection and transmission coeMcients given in 2 in the case of total

internal reflection, we introduce the relation between q. and g.. Eqs. (10) and (11) give
rise to the following

                     qZ-q2. ---- (nZ-nZ) (N2 sin2C- nZ)ln3. (24)
Because of n.#n., we have from eq. (24)

                                 q.= q. (25)
when

                   Nsin4= n., i,.e. n. sin e, sinC== n.. (26)
Now take notice of R, the denominator of all amplitude coeMcients, in eq. (22). As seen,
R is antisymmetric with respect to the subscripts o and e. Therefore, we obtain

                                  R-O (27)
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when q.=:q. (Note that.we•have a./a. =b,lb.==c./c. if q.siq.; see eq. (28)). , In this ca$e
the amplitudes' of the transmissipn coeMcients t.M to t.E of eqs. (18) through (21) are seen

to diverge, for the numerators don't vanish. On the other it is.easy to see that the re.
fiection coeMcients rMM to rME of eqs. (14) through (17) become indefinite (O/O) because
the numerators of these coeracients also becQme null when q. = q.. • From-now on we shall
call the incidence angles ep which satisfy eq. (26) the anomalous incidence angles.
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Fig. 2 Transmission coeMcient t.M of ordinary Fig. 3 Transmission coeMcient t,M of extraordi-

     evanescent wave for TM wave incidence. nary evanescent wave for TM wave in-
     The solid and broken lines denote the cidence. Referthecaption ofFig.2as to
     magnitude ltoMl and the phase ip.M, thelinesandtheparameter. Notethatat
     respectively. The phase variation is so the marked points (e) the phase differences
     sma11 that the plots of S6.M are shovvn for between t.M and t,M are precisely 1800

     4=80e and 450. Thoughlt.Ml becomes (see Fig• 2)•
     infinite and Åë.M is indefinite at sin e, ==

     O.9183 and O.9624 for g=800 (or 1000)
     and 70e (or 1100), respectively, there is

     no such anomarous behavior for 4=450
     (or1350).

  Now under eq. (25) we check how the fields are in uniaxial anisotropic media. From
eq. (5) it is seen that the wave-vectors of ordinary and extraordinary waves are precisely
the same. Substiution of eq. (25) into eqs. (12) and (13) results jn the folowing

                             ao: bo: Co= ae: be: Ce, (28)
which means the same direction of vibration of ordinary and extraordinary evanescent
waves. Next look into the amplitudes of ordinary and extraordinary evanescent waves.
To do this, the transmission coeMcients t.M and t.M for the case of TM wave incidence
are plotted against sin e,, the sine of incidence angle in Figs.2 and 3 with the rotation
angle 4 of optic axis as a parameter. These figures show that the magnitudes of t.M and
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t.M diverge at the anpmalous incidence angles corresponding to the paticular values of 4.
Note.that.for C= 450 Qr 135P there is no inci,dence angle at which the magnitudes of t.M
an• d t.M'are'infinite.' The reasonwill be.made Lcl{:arin next 4. Moreoveri,as evid, en.t from
eqs.•(18) and'(19),-the magnitudes'of the nu. M, erato. rs .oft.M and t.M coincide.pe.rfectly .when

q. :q., but the difference.s, Qf their phases are just z rads.9 .The total fields. which are the

sum of ordinarY and extraQrdinary waves turn, therefore, indefinite in uniaxial anisotropt'c

media because the amplitudes have the form of O/O.
  But the total fields are not divergent. This point is confirmed from the boundary
conditions. For example, in case of TM wave incidence, the following

                            rEM=botoM+beteM ' (29)
must always be satisfied for the y component of electric fields. rEM, however, is finite as
in Fig. 4.

  The situations mentioned above are the very same for the case of TE wave ineidence,
as seen from eqs. (20) and (21), although the plots of t.E and t.E are not given here.

80
(IOO)

" rr
(PEM

    tpMM

2 -2

r
ÅëEE

l
I

 1

g2

o

      •9o .gs sinep Lo .o .gs Snep t.o
Fig. 4 Conversion coeMcient rEM for TM wave Fig. 5 Phase of refiection coeMcients rMM and rEE.

     incidence. There is no apparent feature The solid line indicates ÅëMM which is almost

     of anomaly, but at the marked points independent of'4, and the other broken
     (e) the values are not determined. curves denote ipEE. At the marked points
                                        (e) the values are indefinite.

  Now examine the reflected waves in an isotropic medium region. As mentioned before,
at the anomalous incidence angles, not only R of eq. (22) but also the numerators of
rMM, rEE, rEM, and rME become null. This causes the amplitudes of reflected waves to be
indefinite. We show the plots of rEM(== -rME) and the phases ipMM and ipEE versus sine.
in Figs. 4 and 5, respectively. As inferred easily from Fig. 4 and the relation (23), the

magnitudes of rMM and rEE are nearly equal to unity, and hence omitted in Fig.5.
Although there is no apparent anomalous features in these figures, there exist the anomalous

incidence angles as mentioned just above. In these figures, the dependence of rMM, rEE,
and rEM on 4 is based upon the fact that for large incidence angles the main component of
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electric fields of TM waves is the z component E. which dees not "see" the effects.of uni-
axial anisotropy due to e.. of eq. (2), while the E, of TE waves does "see" the optic axis

