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                                Abstract

  Nonlinear systems are formally transformed into linear systems by introducing a sequence
of linearly independent functions. In this paper, we study the relationship between the
given nonlinear system and the corresponding formal linear system. The conditions for
isomorphic linearization are acquired. The isomorphic linearization between Euclidean
spaces is carried out by finitely many independent functions. An analytic nonlinear
system is isomorphically linearized on Hilbert space by the Taylor expansion and a periodic

nonlinear system, by the Fourier expansion.

I. INTRODUCTION
  There has been considerable interest in linearizing nonlinear systems (see [1]-[4], for
example). In [2], a formal linearization approach of nonlinear systems has been pro-
posed and applied to estimation and control problems. This approach transforms a given
nonlinear system on Euclidean space into a linear system on a certain function space by
introducing a sequence of linearly indep.endent functions. Thus the well-developed linear
theory of estimation and control has been successfu11y applied to the nonlinear system.
  The purpose of this paper is to study the relationship between the given nonlinear system

and the formal linear system. The isomorphism of the two systems is defined so that the
systems are related by diffeomorphism between two manifolds. One of the manifolds
is the state space of the given nonlinear system on Euclidean space, and the other is the
state space of the formal linear system on the function space. Conditions for the two
systems to be isomorphic is investigated. Moreover the following is studied here. A
nonlinear system for which finitely many independent functins suMce is isomorphically
linearized on Euclidean space. An ananytic nonlinear system is linearized on Hilbert
space by introducing certain polinomials as the linearly independent functions, namely by
the Taylor expansion. A periodic nonlinear system is also linearized on Hilbert space
by the trigonometric functions, namely by the Fourier expansion.

II. FORMALLINEARIZATION
  We consider a nonlinear system described by the differential equation

                    Åíi: ab(t) =f(t, x(t)) ((t,, x(t,))er) , .,(1)
which is defined on an open cylinder r' 4 TxMicRno+i, where • :d/dt, xER"o is an no-
dimensional state vector, Rk is a k-dimensional real Euclidean space with a natural to-
pology, R=:Ri, TcR is an interval of time t, MicR"o is a state space of x, f: r.Rno
is a vector valued function of class C'. A function of class Cr means an r times con-
tinuously differentiabel function if r= O, 1, 2,..., oo and an analytic function r =tu.
  Introducing a sequence of linearly independent functions of real values {1, dii(x), ip2(x),
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...
, ipN(x),...}, the nonlinear system 2i is transformed into a formal linear system 22 on a

function space Z as follows (see [2]).

  Let the function space Z include

                        M, =di(M,)4{ip(x): xGMi}

where

                     ip(X)=[dii(x), ip2(x),..., q6iv(x),...]'. (2)

The superscript Tmeans transposing and Åí denotes defining. The dynamic equation of
ipN(x) (N =1, 2, 3,...) is

                     di.(x(t)) == Odi.(x(t)10xT( t)f(t,x( t)). (3)

The right hand side is associated with

                                            co                      0gb.(x(t))/0x'(t)f(t, x(t))o E) ctNi(t)ipi(x(t))+ocivo(t) (4)
                                            i :1
where ctNieR for i=O, 1, 2,... and N== 1, 2, 3,..., so it follows that

                 .                ip(x(t))ÅqÅrA(t)ip(x(t))+b(t) di(x(t,))eM2 (5)
where

A(t) = ct11(t) ct12(t)•••ctIN(t)••• 1

ct21(t) ct22(t)•••ct2N(t)••• 1

ctN

i.(t) ctNi2(t)"'ctiN(t)'" j

                      b(t)=:[ctio(t) ct2o(t)"'ct]vo(t)"']T

                      q5(x(to)) == [q51(x(to)), ip2(x(to)),..., ipN(x(to))•••]T

Let us write an element of Z by z(t)==[zi(t), z2(t),...,zN(t),...]T. Since (X,(x)eM2cZ,
we regard ip(x) as an element of Z and derive a linear equation from (3) as follows :

                          Åri 2 : 2(t) =A(t)z(t) + b(t)

                         z(to) :gb(x(t,))EZ (6)
which is called "a formal linear system". We here give the definition of isomorphic
systems which comes from [5]. For (1) and (6) to make sense, it is necessary to interpret

them as Appendix B.
[DEFINITION]
  The two systems 2i and 22 of (1) and (6) are isomorphic if (I) ip:Mi--ÅrM2 is an
diffeomorphism and (II) dip(f(t, x(t)) :A(t)z(t)+b(t) for all (t, x(t)) er.

