ON THE ISOMORPHISM OF FORMAL LINEARIZATION FOR NONLINEAR SYSTEMS

by
Hitoshi Takata
(Kyushu Institute of Technology)

(Received October 23, 1981)

Abstract

Nonlinear systems are formally transformed into linear systems by introducing a sequence of linearly independent functions. In this paper, we study the relationship between the given nonlinear system and the corresponding formal linear system. The conditions for isomorphic linearization are acquired. The isomorphic linearization between Euclidean spaces is carried out by finitely many independent functions. An analytic nonlinear system is isomorphically linearized on Hilbert space by the Taylor expansion and a periodic nonlinear system, by the Fourier expansion.

I. INTRODUCTION

There has been considerable interest in linearizing nonlinear systems (see [1]-[4], for example). In [2], a formal linearization approach of nonlinear systems has been proposed and applied to estimation and control problems. This approach transforms a given nonlinear system on Euclidean space into a linear system on a certain function space by introducing a sequence of linearly independent functions. Thus the well-developed linear theory of estimation and control has been successfully applied to the nonlinear system.

The purpose of this paper is to study the relationship between the given nonlinear system and the formal linear system. The isomorphism of the two systems is defined so that the systems are related by diffeomorphism between two manifolds. One of the manifolds is the state space of the given nonlinear system on Euclidean space, and the other is the state space of the formal linear system on the function space. Conditions for the two systems to be isomorphic is investigated. Moreover the following is studied here. A nonlinear system for which finitely many independent functins suffice is isomorphically linearized on Euclidean space. An ananytic nonlinear system is linearized on Hilbert space by introducing certain polinomials as the linearly independent functions, namely by the Taylor expansion. A periodic nonlinear system is also linearized on Hilbert space by the trigonometric functions, namely by the Fourier expansion.

II. FORMAL LINEARIZATION

We consider a nonlinear system described by the differential equation

$$
\begin{equation*}
\Sigma_{1}: \dot{x}(t)=f(t, x(t)) \quad\left(\left(t_{0}, x\left(t_{0}\right)\right) \in \Gamma\right) \tag{1}
\end{equation*}
$$

which is defined on an open cylinder $\Gamma \triangleq T \times M_{1} \subset R^{n_{0}+1}$, where $\cdot=d / d t, x \in R^{n_{0}}$ is an n_{0} dimensional state vector, R^{k} is a k-dimensional real Euclidean space with a natural topology, $R=R^{1}, T \subset R$ is an interval of time $t, M_{1} \subset R^{n_{0}}$ is a state space of $x, f: \Gamma \rightarrow R^{n_{0}}$ is a vector valued function of class C^{r}. A function of class C^{r} means an r times continuously differentiabel function if $r=0,1,2, \ldots, \infty$ and an analytic function $r=\omega$.

Introducing a sequence of linearly independent functions of real values $\left\{1, \phi_{1}(x), \phi_{2}(x)\right.$,
$\left.\ldots, \phi_{N}(x), \ldots\right\}$, the nonlinear system Σ_{1} is transformed into a formal linear system Σ_{2} on a function space Z as follows (see [2]).

Let the function space Z include

$$
M_{2}=\phi\left(M_{1}\right) \triangleq\left\{\phi(x): x \in M_{1}\right\}
$$

where

$$
\begin{equation*}
\phi(x)=\left[\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{N}(x), \ldots\right]^{T} \tag{2}
\end{equation*}
$$

The superscript T means transposing and \triangleq denotes defining. The dynamic equation of $\phi_{N}(x)(N=1,2,3, \ldots)$ is

$$
\begin{equation*}
\dot{\phi}_{N}(x(t))=\partial \phi_{N}\left(x(t) / \partial x^{T}(t) f\left(t_{1} x(t)\right)\right. \tag{3}
\end{equation*}
$$

The right hand side is associated with

$$
\begin{equation*}
\partial \phi_{N}(x(t)) / \partial x^{T}(t) f(t, x(t)) \Leftrightarrow \sum_{i=1}^{\infty} \alpha_{N i}(t) \phi_{i}(x(t))+\alpha_{N 0}(t) \tag{4}
\end{equation*}
$$

where $\alpha_{N i} \in R$ for $i=0,1,2, \ldots$ and $N=1,2,3, \ldots$, so it follows that

$$
\begin{equation*}
\dot{\phi}(x(t)) \Leftrightarrow A(t) \phi(x(t))+b(t) \quad \phi\left(x\left(t_{0}\right)\right) \in M_{2} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \begin{array}{c}
A(t)=\left[\begin{array}{cc}
\alpha_{11}(t) & \alpha_{12}(t) \cdots \alpha_{1 N}(t) \cdots \\
\alpha_{21}(t) & \alpha_{22}(t) \cdots \alpha_{2 N}(t) \cdots \\
\vdots & \vdots \\
\alpha_{N 1}(t) & \vdots \\
\vdots & \alpha_{N 2}(t) \cdots \alpha_{N N}(t) \cdots \\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots \\
\alpha_{10}(t) & \left.\alpha_{20}(t) \cdots \alpha_{N 0}(t) \cdots\right]^{T}
\end{array}\right]
\end{array} \\
& \phi\left(x\left(t_{0}\right)\right)=\left[\phi_{1}\left(x\left(t_{0}\right)\right), \phi_{2}\left(x\left(t_{0}\right)\right), \ldots, \phi_{N}\left(x\left(t_{0}\right)\right) \cdots\right]^{T}
\end{aligned}
$$

Let us write an element of Z by $z(t)=\left[z_{1}(t), z_{2}(t), \ldots, z_{N}(t), \ldots\right]^{T}$. Since $\phi(x) \in M_{2} \subset Z$, we regard $\phi(x)$ as an element of Z and derive a linear equation from (3) as follows:

$$
\begin{align*}
& \Sigma_{2}: \dot{z}(t)=A(t) z(t)+b(t) \\
& z\left(t_{0}\right)=\phi\left(x\left(t_{0}\right)\right) \in Z \tag{6}
\end{align*}
$$

which is called "a formal linear system". We here give the definition of isomorphic systems which comes from [5]. For (1) and (6) to make sense, it is necessary to interpret them as Appendix B.
[DEFINITION]
The two systems Σ_{1} and Σ_{2} of (1) and (6) are isomorphic if (I) $\phi: M_{1} \rightarrow M_{2}$ is an diffeomorphism and (II) $d \phi(f(t, x(t))=A(t) z(t)+b(t)$ for all $(t, x(t)) \in \Gamma$.
We will consider conditions for the isomorphism in the following sections.

III. ISOMORPHISM

We now state and prove the isomorphism of a given nonlinear system with a corresponding formal linear system.