4. CONDITIONS FOR ANOMALOUS TOTAL REFLECTION
  In preceding 3 we have implicitly assumed that eqs. (25) or (26) holds good. Now con-

sider the conditions for which eq. (26) be actually•reahzed. Following inversely the process

of derivation of.gq. (26), we notice that there is no necessity for K. and K. to be imaginary
in order to get eq. (26). As shown right below, however, eq. (26) is not satisfied in practice

for the real K. and K.; this implies that the anomaly of total reflection does take place only
when both ordinary and extraordinary waves are evanescent.
  From the second form of eq. (26) we obtain, using the relation sin 451, '

                         12-. sin epÅrn.!n.= sin e.., (30)
where e.. is the critical angle for total refiection of an ordinary wave. The relation of
inequality (30) requires that n. should be larger than n. and the incidence angle ep be
greater than e..; the ordinary waves must be evanescent. This leads the extraordinary
waves to be also evanescent, for eqs. (25) or (26) cannot be obtained if the ordinary wave is

evanescent and the extraordinary wave is not, or vice versa. The second of eg. (26) gives
also the following relation

                         1 År sin C År n./n., ' '- (31)
which provides the ranges of.C in which the anomalie.s occur for OOÅqe.Åq900. In case of
sin C= 1 we have a null e.,, arid then the anomalies will not result because only an ordinary

wave is excited in uniaxial anisotropic media by the impingement of TE waves, and only
an extrEo.rdina'rY 'W'ave' bY'-''thelinClidence-bf TM Wa'v'es'i '-'Bi-C-a' U'se w"'e 'Chbb' se' the following

materials -
                       n,=1.830 (SF optical glass) ,

                        n. == 1.655, n, = 1.485 (calcite),

at Z=O.6328 ptm in the example, the anomalies take place in the range

                        64.740Åq4Åq115.260 (gt900). (32)
  Dispersion curves of ordinary and extraordinary waves are depicted in Fig. 6 with 4
as a parameter, in which the ordinate denotes K. and K. (the quarter- circle and ellipses
stand for the real K. and K., respectively, and the parabolas for the magnitudes q. and q.
of imaginary K. and K., respectively), and the abscissa indicates the x component N of the
normalized wavenumber. Solid curves belong to the ordinary waves, and the other to the
extraordinary waves. For 4=450 or 1350, the parabolas of the ordinary and extraordinary
evanescent waves are crossed at the point N==2.3405 where eq. (26) should be sati'sfied.
But as seen from Figs. 2 to 5, the anomaly does not occur in this case because4 does not
satisfy the relation (32). On the contrary forC=700 (or 1100) and 4=800 (or 1000) which
satisfy the relation (32), two parabolas are crossed (see the inset in the Fig. 6), and then
the anomalies should really take.place at the anomalous incidence angles. Although there
are also crossing points between the parabolas of the extraordinary evanescent waves and
the circle of the ordinary waves, it has no meaning because at these points K. is real while K.

is imaginary. It is inferred from Fig. 6 that two parabolas of ordinary and extraordinary
evanescent waves agree at N== n. for C=900, and at infinite N for 4==O. Consequently if
we are permitted to obtain the substances with very high-index of refraction np with respect
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Fig. 6 Dispersion curves of ordinary (sotid lines) and extraordinary (broken curves) waves. Note that

     for the part of eqauter- circles and ellipses rco and rce are rea1, but for the semi-parabolas

     rco and rce are imaginary (rco = -iqo, rce == -iq,). In the inset q. and q, are depicted only near

     the anomalous incidence angles for C=700 and 800. At the crossed points between q. and q,

     the anomalies take place.

to the indices n. and n. of a uniaxial anisotropic material, these anomalies would take place

for all incidence angles greater than two critical angles of the ordinary and extraordinary
waves, corresponding to the direction angle C of optic axis.

5. CONCLUDING REMARKS
  In this paper we present theoretically the anomaly in total internal reflection along with

numerical examples. It takes place when TE or TM plane waves impinge upon the inter-
face from a high-index isotropic medium region at certain angles so that the decay constants

q. and q. become equal of ordinary and extraordinary evanescent waves in uniaxially
anisotropic media whose optic axis lies in the boundary plane. In the case that q. is nearly

equal to q., the ordinary and extraordinary evanescent waves become almost identical and
the amplitudes of each evanescent wave diverge. But the cancellation between them occur
to make the total fields in anisotropic media finite. When q. equals exactly to q., i.e.,
the ordinary and extraordinary waves are perfectly phase-matched, not only the total
electromagnetic fields in uniaxial anisotropic media but the reflected waves in isotropic

media become indefinite because the amplitudes have the form of OIO. We have also
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given the conditions for which these anomalies should occur.
  That the ordinary and extraordinary waves are identical should mean that the anisotropic
media behaves as if they were isotropic, for there is no meaning in the distinction between

"ordinary" and "extraordinary" waves. Further investigations are needed.
  In this paper we have discussed only the case where optic axis is in the boundary (x-y)
plane, because the relation (26) essential to the anomaly is not satisfied in the other cases

where the optic axis is contained in y -- z or z-x plane.
  In conclusion the anomaly of this type would also take place in biaxial anisotropic media,

and in the stratified structures containing the anisotropic media in which the ordinary

and extraordinary waves are evanescent.
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