We will consider conditions for the isomorphism in the following sections.

III. ISOMORPHISM
  We now state and prove the isomorphism of a given nonlinear system with a corre-
sponding formal linear system.

[Theorem 1]
  Let 2t of (1) be a given system defined on r. Let Z2 of (6) be the corresponding
formal linear system. Then 2i and 22 are isomorphic on the two n-dimensional Cr-
manifolds Mi(cR"o) and M2(cZ) if the following assumptions hold :
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[A-i] (1) has a unique solution on r==rÅ~Mi where Mi is an ndimensional C'-mani-
   fold.
[A-ii] (6) of an initial value problem has a unique solution on T.

[A--iii] The equality" of (5) holds for r: ' •• L[•
                         di(x(t))=A(t)ip(x(t))+b(t). ' ' (7)
[A-iv] ip:Mi-ÅrM2isahomeomo'rphism. ' '•'••

(Proof)
  A differential equation (1) has a unique solution x(t)(te T) from [A--i], so its image
ip(x(t)) by a mapping ip js uniquely determined. Let us consider (7) a differential equation

defined on a linear space Z and integrate (7) on [to, t] cT:

                  qS(x(t)) - ip(x(to)) = Sl, (A(T)ip(x(T)) + b(T))dT .

Similary, regard (6) as a differential equation on Z, then we have

                      z(t) == z(to) + jl, (A(T)z(T) + b(T))dT .

From [A-ii] and the initial condition z(to) = di(x(to)), the last two equations indicate that,
for all (t, x(t)) e r,

                              z(t)=to(x(t)). (8)
That is, we have had the existence and the value of the solution of (6).

  Mi is assumed to be an n-dimensional C'-manifold. Let an atlas of Mi be {(Ua, Vz):
ZE A}. where A is an index set, Uz is an open set of Mi, Oz is an open set of Rn,, and
uta is a homeomorphism from Ua onto Oa. From Appendix (Al-c),

                     IPfz• lfrEi: yef,( Uan U,) . !Pfz( Uzn U,) (9)
is bi.iective and both !PtaoyefEi and (!fraolPfE')-` == !Pf.oyfr1' are of class C'.

  We turn to M2. From [A-iii], ip: Mi.M2 is a homeomorphism, so V2 =ip(U2) is an
open set of M2 =ip(Mi) such that M2 :vVz ((Al-a) hols).
                                ZEADefining haAutAoip-i: M2.R" for each Ze A, ha is an homeomorphism from Vz onto Oa
((Al-b) holds). It follows that

                hao hEi = (Wao ip- i)o(LPf.o di- i)- i = !Ptao !frE ',

                hA(Vz n V.)=utAoip-i(ip(Uz) n ip(U,))=Wa(Ua n U,) .

                h,(Vz n V,) :ut,(Ua n U.).

By these equalities and the property mentioned at (9),

                      haehEi: h,(Vz n V,) . hz(Va n V,)

is bijective and both haohEi and (h2ohEi)-' are of class C' ((Al--c) holds). Hence M2
has been given a structure of an n-dimensional C'-manifold by {(Vz, ha): Ze A } as shown
at Appendix Al. From Appendix A2, both ip and ip-' are•of class C' because

                      hzoipo!frT'==(gLf,oqb-')e(Poyij1' :1

                      Waoip-'ehi' :WzoÅë-i•(dioWxi) = 1

# The equalty means the following : The function of the left hand side is expanded into a series of the right

 hand side. Conversely, the seires of the right hand side converges to the function of the left hand side.
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where 1 is an identity map which is of class C'(r=co). Therefore, using [A--iii] and
Appendix A3, we have that di : Mi--ÅrM2 is a diffeomorphism (Definition (I) holds).
  Pay attention to (1) and (Bl) of Appendix B. For fixed (to, x(to)) Gr and any function

4of class C", it follows that , ., , , •-
                dto(f(t, x(t))(e,)Fdip(X.(t))(e) =(dx(t))d/du(4odi) .