[Theorem 1]

Let Σ_{1} of (1) be a given system defined on Γ. Let Σ_{2} of (6) be the corresponding formal linear system. Then Σ_{1} and Σ_{2} are isomorphic on the two n-dimensional C^{r}. manifolds $M_{1}\left(\subset R^{n_{0}}\right)$ and $M_{2}(\subset Z)$ if the following assumptions hold:
[A-i] (1) has a unique solution on $\Gamma=\Gamma \times M_{1}$ where M_{1} is an n-dimensional C^{r}-manifold.
[A-ii] (6) of an initial value problem has a unique solution on T.
[A-iii] The equality* of (5) holds for Γ :

$$
\begin{equation*}
\dot{\phi}(x(t))=A(t) \phi(x(t))+b(t) . \tag{7}
\end{equation*}
$$

[A-iv] $\phi: M_{1} \rightarrow M_{2}$ is a homeomorphism.

(Proof)

A differential equation (1) has a unique solution $x(t)(t \in T)$ from [A-i], so its image $\phi(x(t))$ by a mapping ϕ is uniquely determined. Let us consider (7) a differential equation defined on a linear space Z and integrate (7) on $\left[t_{0}, t\right] \subset T$:

$$
\phi(x(t))-\phi\left(x\left(t_{0}\right)\right)=\int_{t_{0}}^{t}(A(\tau) \phi(x(\tau))+b(\tau)) d \tau
$$

Similary, regard (6) as a differential equation on Z, then we have

$$
z(t)=z\left(t_{0}\right)+\int_{t_{0}}^{t}(A(\tau) z(\tau)+b(\tau)) d \tau
$$

From [A-ii] and the initial condition $z\left(t_{0}\right)=\phi\left(x\left(t_{0}\right)\right)$, the last two equations indicate that, for all $(t, x(t)) \in \Gamma$,

$$
\begin{equation*}
z(t)=\phi(x(t)) . \tag{8}
\end{equation*}
$$

That is, we have had the existence and the value of the solution of (6).
M_{1} is assumed to be an n-dimensional C^{r}-manifold. Let an atlas of M_{1} be $\left\{\left(U_{\lambda}, \psi_{\lambda}\right)\right.$: $\lambda \in \wedge\}$ where \wedge is an index set, U_{λ} is an open set of M_{1}, O_{λ} is an open set of R^{n}, and ψ_{λ} is a homeomorphism from U_{λ} onto O_{λ}. From Appendix (A1-c),

$$
\begin{equation*}
\psi_{\lambda} \cdot \psi_{\mu}^{-1}: \psi_{\mu}\left(U_{\lambda} \cap U_{\mu}\right) \longrightarrow \psi_{\lambda}\left(U_{\lambda} \cap U_{\mu}\right) \tag{9}
\end{equation*}
$$

is bijective and both $\psi_{\lambda^{\circ}} \psi_{\mu}^{-1}$ and $\left(\psi_{\lambda}{ }^{\circ} \psi_{\mu}^{-1}\right)^{-1}=\psi_{\mu}{ }^{\circ} \psi_{\lambda}^{-1}$ are of class C^{r}.
We turn to M_{2}. From [A-iii], $\phi: M_{1} \rightarrow M_{2}$ is a homeomorphism, so $V_{\lambda}=\phi\left(U_{\lambda}\right)$ is an open set of $M_{2}=\phi\left(M_{1}\right)$ such that $M_{2}=\cup V_{\lambda \in \Lambda}$ ((A1-a) hols).
Defining $h_{\lambda} \triangleq \psi_{\lambda} \circ \phi^{-1}: M_{2} \rightarrow R^{n}$ for each $\lambda \in \wedge, h_{\lambda}$ is an homeomorphism from V_{λ} onto O_{λ} ((A1-b) holds). It follows that

$$
\begin{aligned}
& h_{\lambda^{\circ}} h_{\mu}^{-1}=\left(\psi_{\lambda^{\circ}} \phi^{-1}\right) \circ\left(\psi_{\mu}^{\circ} \phi^{-1}\right)^{-1}=\psi_{\lambda^{\circ} \circ \psi_{\mu}^{-1}}, \\
& h_{\lambda}\left(V_{\lambda} \cap V_{\mu}\right)=\psi_{\lambda^{\circ}} \phi^{-1}\left(\phi\left(U_{\lambda}\right) \cap \phi\left(U_{\mu}\right)\right)=\psi_{\lambda}\left(U_{\lambda} \cap U_{\mu}\right) . \\
& h_{\mu}\left(V_{\lambda} \cap V_{\mu}\right)=\psi_{\mu}\left(U_{\lambda} \cap U_{\mu}\right) .
\end{aligned}
$$

By these equalities and the property mentioned at (9),

$$
h_{\lambda} \circ h_{\mu}^{-1}: h_{\mu}\left(V_{\lambda} \cap V_{\mu}\right) \longrightarrow h_{\lambda}\left(V_{\lambda} \cap V_{\mu}\right)
$$

is bijective and both $h_{\lambda} \circ h_{\mu}^{-1}$ and $\left(h_{\lambda}{ }^{\circ} h_{\mu}^{-1}\right)^{-1}$ are of class C^{r} ((A1-c) holds). Hence M_{2} has been given a structure of an n-dimensional C^{r}-manifold by $\left\{\left(V_{\lambda}, h_{\lambda}\right): \lambda \in \wedge\right\}$ as shown at Appendix A1. From Appendix A2, both ϕ and ϕ^{-1} are of class C^{r} because

$$
\begin{aligned}
& h_{\lambda}^{\circ} \phi \circ \psi_{\lambda}^{-1}=\left(\psi_{\lambda^{\circ}} \phi^{-1}\right) \circ \phi \circ \psi_{\lambda}^{-1}=1 \\
& \psi_{\lambda} \circ \phi^{-1} \circ h_{\lambda}^{-1}=\psi_{\lambda^{\circ}} \phi^{-1} \cdot\left(\phi \circ \psi_{\lambda}^{-1}\right)=1
\end{aligned}
$$

[^0]where 1 is an identity map which is of class $C^{r}(r=\omega)$. Therefore, using [A-iii] and Appendix A3, we have that $\phi: M_{1} \rightarrow M_{2}$ is a diffeomorphism (Definition (I) holds).

Pay attention to (1) and (B1) of Appendix B. For fixed $\left(t_{0}, x\left(t_{0}\right)\right) \in \Gamma$ and any function ξ of class C^{r}, it follows that

$$
\begin{align*}
& d \phi(f(t, x(t))(\xi)=d \phi(\dot{x}(t))(\xi)=(d x(t)) d / d u(\xi \circ \phi) \\
& \quad=d / d u(\xi \circ \phi \circ x)(t)=d / d u(\xi \circ \phi(x(t))) . \tag{10}
\end{align*}
$$

Substituting (8) into (10) and using (B2) and (6) yield

$$
\begin{aligned}
& d \phi(f(t, x(t)))(\xi)=d / d u(\xi \circ z(t))=d / d u(\xi \circ z)(t) \\
& \quad=d z(t) d / d u(\xi)=\dot{z}(t)(\xi) \\
& \quad=(A(t) z(t)+b(t))(\xi)
\end{aligned}
$$

thus we have

$$
d \phi(f(t, x(t)))=A(t) z(t)+b(t)
$$

(Definition (II) holds).
After all, the two systems Σ_{i} and Σ_{2} are isomorphic.
(Q. E. D.)

We here remark a replacement for the assumption [A-i] of Theorem 1.
Assume that
[A-v] $\quad M_{1}$ is an open set of $R^{n_{0}}$ and T is an open interval of R.
$\Gamma=T \times M_{1}$ is thus an open set of $R^{n_{0}+1}$. Then there exists a unique solution of the differential equation (1) if the following holds (see [7]):
[A-vi] Both $f(t, x)$ and $\partial f(t, x) / \partial x^{T}$ are continuous on Γ.
By choosing an identity map as the coordinate functions ψ_{λ}, M_{1} has a structure of an n-dimensional C^{r}-manifold where $n=n_{0}$ and $r=\omega$. Therefore we have:
[Lemma] The assumption [A-i] of Theorem 1 is replaced by [A-v] and [A-vi].
We will study a case of finitely many independent functions.
[Theorem 2]
Let a nonlinear system of (1) be given. Assume that the number of linearly independent functions required is finite and both $A(t)$ and $b(t)$ of (6) are continuous on the entire interval T. If the assumptions of [A-i], [A-iii], and [A-iv] hold, then this nonlinear system is isomorphically transformed into a linear system on a manifold contained in Euclidean space.

(Proof)

Let a vector of the linearly independent functions be $\phi(x)=\left[\phi_{1}(x), \ldots, \phi_{N}(x)\right]^{T}$ and the function space be $Z=R^{N}$. To R^{N}, we assign a natural Euclidean topology. $\mathrm{A}(t)$ and $b(t)$ are continuous, so there exists the unique solution of (6) and [A-ii] holds (see [7]). Consequently the assumptions of Theorem 1 are all satisfied.
(Q.E.D.)

The following examples illustrate this situation.

[Example 1]

Consider the nonlinear system:
on

$$
\begin{align*}
& \Sigma_{1}: \dot{x}=\sqrt{a x^{2}+2 b x+c} \quad(=f(x)) \tag{11}\\
& M_{1}=\left\{x \in R: a x^{2}+2 b x+c>0\right\}, \quad\left(x\left(t_{0}\right) \triangleq x_{0} \in M_{1}\right)
\end{align*}
$$

where a, b and c are all constant. For this system, all assumptions of Theorem 2 are satisfied as follows. Thus this is isomorphically linearizable on C^{ω}-manifolds.
(Proof)

1) [A-i]: Both $f(x)=\sqrt{a x^{2}+2 b x+c}$ and

$$
\partial f(x) / \partial x=(a x+b) / \sqrt{a x^{2}+2 b x+c}
$$

are continuous on $M_{1} . \quad T$ is restricted to an open interval of t such that

$$
M_{2} \ni x_{0}+\int_{t_{0}}^{t} \sqrt{a x^{2}(\tau)+2 b x(\tau)+c} d \tau
$$

[A-v] and [A-vi] are satisfied, so [A-1] holds by Lemma.
2) [A-iii], A, b: Let us choose $\phi_{1}(x)=x$ and $\phi_{2}(x)=\dot{x}=\sqrt{a x^{2}+2 b x+c}$. [Aiii] holds because

$$
\begin{aligned}
& d \phi_{1}(x) / d t=\partial \phi_{1}(x) / \partial x f(x)=\phi_{2}(x) \\
& d \phi_{2}(x) / d t=\partial \phi_{2}(x) / \partial x f(x)=a \phi_{1}(x)+b .
\end{aligned}
$$

These equations indicate that the linearly independent functions are $\left\{1, \phi_{1}(x), \phi_{2}(x)\right\}$ and are finite in number. Thus we define

$$
\begin{aligned}
\phi(x) & =\left[\phi_{1}(x), \phi_{2}(x)\right]^{T}=[x, \dot{x}]^{T} \\
& =\left[x, \sqrt{a x^{2}+2 b x+c}\right]^{T} .
\end{aligned}
$$

In this case, the formal linear system is obtained as follows:

$$
\begin{aligned}
& \dot{z}(t)=\left[\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right] z(t)+\left[\begin{array}{l}
0 \\
b
\end{array}\right] \\
& z\left(t_{0}\right)=\phi\left(x\left(t_{0}\right)\right)=\left[x_{0}, \sqrt{a x_{0}^{2}+2 b x_{0}+c}\right]^{T} \in R^{2}
\end{aligned}
$$

whose coefficients are constant, i.e., continuous.
3) [A-iv]: The mapping $\phi: M_{1} \rightarrow M_{2}=\phi\left(M_{1}\right)$ is bijective, because if $\phi(x)=\phi\left(x^{\prime}\right)$ then $\phi_{1}(x)=\phi_{1}\left(x^{\prime}\right)$ or $x=x^{\prime} \in M_{1}$. We assign M_{1} the induced topology of R^{2}. A p neighborhood of M_{1} is $\left\{x \in M_{1} ;|x-p|<1 / k\right\}$ and a $\phi(p)$-neighborhood of M_{2} is

$$
\begin{aligned}
& \left\{\phi(x) \in M_{2} ; \sum_{i=1}^{2}\left|\phi_{i}(x)-\phi_{i}(p)\right|^{2}<1 / k^{2}\right\} . \text { If }|x-p| \rightarrow 0 \text { then } \\
& \quad \sum_{i=1}^{2}\left|\phi_{i}(x)-\phi_{i}(p)\right|^{2}=(x-p)^{2}+\left(\sqrt{a x^{2}+2 b x+c}-\sqrt{a p^{2}+2 b p+c}\right)^{2} \\
& \left.\quad=(x-p)^{2}\left(1+(a x+a p+2 b)^{2}\right) /\left(\sqrt{a x^{2}+2 b x+c}+\sqrt{a p^{2}+2 b p+c}\right)^{2}\right) \longrightarrow 0,
\end{aligned}
$$

so ϕ is continuous. Let ϕ^{-1} be a projection mapping:

$$
\phi^{-1}: M_{2} \longrightarrow M_{1}: \phi(x) \longrightarrow \phi_{1}(x) .
$$

If $\sum_{i=1}^{2}\left|\phi_{i}(x)-\phi_{i}(p)\right|^{2} \rightarrow 0$ then $\left|\phi_{1}(x)-\phi_{1}(p)\right| \rightarrow 0$ or $x \rightarrow p$, so ϕ^{-1} is continuous. Therefore $\phi: M_{1} \rightarrow M_{2}$ is a homeomorphism.