                  =dldu(Coipox) (t)= d/du(4oip(x(t))). . (10)
Substituting (8) into (10) and using (B2) and (6) yield

                  dip(f(t, x(t))) (4)= dldu(eoz(t)) =dldu(4oz)(t)

                    = dz(t)dldu(4) == 2(t) (4)

                    -: (A(t)z(t) + b(t)) (4) ,

thus we have

                         dto(f(t, x(t))) -= A(t)z(t) + b(t)

(Definition (II) holds).

  After all, the two systems 2i and 22 are isomorphic. (Q.E.D.)
  We here remark a replacement for the assumption [A-i] of Theorem 1.
  Assume that
[A-v] Mi is an open set of R"o and Tis an open interval of R.
  r=TxMi is thus an open set of R"o'i. Then there exists a unique solution of the
differential equation (1) if the following holds (see [7]):

[A-vi] Bothf(t, x) and Of(t, x)/0x' are continuous on r.
By choosing an identity map as the coordinate functions Wa, Mi has a structure of an
n-dimensional Cr-manifold where n = no and r=tu. Therefore we have:

[Lemma] The assumption [A-i] of Theorem 1 is replaced by [A-v] and [A-vi].

  We will study a case of finitely many independent functions.

[Theorem 2]
  Let a nonlinear system of (1) be given. Assume that the number of linearly independent
functions required is finite and both A(t) and b(t) of (6) are continuous on the entire in-

terval T. If the assumptions of [A-i], [A-iii], and [A-iv] hold, then this nonlinear system

is isomorphically transformed into a linear system on a manifold contained in Euclidean

space.

(Proof)
  Let a vector of the linearly independent functions be gb(x)= [gbi(x),..., ipN(x)]T and the

function space be Z==RN. To R", we assign a natural Euclidean topology. A(t) and
bÅqt) are continuous, so there exists the unique solution of (6) and [A-ii] holds (see [7]).

Consequently the assumptions of Theorem 1 are all satisfied. (Q.E. D.)

  The fo11owing examples illustrate this situation.

[Example 1]
  Consider the nonlinear system :

                  2i:ab :Vax2+2bx+c (=f(x)) (11)
on Mi={xeR:ax2+2bx+cÅrO}, (x(to)AxoEMi)
where a, b and c are all constant. For this system, all assumptions of Theorem2 are
satisfied as follows. Thus this is isomorphically linearizable on Cca-manifolds.
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(Proof)

  1)[A--i]: Both f(x)== ax2+2bx+cand

                      Of(sc)/ax == (ax + b)/Vax2• + 2bx + c

are continuous on Mi. : .is[restptcted to an open interval of t such that

                     M2 9 xo + SI. viax2(T) + 2bxÅqT) + c dT.

[A-v] and [A-vi] are satisfied, so [A--1] holds by Lemma.

  2) [A-iii],A,b: Let us choose ipi(x)==x and ip2(x)=k=Vax2+2bx+e. [Aiii]
holds because

                    dip , (x)/dt = Oip ,(x)/Oxf(x) = : Åë,(x)

                    dip2(x)/dt = Oip2(x)/Oxf(x) = aip ,(x) + b .

These equations indicate that the linearly independent functions are {1, ipi(x), ip2(x)} and

are finite in number. Thus we define

                       di(x)=:[(Pl(x), ip2(x)]T= [x, ab]T

                           = [x, Vax2 +2bx + c]T .