Appendix D gives the expressions of M_{1} and M_{2}.

[Example 2]

Consider the scalar nonlinear system

$$
\begin{equation*}
\Sigma_{1}: \dot{x}=(x+a)^{1-1 / 2 k} \quad\left(x\left(t_{0}\right) \triangleq x_{0} \in M_{1}\right) \tag{12}
\end{equation*}
$$

defined on $M_{1}=\{x \in R: x+a>0\}$ where $a \in R$ and k is a positive integer. This system is also isomorphically linearizable by Theorem 2.

(Proof) (One Linearization)

Paying attention that the m-th derivative of x is

$$
\begin{array}{rlrl}
x^{(m)} & =\prod_{j=0}^{m-1}(1-j / 2 k)(x+a)^{1-m / 2 k} & (1 \leqq m \leqq 2 k) \\
& =0 & & \\
& & & (m \geqq 2 k+1) .
\end{array}
$$

Let $N=2 k$. Define

$$
\begin{align*}
\phi(x)= & {\left[\phi_{1}(x), \ldots, \phi_{N}(x)\right]^{T} } \\
\triangleq & {\left.\left[x, \dot{x}, \ldots, x^{(2 k-1}\right)\right]^{T} } \\
= & {\left[x,(x+a)^{1-1 / 2 k}, \ldots, \prod_{j=0}^{m-1}(1-j / 2 k)(x+a)^{1-m / 2 k},\right.} \\
& \left.\ldots, \prod_{j=0}^{2 k-2}(1-j / 2 k)(x+a)^{1 / 2 k}\right]^{T} . \tag{13}
\end{align*}
$$

Then we have a $2 k$-dimensional formal linear system

$$
\begin{equation*}
\Sigma_{2}: \dot{z}(t)=A z(t)+b \quad z\left(t_{0}\right) \in R^{2 k} \tag{14}
\end{equation*}
$$

with

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
0 & 1 & \cdots \\
& \ddots & 0 \\
& \ddots & \vdots \\
0 & & 0
\end{array}\right] \\
b=\left[0, \ldots, 0, \prod_{j=0}^{2 k-1}(1-j / 2 k)\right]^{T} \\
z\left(t_{0}\right)=\left[x_{0},\left(x_{0}+a\right)^{1-1 / 2 k}, \ldots, \prod_{j=0}^{2 k-2}(1-j / 2 k)\left(x_{0}+a\right)^{1 / 2 k}\right]^{T} .
\end{gathered}
$$

The isomorphism of Σ_{2} of (14) with Σ_{1} of (12) is easily proven in a way similar to the proof of Example 1. In this case, $Z=R^{2 k}$.
$\phi: M_{1} \rightarrow M_{2}$ is continuous because

$$
\begin{aligned}
& \sum_{i=1}^{2 k}\left|\phi_{i}(x)-\phi_{i}(p)\right|^{2} \\
& \quad=(x-p)^{2}+\sum_{m=1}^{2 k-1} \prod_{j=0}^{m-1}(1-j / 2 k)^{2}\left((x+a)^{1-m / 2 k}-(p+a)^{1-m / 2 k}\right)^{2} \longrightarrow 0
\end{aligned}
$$

as $x \rightarrow p . \quad \phi^{-1}: M_{2} \rightarrow M_{1}$ is continuous because

$$
\left|\phi_{1}(x)-\phi_{1}(p)\right|=|x-p| \longrightarrow 0 \text { as } \sum_{i=1}^{2 k}\left|\phi_{i}(x)-\phi_{i}(p)\right|^{2} \longrightarrow 0
$$

On the other hand, Σ_{1} is transformed into another form. (Another Linearization)

Let $N=2$ and $L=2 k$. Define

$$
\begin{equation*}
\phi(x)=\left[\phi_{1}(x), \phi_{2}(x)\right]^{T}=\left[(x+a)^{1 / 2 k},(x+a)^{1 / k}\right]^{T} . \tag{15}
\end{equation*}
$$

Then we have a 2-dimensional formal linear system

$$
\begin{equation*}
\Sigma_{3}: \dot{z}(t)=A z(t)+b \quad z\left(t_{0}\right) \in R^{2} \tag{16}
\end{equation*}
$$

with

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
0 & 0 \\
1 / k & 0
\end{array}\right] \quad b=\left[\begin{array}{c}
1 / 2 k \\
0
\end{array}\right] \\
z\left(t_{0}\right) & =\left[\left(x_{0}+a\right)^{1 / 2 k},\left(x_{0}+a\right)^{1 / k}\right]^{T} .
\end{aligned}
$$

Eq. (14) is also an isomorphic formal linear system of (12) by Theorem 2. In this case, $Z=R^{2} . \quad \phi: M_{1} \rightarrow M_{2}$ is continuous because

$$
\begin{aligned}
& \sum_{i=1}^{2}\left|\phi_{i}(x)-\phi_{i}(p)\right|^{2}=\left((x+a)^{1 / 2 k}-(p+a)^{1 / 2 k}\right)^{2} \\
& \quad+\left((x+a)^{1 / k}-(p+a)^{1 / k}\right)^{2} \longrightarrow 0 \quad \text { as } \quad x \longrightarrow p
\end{aligned}
$$

$\phi^{-1}: M_{2} \rightarrow M_{1}$ is continuous because of the following: If $\sum_{i=1}^{2}\left|\phi_{i}(x)-\phi_{i}(p)\right|^{2} \rightarrow 0$ then

$$
\begin{aligned}
& \phi_{1}(x) \longrightarrow \phi_{1}(p) \text { or }\left(\phi_{1}^{2 k}(x)-a\right) \longrightarrow\left(\phi_{1}^{2 k}(p)-a\right), \text { so } \\
& \left|\left(\phi_{1}^{2 k}(x)-a\right)-\left(\phi_{1}^{2 k}(p)-a\right)\right|=|x-p| \longrightarrow 0 .
\end{aligned}
$$

The other conditions of Theorem 2 are shown to be satisfied easily.
(Q.E.D.)

Example 2 shows the fact that a nonlinear system can be isomorphically transformed in some different formal linear systems. That is, the linearization is not unique. But the corresponding formal linear systems are isomorphic to one another.

In the next section, we will consider the case of an analytic nonlinear function expanded in a Taylor series.

IV. TAYLOR EXPANSION

We here study the isomorphism for analytic nonlinear systems by the Taylor exansion.
Let (1) be given where f is analytic. Throughout this section, the Taylor expansion is carried out in a neighborhood of 0 assuming $0 \in M_{1}$ without loss of generality.

As the linearly independent functions, we choose a set of all polynomials in x which appear in the Taylor series. That is,

$$
\begin{align*}
\phi(x) & =\left[\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{N}(x), \ldots\right]^{T} \\
& =\left[x_{1}, x_{2}, \ldots, x_{n}, \frac{1}{2!} x_{1}^{2}, \frac{1}{1!1!} x_{1} x_{2}, \ldots, \frac{1}{r_{1}!\cdots r_{n}!} \prod_{i=1}^{n} x_{i}^{r_{t}}, \ldots\right]^{T} \tag{17}
\end{align*}
$$

where the elements are arranged in lexicographic order. From (3),

$$
\dot{\phi}(x(t))=\partial \phi(x(t)) / \partial x^{T}(t) f(t, x(t)) .
$$

Expanding $\partial \phi(x) / \partial x^{T} f(t, x)$ in a Taylor series about $x=0$ and putting $x=x(t)$, it follows that

$$
\begin{equation*}
\dot{\phi}(x(t))=A(t) \phi(x(t))+b(t) \tag{18}
\end{equation*}
$$

with

$$
\begin{aligned}
& A(t)=\partial\left(\partial \phi(x) / \partial x^{T} f(t, x)\right) /\left.\partial \phi^{T}(x)\right|_{x=0} \\
& b(t)=\left.\left(\partial \phi(x) / \partial x^{T} f(t, x)\right)\right|_{x=0} .
\end{aligned}
$$

In this case, the next theorem follows:
[Theorem 3]
Let a nonlinear system of (1) be given. Assume that $\Gamma=T \times M_{1}$ is open of $R^{n_{0}+1}, f$ is
analytic on Γ, and (6) of an initial value problem has a unique solution on T. Then by the Taylor expansion, Σ_{1} and Σ_{2} are isomorphic on M_{1} and M_{2} which is an n-dimensional C^{ω}-manifold contained in Hilbert space (l^{2}).

(Proof)

M_{1} is given an induced topology of R^{n} so that an open neighborhood base at $p \in M_{1}$ is $\left\{U_{k}^{M_{1}}(p): k \in N\right\}$ with

$$
\begin{equation*}
U_{n}^{M_{1}}(p)=\left\{x \in M_{1}: \sum_{i=1}^{n}\left(x_{i}-p_{i}\right)^{2}<1 / k^{2}\right\} \tag{19}
\end{equation*}
$$

M_{1} is then an n-dimensional C^{ω}-manifold by putting

$$
\left\{\left(U_{\lambda}, \psi_{\lambda}\right): \lambda \in \wedge\right\}=\left\{\left(M_{1}, 1\right)\right\}
$$

at Appendix A1. f is analytic on an open set Γ so [A-v] and [A-vi] hold, namely [A-1] does. $\partial \phi(x) / \partial x^{T} f(t, x)$ is also analytic, so [A-iii] holds by using (18) and the property of analytic function.

A Hilbert space is

$$
\begin{equation*}
\left(l^{2}\right)=\left\{\xi=\left[\xi_{1}, \xi_{2}, \ldots\right]^{T}: \sum_{i=1}^{\infty}\left|\xi_{i}\right|^{2}<\infty,\|\xi\|=\sqrt{\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{2}}\right\} \tag{20}
\end{equation*}
$$

while the elements of $\phi(x)$ of (17) lead to

$$
\sum_{i=1}^{\infty}\left|\phi_{i}(x)\right|^{2} \leqq\left(\sum_{i=1}^{\infty}\left|\phi_{i}(x)\right|\right)^{2}=\left(\exp \sum_{i=1}^{n}\left|x_{i}\right|-1\right)^{2}<\infty
$$

These indicate that M_{2} is included in $\left(l^{2}\right)$ and

$$
Z=\left(l^{2}\right) \supset M_{2}
$$

by choosing $\left(l^{2}\right)$ as Z. In such a way, we have fixed a linear space Z which has contained M_{2} as a subset and assigned a topology Z. We now give M_{2} an induced topology of Z.

The mapping $\phi ; M_{1} \rightarrow M_{2}$ is onto. For any $\phi(x)=\phi\left(x^{\prime}\right) \in M_{2}$, it follows that

$$
x=\left[\phi_{1}(x), \ldots, \phi_{n}(x)\right]^{T}=\left[\phi_{1}\left(x^{\prime}\right), \ldots, \phi_{n}\left(x^{\prime}\right)\right]^{T}=x^{\prime} \in M_{2}
$$

so ϕ is one to one. For all $z \in\left(l^{2}\right)$, an open z-neighborhood base of $\left(l^{2}\right)$ is $\left\{V_{k}(z): k \in N\right\}$ where

$$
V_{k}(z)=\left\{\xi \in\left(l^{2}\right): \sum_{i=1}^{\infty}\left|\xi_{i}-z_{i}\right|^{2}<1 / k^{2}\right\} .
$$

For all $\phi(p) \in M_{2}$, the induced topology of M_{2} is generated by an open $\phi(p)$-neighborhood base $\left\{V_{k}^{M_{2}}(\phi(p)): k \in N\right\}$ where

$$
\begin{equation*}
V_{k}^{M_{2}}(\phi(p))=\left\{\phi(x) \in M_{2}: \sum_{i=1}^{\infty}\left|\phi_{i}(x)-\phi_{i}(p)\right|^{2}<1 / k^{2}\right\} . \tag{21}
\end{equation*}
$$

In order to prove that ϕ is continuous on these topologies on M_{1} and M_{2}, all we have to do is to show $\sum_{i=1}^{\infty}\left|\phi_{i}(x)-\phi_{i}(p)\right|^{2} \rightarrow 0$
as $\sum_{i=1}^{n}\left|x_{i}-p_{i}\right|^{2} \rightarrow 0$ for $x, p \in M_{1}$ from (19) and (21). From (C3) of Appendix C, it follows that

$$
\sum_{i=1}^{\infty}\left|\phi_{i}(x)-\phi_{i}(p)\right|^{2}=\sum_{i=1}^{\infty} \sum_{r_{1}+\cdots+r_{n}=i} \frac{1}{\left(r_{1}!\cdots r_{n}!\right)^{2}}\left(\prod_{j=1}^{n} x_{j}^{r_{j}}-\prod_{j=1}^{n} p_{j}^{r_{j}}\right)^{2} \longrightarrow 0
$$

as $\sum_{i=1}^{n}\left(x_{i}-p_{i}\right)^{2} \rightarrow 0$ thus $\phi: M_{1} \rightarrow M_{2}$ is continuous.