In this case, the formal linear system is obtained as follows:

2(t)=
[2 6]z(t)+[2]

                     z(to) = ip(x(to)) = [xo, Vax3 + 2bxo + c]T 6 R2

whose coeMcients are constant, i.e., continuous.

  3) [A-iv]: The mapping ip:Mi.M2=ip(M,) is bijective, because if ip(x)=ip(x')
then ipi(x)=ipi(x') or x==x'eMi. We assign Mi the induced topology of R2. A p-
neighborhood of Mi is {xeMi;lx-plÅq11k} and a di(p)-neighborhood of M2 is

                2     {ip(x) e M2 ; 2 I di i(x) -- ip i(p) l2 Åq 11k2}. If 1x -pl .O then

               i==1
        2       2 1 ipi(x) - dii(p)I2 = (x -- p)2 +(Vax2 +2bx + c-- ap2 + 2bp + c)2
       i=1
         =(x - p)2(1 + (ax + ap + 2b)2)1( Vax2 + 2b)c + c+ ./ap2 + 2bp + c)2) ----År O ,

so ip is continuous. Let ip-i be a projection mapping:

                      ip-i: M, - Mi : ip(x) . ipi(X)•

  2If 2 lipi(x)---- ipi(p)l2---ÅrO then lipi(x) --- ipi(p)l---ÅrO or x--Årp, so ip-' is continuous. Therefore
  i= 1
ip : Mi--ÅrM2 is a homeomorphism.

  AppendixDgives the expressions of Mi and M2. (Q.E. D.)
[Example 2]
  Consider the scalar nonlinear system

                 2,: ab :(x+a)'-`/2k (x(to)4xoEMi) (12)
defined on Mi ={xGR:x+aÅrO} where aeR and k is a positive integer. This system
is also isomorphically linearizable by Theorem 2.
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(Proof) (OneLinearization)
  Paying attention that the m-th derivative gf x is

                   m-1              x(m) : n'(1'-. J12k)I(j•e+a)i: -m,1?k , .(l,Spl. S2k)
                    j--o
                 •ri•O • ''-• -• -• • -- (m ). 2k + 1). '=' , L ' .. : .

LetN=2k. Define ,, '' . ' . ,- I

              ip(x) =[(Pi(x),..., ipN(x)]T

                  S2i [x, 5t,..., x(2k -i)]T

                                   m-- 1                 = [x, (x+a)'-i/2k,..., ,"..,(1 -- j12k) (x+a)i-m/2k,

                       2k-2                    ..., H (1-j/2k) (x+a)i12k]'. (13)
                       j=o
Then we have a 2k-dimensional formal linear system

                     22: 2(t)=Az(t) +b z(t,)eR2k (14)
with

                    A=[g•..i.i..g, ]

                             2k--1                    b=[O,..., O, Jfi., (1-j/2k)]T

                                   2k-2             z(to) =[xo, (xo+a)'-i/2k,..., n (1 -- j/2k) (xo+a)i/2k]T.
                                   j--o
The isomorphism of 22 of (14) with ]Åíi of (12) is easily proven in a way similar to the
proof of Example 1. In this case, Z=R2k.
  di: Mi.M2 is continuous because

         2k         Z lipi(x) --• ipi(p)I2

         i=1
                    2k--1 m-1           == (x - p)2 + 2 n (1 -- j/2 k)2 ((x + a)i-m/2k --- (p + a)i'm12k)2 - o
                    m=1 j=O
as x.p. ip'i: M2.Mi is continuous because

                                      2k           l ip i(x) -p ip i(p)l = lx - pl --------År O as :IE l ip i(x) --• ip i(p)l2 -------e- O.

                                      i=1
  On the other hand, 2i is transformed into another form.
(Another Linearization)
  Let N= 2 and L== 2k. Define

              (P(x) == [ipi(x), ip2()c)]'== [(x+a)`/2k, (x+a)i/k]T. (ls)

Then we have a 2-dimensional formal linear system

                    23: 2(t) == Az(t) +b z(to)eR2 (16)
with
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"=" [?,,g] b:[ii3k]

                  Z(to) = [(xo+a)i12k, (xo+a)i/k]T.