Let g be a projection mapping which projects the first n components of $\phi(x)$:

$$
g: M_{2} \longrightarrow M_{1}:\left[\phi_{1}(x), \ldots, \phi_{n}(x), \phi_{n+1}(x), \ldots\right]^{T} \longrightarrow\left[\phi_{1}(x), \ldots, \phi_{n}(x)\right]^{T}
$$

Since $\phi_{i}(x)=x_{i}$ for $i=1,2,3, \ldots, n, U_{k}^{M_{1}}(p)$ of (19) may be written as

$$
U_{k}^{M_{1}}(p)=\left\{\left[\phi_{1}(x), \ldots, \phi_{n}(x)\right]^{T} \in M_{1}: \sum_{i=1}^{n}\left|\phi_{i}(x)-\phi_{i}(p)\right|^{2}<1 / k^{2}\right\}
$$

Therefore in order that g is continuous, it must be that $\sum_{i=1}^{n}\left|\phi_{i}(x)-\phi_{i}(p)\right|^{2} \rightarrow 0$ as $\sum_{i=1}^{\infty} \mid \phi_{i}(x)-$ $\left.\phi_{i}(p)\right|^{2} \rightarrow 0$. This is clearly satisfied, so g is continuous. Now, this g is the inverse mapping of ϕ because $\phi \cdot g=1$ and $g \cdot \phi=1$. Thus $\phi^{-1}=g: M_{2} \rightarrow M_{1}$ is continuous.

After all, it has been proven that $\phi: M_{1} \rightarrow M_{2}$ is a homeomorphism and [A-iv] holds.
(Q.E.D.)

In the next section, we will consider the case of an periodic nonlinear function expanded in a Fourier series.

V. FOURIER EXPANSION

We study the isomorphism by the Fourier expansion. For simplicity, we here only treat with the linearization of a scalar periodic system by the trigonometric Fourier expansion. A multi-dimensional case is straightforward by making a direct product of scalars (see [2]). That is, Eq. (1) of $n=1$ is given on $M_{1} \subset\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $f(t, x)$ is a periodic function such as $\sin x, \cos x$, etc.

The following trigonometric functions are chosen as the linearly independent functions:

$$
\left\{\begin{array}{l}
\phi_{2 r-1}(x)=r^{-\alpha} \sin r x \\
\phi_{2 r}(x)=r^{-\alpha} \cos r x
\end{array} \quad\binom{\alpha>1 / 2}{r=1,2,3, \ldots}\right.
$$

Thus $\phi(x)$ is

$$
\begin{align*}
\phi(x) & =\left[\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{N}(x), \ldots,\right]^{T} \\
& =\left[\sin x, \cos x, \ldots, N^{-\alpha} \sin N x, N^{-\alpha} \cos N x, \ldots\right]^{T} . \tag{22}
\end{align*}
$$

Expanding $\partial \phi(x) / \partial x f(t, x)$ in a trigonometirc Fourier series in x and putting $x=x(t)$, it follows that

$$
\begin{equation*}
\Sigma_{2}: \dot{\phi}(x(t))=A(t) \phi(x(t))+b(t) \tag{23}
\end{equation*}
$$

with

$$
\begin{aligned}
A(t) & =\left(2 \pi \sum_{r=1}^{\infty} r^{-2 \alpha}\right)^{-1} \int_{-\pi}^{\pi} \partial \phi(x) / \partial x f(t, x) \phi(x) d x \\
b(t) & =(2 \pi)^{-1} \int_{-\pi}^{\pi} \partial \phi(x) / \partial x f(t, x) d x
\end{aligned}
$$

In this case the next theorem follows:

[Theorem 4]

Let a scalar nonlinear system of (1) $(n=1)$ be given. Assume that $f(t, x)$ is a periodic function of period 2π in $x \in M_{1}$ and [A-ii] [A-v] and [A-vi] hold. Then by the trigonometric Fourier expansion, Σ_{1} of (1) and Σ_{2} of (23) are isomorphic on M_{1} and M_{2}
(Proof)
Since $f(t, x)$ is a differentiable function of period 2π with respect to x, so is $\partial \phi(x) /$ $\partial x f(t, x)$. Thus [A-iii] holds by (23). The elements of $\phi(x)$ of (22) lead to

$$
\begin{aligned}
\sum_{r=1}^{\infty}\left|\phi_{r}(x)\right|^{2} & =\sum_{r=1}^{\infty} r^{-2 \alpha}\left(\sin ^{2} r x+\cos ^{2} r x\right) \\
& =\sum_{r=1}^{\infty} r^{-2 \alpha}<\infty
\end{aligned}
$$

which indicates $M_{2} \subset\left(l^{2}\right) \subset Z$ by choosing $\left(l^{2}\right)$ as Z. Therefore we have made a linear space Z which has contained M_{2} as a subset and assigned Z a topology. The induced topology of Z is now given to M_{2}.
It is assumed that $M_{1} \subset\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for simplicity. If $\phi(x)=\phi\left(x^{\prime}\right) \in M_{2}$ then $\phi_{1}(x)=$ $\phi_{1}\left(x^{\prime}\right)$ or $\sin x=\sin x^{\prime}$ so $x=x^{\prime} \in M_{1}$. Hence the mapping $\phi: M_{2} \rightarrow M_{2}=\phi\left(M_{1}\right)$ is bijective. we recall that a $\phi(p)$-neighborhood of M_{2} is the same form as (21). If $|x-p| \rightarrow 0$ or $x \rightarrow p$, then

$$
\varepsilon \triangleq \sup _{r \in N}\left((\sin r x-\sin r p)^{2}+(\cos r x-\cos r p)^{2}\right) \longrightarrow 0
$$

namely

$$
\sum_{r=1}^{\infty}\left|\phi_{r}(x)-\phi_{r}(p)\right|^{2}=\sum_{r=1}^{\infty} r^{-2 \alpha}\left((\sin r x-\sin r p)^{2}+(\cos r x-\cos r p)^{2}\right) \leqq \eta \varepsilon \longrightarrow 0
$$

where $\eta=\sum_{r=1}^{\infty} r^{-2 \alpha}$.
Thus ϕ is continuous from M_{1} onto M_{2}.
Let a function $g: M_{2} \rightarrow M_{1}$ be defined as $g(\phi(x))=\sin ^{-1} \phi_{1}(x)$ where $\phi(x)=\left[\phi_{1}(x)\right.$, $\left.\phi_{2}(x), \ldots\right]^{T} \in M_{2}$. The function g is an inverse mapping of ϕ because $\phi \circ g=1$ and $g \circ \phi=1$. Since M_{2} is assigned the indeced topology of $\left(l^{2}\right)$, the identity mapping 1 is continuous from M_{2} into (l^{2}). Define $\tilde{g}(z)=\sin ^{-1} z_{1}: \mathscr{D} \rightarrow R$ where

$$
\mathscr{D} \triangleq\left\{z=\left[z_{1}, z_{2}, \ldots\right]^{T} \in\left(l^{2}\right):\left|z_{1}\right|<1\right\},
$$

and \tilde{g} is continuous from $\mathscr{D} \subset\left(l^{2}\right)$ into R. Accordingly $g=\tilde{g} \circ 1: M_{2} \rightarrow M_{1} \subset R$ is continuous.

After all, $\phi: M_{1} \rightarrow M_{2}$ is a homeomorphism, and [A-iv] holds.
(Q.E.D.)

VI. CONCLUSIONS

We have studied the isomorphism between a given nonlinear system and a formal linear system. The following cases have been treated: a general form including the others as special cases, a linear combination of finitely many independent functions, a Taylor series, and a trigonometric Fourier series.

One would be interested in the study of the isomorphism when the formal linearization method is applied to nonlinear estimation and/or nonlinear control problem. Further studies including it are left for the future.

APPENDIX A DEFINITIONS OF MANIFOLD

〈A1〉 If the following conditions (A1-a)~(A1-c) hold, then a Hausdorff space M has a structure of differentiable manifold by an atlas $\left\{\left(V_{\lambda}, h_{\lambda}\right): \lambda \in \wedge\right\}$, the dimension of M is n, and M is refered to an n-dimensional C^{r}-manifold or a manifold simply.
（A1－a）Given an open covering $\left\{V_{\lambda}: \lambda \in \wedge\right\}$ such that $M=\cup_{\lambda \in \Lambda} V_{\lambda}$ ．
（A1－b）Given a homeomorphism $h_{\lambda}: V_{\lambda} \rightarrow h_{\lambda}\left(V_{\lambda}\right)$ for each $\lambda \in \wedge$ where V_{λ} and $h_{\lambda}\left(V_{\lambda}\right)$ are open sets of M and R^{n} respectively．
（A1－c）Whenever $V_{\lambda} \cap V_{\mu}$ is not empty，a function $h_{\lambda} \circ h_{\mu}^{-1}: h_{\mu}\left(V_{\lambda} \cap V_{\mu}\right) \rightarrow h_{\lambda}\left(V_{\lambda} \cap V_{\mu}\right)$ is bijective and both $h_{\lambda} \circ h_{\mu}^{-1}$ and $\left(h_{\lambda^{\circ}} h_{\mu}\right)^{-1}$ are of C^{r} class．
〈A2〉 Let M and N be manifolds．A mapping $\phi: M \rightarrow N$ is of C^{r} class at $p \in M$ if there exist a $(U . \psi)$ at $p \in U \subset M$ and a $\left(V_{\lambda} . h\right)$ at $\phi(p) \in V \subset N$ such that

$$
h \circ \phi \circ \psi^{-1}: \psi(U) \longrightarrow h(V)
$$

is of C^{r} class at $\psi(p)$ ．
〈A3〉 Let M and N be manifolds．A mapping $\phi: M \rightarrow N$ is a diffeomorphism if ϕ is a homeomorphism and both ϕ and ϕ^{-1} are of C^{r} class．

APPENDIX B SYSTEM ON MANIFOLD

Let M_{1} be an n－dimensional C^{r}－manifold contained in $R^{n_{0}}$ ．Let M_{2} be an n－ dimensional C^{r}－manifold contained in a topological linear space Z whose dimension may be infinite．An open interval $T \subset R$ is a 1 －dimensional C^{r}－manifold $(r=\omega)$ if $u: t \rightarrow t$ is a coordinate function．

We only consider the solutions $\{z(t)\} \subset Z$ of（4）such that $z(t) \in M_{2}$ ．Then，Σ_{1} and Σ_{2} on the manifolds are interpreted as follows．$x: T \rightarrow M_{1}$ and $z: T \rightarrow M_{2}$ are C^{r}－curves． $\dot{x}(t)$ is a tangent vector of x at $t \in T$ so that

$$
\begin{equation*}
\dot{x}(t)=d x(t) d / d u \tag{B1}
\end{equation*}
$$

where $d x$ is a differential of $x . \quad z(t)$ is a tangent vector of z at $t \in T$ so that

$$
\begin{equation*}
\dot{z}(t)=d z(t) d / d u \tag{B2}
\end{equation*}
$$

where $d z$ is a differential of $z . d \phi$ is also a differential of ϕ ．For fixed $t \in T$ ，we regard that $f(t, \cdot)$ is a vector field on M_{1} and $A(t)(\cdot)+b(t)$ is a vector field on M_{2} ．

APPENDIX C

CONTINUITY OF ϕ

We here study a continuity of $\phi: M_{1} \rightarrow M_{2}$ of（11）in the Taylor expansion．If $\sum_{i=1}^{n}\left(x_{i}-\right.$ $\left.p_{i}\right)^{2} \rightarrow 0$ ，then $x_{i} \rightarrow p_{i}$ for $i=1,2, \ldots, n$ ．For any $\varepsilon>0$ and a sufficiently large integer N_{0} ， it follows that

$$
\begin{aligned}
& \sum_{r_{1}+\cdots+r_{n}=N_{0}}^{\infty} \frac{1}{\left(r_{1}!\cdots r_{n}!\right)^{2}}\left(\prod_{j=1}^{n} x_{j}^{r_{j}}-\prod_{j=1}^{n} p_{j}^{r_{j}}\right)^{2} \\
& =\sum_{r_{1}+\cdots+r_{n}=N_{0}}^{\infty}\left(\prod_{j=1}^{n} \frac{x_{j}^{r_{j}}}{r_{j}!}-\prod_{j=1}^{n} \frac{p_{j}^{r_{j}}}{r_{j}!}\right)^{2} \\
& \leqq\left(\sum_{r_{1}+\cdots+r_{n}=N_{0}}^{\infty}\left|\prod_{j=1}^{n} \frac{x_{j}^{r_{j}^{j}}}{r_{j}!}-\prod_{j=1}^{n} \frac{p_{j}^{r_{j}}}{r_{j}!}\right|\right)^{2} \\
& \leqq\left(\sum_{r_{1}+\cdots+r_{n}=N_{0}}^{\infty}\left(\prod_{j=1}^{n} \frac{\left|x_{j}\right|_{j}^{r_{j}}}{r_{j}!}+\prod_{j=1}^{n} \frac{\left|p_{j}\right|_{j}}{r_{j}!}\right)\right)^{2} \\
& =\left(\left(\exp \left(\left|x_{1}\right|+\cdots+\left|x_{n}\right|\right)-\sum_{r_{1}+\cdots+r_{n}=0}^{\sum_{0}-1} \prod_{j=1}^{n} \frac{\left|x_{j}\right| r_{j}}{r_{j}!}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad+\left(\exp \left(\left|p_{1}\right|+\cdots+\left|p_{n}\right|\right)-\sum_{r_{1}+\cdots+r_{n}=0}^{N o-1} \prod_{j=1}^{n} \frac{\left|x_{j}\right|^{r_{j}}}{r_{j}!}\right)\right)^{2} \\
& \leqq \varepsilon / 2
\end{aligned}
$$