Eq. - (14. ) is-also an•isomorphic formal• •linear system of (12) by 1 heorem 2. •• Iri this.-Case,

                                                                 'Z=R2. ip:Mi.M2 is continuous because • ' •"
                    2                    '2 lipi•(x) -- ipi(p)l2 == ((x+ a)i/2k -(p+a)i/2k)2
                    i=1
                      +((x+a)ilk-(p+a)'/k)2.0 as x---Årp.

                                                 2  ip'i: M,.M, is continuous because of the following: If ,;,lipi(x)-ipi(p)l2.0 then

            ip i(x) . di i(p) or (di?k(x) - a) - (ip?k(p) --- a), so

            l(iplk(x) - a) -- (ipik(p) - a)l == lx-pl . O .

The other conditions of Theorem 2 are shown to be satisfied easily. (Q.E. D.)

  Example 2 shows the fact that a nonlinear system can be isomorphically transformed
in some different formal linear systems. That is, the linearization is not unique. But
the corresponding formal linear systems are isomorphic to one another.
  In the next section, we wil1 consider the case of an analytic nonlinear function expanded
in a Taylor series.

IV. TAYLOR EXPANSION
We here study the isomorphism for analytic nonlinear systems by the Taylor exansion.
  Let (1) be given wherefis analytic. Throughout this section, the Taylor expansion is
carried out in a neighborhood of O assuming O G Mi without loss of generality.
  As the linearly independent functions, we choose a set of all polynomials in x which ap-
pear in the Taylor series. That is,

     ip(X) =[ipi(X), di2(x),..., ipiv(x),...]T

         :[Xl' JC2""' X"' Zi}T/ X?' 1!11! XIX2,"', rl!.1..r.! ll.il.,il X}i,''' ]T (17)

where the elements are arranged in lexicographic order. From (3),

                      .                      Åë(x(t))=0ip(x(t))!0x'(t)f(t, x(t)) .

Expanding Odi(x)!ax'f(t, x) in a Taylor series about x==O and putting x =x(t), it follows
that

                         .                         ip(x(t)) == A(t)ip(x(t))+b(t) (18)

                     A( t) = o(a ip(x)!a- xT f(t, x)) le ip T(x) 1 .=,

                     b(t) =(Oip(x)lax'f(t, x)) 1 ..o •

In this case, the next theorem follows:

[Theorem 3]
  Let a nonlinear system of(1) be given. Assume that r= TxMi is operi of Rno+i,fis
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analytic on T, and (6) of an initial value problem has a unique solution on T. Then by the

Taylor expansion, 2i and 22 are isomorphic on Mi and M2 which is an n-dimensional
Cca-manifold contained in Hilbert space (l2).

(ProoD
  Mi is. given an induced topQlogy .of R" sQ.that an o• pen,neighborhood base at pGMi
is { UYi(p) : k e N} With

                                    n                     UYi(p)={xeM,:2 (xi-p,)2Åq1/k2}. (19)
                                    i=1
Mi is then an n-dimensional Cco-manifold by putting

                        {(Ua, tha): ZG A}== {(Mi, 1)}

at Appendix Al. fis analytic on an open set r so [A-v] and [A--vi] hold, namely [A-1]
does. Oip(x)10xTf(t, x) is also analytic, so [A-iii] holds by using (18) and the property
of analytic function.

  A Hilbert space is

             (l2)={4-[4,, 4,,...]T: $Ii l4,l2Åqco, II411- VÅí 14,l2 }, (20)

                                l=1 i=1
while the elements of ip(x) of (17) lead to

                co co n               2 1 ip i(x) l2 S( 2 lipi(x) l)2 = (exp 2 Ixil - 1)2 Åq oo .

               i=1 i=1 i=1
These indicate that M2 is included in (l2) and

                               Z = (l2)DM,

by choosing (l2) as Z. In such a way, we have fixed a linear space Z which has contained

M2 as a subset and assigned a topology Z. We now give M2 an induced topology of Z.
  The mapping ip; Mi.M2 is onto. For any ip(x) = ip(x')GM2, it follows that

              X=: [ip1(X),•••, ipn(X)]T= [ip1(X'),•••, ipn(X')]T == X' G M2 ,

so ip is one to one. For all ze(l2), an open z-neighborhood base of (l2) is {Vk(z): keIV}

where

                                  co                     Vk(z) == {4 e (l2) : 2 14, - z,12 Åq 1/k2} .
                                  i=1
For all ip(p) e M2, the induced topology of M2 is generated by an open ip(p)-neighborhood
base { VkM2(ip(p)) : k e N} where

                                 co             VM2(ip(p)) == {ip(x)eM2:2 1ipi(x)-ip,(p)l2Åq11k2}. (21)
                                 i=1
In order to prove that ip is continuous on these topologies on Mi and M2, all we have to
            codo is to show 2 1ipi(x)-- ipi(p)12.0

            i=1 ,   nas 2 lxi--p,l2.0 for x, peMi from (19) and (21). From (C3) of Appendix C, it follows
thai i " 1

        tii-l]i lipi(X) -- ip` (P)l2= t9.i ,,+..t+..,,,i (r,!••1.r. !)2 ( t/l.l[, X'j' -- tP.,P;")2 --"in-" O

   nas 2 (xi--pi)2-O thus ip: Mi-.M2 is continuous.
  i=1
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  Let g be a projection mapping which projects the first n components of ip(x) :

        g: M2 ' Mi : [ipi(X),•••, din(X), ipn+i(X),•••]""k-'-' [ipi(X),•••, ip.(X)]T•'

Since di,(x) ==xi for i---1, 2, 3,..., n, UYi(p) of (19) may be written as

           USIf'(p) :{[ipi(x),•••,ip.(x)]'GMi: SE Iipi(x)--ipi(p)l2Åq1/k2'}.

                                        i :1

                                            n coTherefore in order thatg is continuous, it must be that ]Åí lipi(x)-ipi(p)12.0as E ldii(x)-
ipi(p)l2.o. This is ciearly satisfied, so g is continuousl=iNow, this g is the int=eirse map-

ping of di because iptg=1 and g•di=1. Thus ip-'==g: M2.Mi is continuous.
  After all, it has been proven that ip: Mi.M2 is a homeomorphism and [A--iv] holds.
                                                                (Q. E. D.)

  In the next section, we will consider the case of an periodic nonlinear function expanded
in a Fourier series.

V. FOURIER EXPANSION
  We study the isomorphism by the Fourier expansion. For simplicity, we here only treat
with the linearization of a scalar periodic system by the trigonometric Fourier expansion.

A multi-dimensional case is straightforward by making a direct product of scalars (see [2]).
That is, Eq. (1) ofn :1 is given on Mic(-- g, -ii-) andf(t, x) is a periodic function such

as smx, cosx, etc.
  The following trigonometric functions are chosen as the linearly independent functions:

I ip2,-i(x) :r'ct sin rx (ctÅr1/2 ts.

( ip2,(x) ==r-a cosrx Nr =1, 2, 3,...1

Thus ip(x) is

              ip(X)=[ip1(X), ip2(x),..., iplv(x),...,]T

                  == [sin x, cos x,..., N-ct sin Nx, N-a cos Nx,...]T. (22)

Expanding Oip(x)/Oxf(t, x) in a trigonornetirc Fourier series in x and putting x ==x(t), it
follows that

                            .                        22: Åë(x(t)) =A(t)ip(x(t))+b(t) (23)
with

                   A(t) :(2n ,:coE]., r-2ec)-i jl.Oip(x)/Oxf(t, x)ip(x)dx

                   b(t) =(2z)-' jZ-. Oip(x)/Oxf(t, x)dx .