The last inequality is due to a property of the exponential series. Let us fix $\varepsilon>0$ and N_{0} so that (C1) holds. By the mean value theorem, there existes $K>0$ such that

$$
\left|\prod_{j=1}^{n} \frac{x_{j}^{r_{j} j}}{r_{j}!}-\prod_{j=1}^{n} \frac{p_{j}^{r_{j}}}{r_{j}!}\right| \leqq K n \delta
$$

for $1 \leqq r_{1}+\cdots+r_{n} \leqq N_{0}-1$ and $\left|x_{i}-p_{i}\right|<\delta(i=1, \ldots, n)$. Thus, choosing a sufficiently small $\delta>0$ yields

$$
\begin{equation*}
\sum_{r_{1}+\cdots+r_{n}=1}^{N_{0}-1} \frac{1}{\left(r_{1}!\cdots r_{n}!\right)^{2}}\left(\prod_{j=1}^{n} x_{j}^{r_{j}}-\prod_{j=1}^{n} p_{j}^{r_{j}}\right)^{2} \leqq \stackrel{N_{1}+\cdots+r_{n}=0}{N_{0}-1} k^{2} n^{2} \delta^{2} \leqq \varepsilon / 2 \tag{C2}
\end{equation*}
$$

The sum of (C1) and (C2) follows

$$
\begin{equation*}
\sum_{i=1}^{\infty} \sum_{r_{1}+\cdots+r_{n}=i} \frac{1}{\left(r_{1}!\cdots r_{n}!\right)^{2}}\left(\prod_{j=1}^{n} x_{j}^{r_{j}}-\prod_{j=1}^{n} p_{j}^{r_{j}^{\prime}}\right)^{2} \leqq \varepsilon \tag{C3}
\end{equation*}
$$

APPENDIX D

EXPRESSION OF MANIFOLDS

The manifolds M_{1} and M_{2} of Example 1 are expressed as follows.
Define $N \triangleq\left\{y: a y^{2}+2 b y+c>0\right\}$.
(i) A case of $a \neq 0$:

$$
\left.\begin{array}{c}
M_{1}=\{x(t): x(t)= \\
\left.M_{2}=\left\{\begin{array}{l}
\left.\xi_{1}(t)+\frac{b}{a}\right)\left(e^{\sqrt{a} t}+e^{-\sqrt{a} t}\right) \\
\\
\\
\left.+\frac{1}{2 \sqrt{a}} \sqrt{a x_{0}^{2}+2 b x_{0}+c}\left(e^{\sqrt{a} t}-e^{-\sqrt{a} t}\right)-\frac{b}{a}, x(t) \in N\right\} \\
\xi_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2}\left(x_{0}+\frac{b}{a}\right)\left(e^{\sqrt{a} t}+e^{-\sqrt{a} t}\right) \\
+\frac{1}{2 \sqrt{a}} \sqrt{a x_{0}^{2}+2 b x_{0}+c}\left(e^{\sqrt{a} t}-e^{-\sqrt{a} t}\right)-\frac{b}{a} \\
\frac{\sqrt{a}}{2}\left(x_{0}+\frac{b}{a}\right)\left(e^{\sqrt{a} t}-e^{-\sqrt{a} t}\right) \\
+\frac{1}{2} \sqrt{a x_{0}^{2}+2 b x_{0}+c}\left(e^{\sqrt{a} t}+e^{-\sqrt{a} t}\right)
\end{array}\right], \xi_{1}(t) \in N\right\}
\end{array}\right] .
$$

(ii) A case of $a=0$:

$$
\left.\begin{array}{l}
M_{1}=\left\{x(t): x(t)=\frac{1}{2} b t^{2}+\sqrt{2 b x_{0}+c} t+x_{0}, x(t) \in N\right\} \\
M_{2}=\left\{\xi(t):\left[\begin{array}{c}
\xi_{1}(t) \\
\xi_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} b t^{2}+\sqrt{2 b x_{0}+c} t+x_{0} \\
b t+\sqrt{2 b x_{0}+c}
\end{array}\right],\right.
\end{array} \xi_{1}(t) \in N\right\} .
$$

Both (i) and (ii) are satisfied with $M_{2}=\left\{\left[x, \sqrt{a x^{2}+2 b x+c}\right]^{T}: x \in M_{1}\right\}$.

REFERENCES

[1] S. Tsuji, H. Takata, R. Ueda and S. Takata, "Second-Order Observer for Nonlinear Systems from Discrete Noiseless Measurements", IEEE Trans. on Automatic Control, Vol. AC-22, No. 1, pp. 105-112, 1977.
[2] T. Takata, "Transformation of a Nonlinear System into an Augmented Linear System", ibidem, Vol. AC-24, No. 5, pp. 736-741, 1979.
[3] R. W. Brockett, "Nonlinear Systems and Differential Geometry", Proceedings of IEEE, Vol. 64, No. 1, pp. 61-72, 1976.
[4] A. J. Krener, "Linearization and Bilinearization of Control Systems", in Proc., 1974 Allerton Conf., Circuit and System Theory, 1974.
[5] H. J. Sussmann, "Existence and Uniqueness of Minimal Realizations of Nonlinear Systems", Mathematical Systems Theory, 10, pp. 263-284, 1977.
[6] A. A. Sagle and R. E. Walde, "Introduction to Lie Groups and Lie Algebras", Academic Press, 1973.
[7] L. S. Pontryagin, "Ordinary Differential Equations", Addison-Wesley Publishing Company, Inc., 1962.
[8] H. H. Schaefer, "Topological Vector Space", Springer-Verlag, 1970.

[^0]: \# The equalty means the following: The function of the left hand side is expanded into a series of the right hand side. Conversely, the seires of the right hand side converges to the function of the left hand side.