In this case the next theorem fo11ows:

[Theorem 4]
  Let a scalar nonlinear system of (1) (n=1) be given. Assume thatf('t, x) is a periodic
function of period 2n in xEMi and [A-ii] [A-v] and [A--vi] hold. Then by the tri-
gonometric Fourier expansion, 2i of (1) and 22 of (23) areisomorphic onMi and M2
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(Proof)
  Since f(t, x) is a differentiable function of period 2z with respect to x, so is aip(x)1
Oxf(t, x). Thus [A-iii] holds by (23). The elements of ip(x) of (22) lead to

                     iSI} l ip,(x) l 2 = SI} r'2 ct(sin 2rx + cos 2rx)

                    r=1 r=1
                   t.t - co                             = 2 r-2orÅqco
                               rx1
which indicate's M2c(l2)cZ by choosing (l2) as Z. Therefore we have made a linear
space Z which has contained M2 as a subset and assigned Z a topology. The induced
topology of Z is now given to M2.
  It is assumed that Mic(- {i-, g)for simplicity. Ifip(x)==ip(x')eM2 then ipi(x)==

dii(x') or sin x=sin x' so x= x' eMi. Hence the mapping ip : M2.M2 : ip(M,) is bijective.
we recall that a ip(p)-neighborhood of M2 is the same form as (21). If lx-pl.O or x.p,
then

                eS sup ((sin rx -- sin rp)2 + (cos rx -cos rp)2) . O
                   reN
namely

      co co      2 1 ip.(x) -- di.(p)l2 = 2 r-2a((sin rx - sin rp)2 + (cos rx - cos rp)2) S. n6 ---År O

      r=1 r=1
         cowheren== 2 r-2a.
         r=1
Thus ip is continuous from Mi onto M2.
 - Let a'function g:M2"ÅrMi be defined as g(ip(x))==sin-iipi(x) where ip(x)= [dii(x),
ip2(x),...]TGM2. The function g is an inverse mapping of ip because ipog=1 and godi == 1.
Since M2 is assigned the indeced topology of (l2), the identity mapping 1 is continuous from
M2 into (l2). Define g""(z) = sin-` zi: e.R where

                     eA{z =[zi, z2,...]Te(l2): lzilÅq1} ,

and gN is continuous from 9c(l2) into R. Accordingly g=:gol:M2.MicR is con-
tmuous.
  After all, ip: Mi.M2 is a homeomorphism, and [A-iv] holds. (Q.E. D.)

VI. CONCLUSIONS
  We have studied the isomorphism between a given nonlinear system and a formal linear
system. The following cases have been treated: a general form including the others as
special cases, a linear combination of finitely many independent functions, a Taylor series,

and a trigonometric Fourier series.

  One would be interested in the study of the isomorphism when the formal linearization
method is applied to nonlinear estimation andlor nonlinear control problem. Further
studies including it are left for the future.

                             APPENDIX A
                      DEFINITIONS OF MANIFOLD
  ÅqAlÅr If the following conditions (Al-a) tv (Al-c) hold, then a Hausdorff space M has a
structure of differentiable manifold by an atlas {(Vz, ha): Ae A}, the dimension of M is
n, and M is refered to an n-dimensional C'-manifold or a manifold simply.
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 (Al-a) Given an open covering {Vz:ZeA} such that M':'=V Va.
                                                 aeA
  (Al-b) Given a homeomorphism hA: Va.ha(Vz) for each Ze A where VA and h2(V2)
are open sets of M and Rn respectively.
 (Al-c) Whenever VznV, is not empty, a function hzohEi:h,(VanV,).hz(VznV,)
is bijective and both haohEi and (haoh,)-i are of C' class.

ÅqA2År Let M and N be manifolds. A mapping ip: M-N is of C' class at peM if there
exist a(U. ut) at peUcM and a(Va. h) at ip(p)e VcN such that

                         hoipeWdi: W(U) . h(V)
is of C' class at ut(p).

ÅqA3År Let M and N be manifolds. A mapping ip: M-ÅrN is a diffeomorphism if ip is a
homeomorphism and both ip and di-i are of C' class.

                             APPENDIX B
                       SYSTEM ON MANIFOLD
 Let Mi be an n-dimensional C'-manifold contained in Rno. Let M2 be an n-
dimensional Cr-manifold contained in a topological linear space Z whose dimension may
be infinite. An open interval TcR is a 1-dimensional C'-manifold (r =ca) if u: t.t is
a coordinate function.

  We only consider the solutions {z(t)}cZof (4) such that z(t) eM2. Then, 2i and Z2
on the manifolds are interpreted as follows. x: T.Mi and z: T.M2 are C'-curves.
ab(t) is a tangent vector of x at te Tso that

                            ab(t)=dx(t)d/du (Bl)
where dx is a differential of x. z(t) is a tangent vector of z at tG Tso that

                             2(t) == dz(t)d/du (B2)
where dz is a differential of z. ddi is also a differential of di. For fixed te T, we regard

thatf(t, •) is a vector field on Mi and A(t)(•)+b(t) is a vector field on M2.

                                 APPENDIX C
                               CONTINUITY OF Åë
      We here study a continuity of ip: Mi.M2 of(11) in the TaYlor expansion. If S (xi-

                                                                   i=1
     pi)2-"O, then xi.pi for i=1, 2,..., n. For any sÅrO and a suMciently large integer No,
     it follows that

                   ,,+...+2aO,..N,(ri!..1.r.!)2(t/i.lliX;'J--tP.ip'J'J)2

' =ri+••t/lr.-N,(t/l.1,it'!-,n".,e,'f)2

                     S(ri+••tir.-N,tg.,f,I"l-te.,ell',)2

                     S(ri+••ti....,(t/l.l[,i;'j.i,"+tn.,iefi,'j))2

                      = ((eXP (lxil+"' +lxn1) - ,,.r.il.ll-,i.., t/i.I[, IX.'j.1!" )
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               + (eXP (IPil+"'+lpnl)" ,,.r.li.:','.., t.fi., llf'I!" ))2

             Es/2 .
The last inequality is due to a property of the exponential series. Let us fix 6ÅrO and
No so that (Cl) holds. By the mean value theorem, there existes KÅrO such that

                  tP'i i"! -t?, 9,'l =`=Kn6

for 15ri+•••+r.:No--1 and lxi--pilÅq6 (i---1,...,n). Thus, choosing a suMciently
small 6ÅrO yields

      ri+Y•tlll.-i(ri!••1•r.!)2(tlfi.,X;"-tP.,PJ'")25,,.Y.tL;.=,k2n262=Åq=e!2 (c2)

The sum of (Cl) and (C2) follows

            i2co-iri+-E+r.-i(r,!••1•r.!)2(te.,X:"-t/i.l,p;")25s• (c3)

                       APPENDIX D
                 EXPRESSION OF MANIFOLDS
 The manifolds Mi and M2 of Example 1 are expressed as follows.
 Define NS {y: ay2+2by+cÅrO}.

(i) A case of a:O:

    Mi = Ix(t) : x(t) =: t (xo + 9) (evi' + e- vit )

                 + 2ti axo+2bxo+c (eVat -- e'Vit)- -2- , x(t)eN)

M2= e(t),

e,(t)

4,(t)

-S- (xo+ e) (evit +e-vit)

 + iiJ72tr ax3+2bxo+c(evit-e-vit)- -2.

Va- b - .(Xo + ---)(eVat - e-Vat)

+ -il- V`ax3 +2bxo +c (eVit + e-vlt)

'

4i(t) eN

Åqii) A case of a=O:

        Mi= Ix(t): x(t)= -ll- bt2+V2bxo+ct+xo, x(t)eNl

        M2==Ie(t) [il[,'l]-[;'ie`i,;,)lib.X;'Ct'Xo], 4,(,)..l

Both (i) and (ii) are satisfied with M2={[x, Vax2+2bx+c]': xGMi}.
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