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Abstract

Nonlinear systems are formally transformed into linear systems by introducing a sequence
of linearly independent functions. In this paper, we study the relationship between the
given nonlinear system and the corresponding formal linear system. The conditions for
isomorphic linearization are acquired. The isomorphic linearization between Euclidean
spaces is carried out by finitely many independent functions. An analytic nonlinear
system is isomorphically linearized on Hilbert space by the Taylor expansion and a periodic
nonlinear system, by the Fourier expansion.

1. INTRODUCTION

There has been considerable interest in linearizing nonlinear systems (see [1]-[4], for
example). In [2], a formal linearization approach of nonlinear systems has been pro-
posed and applied to estimation and control problems. This approach transforms a given
nonlinear system on Euclidean space into a linear system on a certain function space by
introducing a sequence of linearly independent functions. Thus the well-developed linear
theory of estimation and control has been successfully applied to the nonlinear system.

- The purpose of this paper is to study the relationship between the given nonlinear system
and the formal linear system. The isomorphism of the two systems is defined so that the
systems are related by diffeomorphism between two manifolds. One of the manifolds
is the state space of the given nonlinear system on Euclidean space, and the other is the
state space of the formal linear system on the function space. Conditions for the two
systems to be isomorphic is investigated. Moreover the following is studied here. A
nonlinear system for which finitely many independent functins suffice is isomorphically
linearized on Euclidean space. An ananytic nonlinear system is linearized on Hilbert
space by introducing certain polinomials as the linearly independent functions, namely by
the Taylor expansion. A periodic nonlinear system is also linearized on Hilbert space
by the trigonometric functions, namely by the Fourier expansion.

II. FORMAL LINEARIZATION
We consider a nonlinear system described by the differential equation

2 XM=t x(®)) (o, x(t0))eT) ‘ M
which is defined on an open cylinder I'2 Tx M, = R"*!, where -=d/dt, x€ R" is an ngy-
dimensional state vector, R* is a k-dimensional real Euclidean space with a natural to-
pology, R=R!, TR is an interval of time ¢, M; =R" is a state space of x, f: —R"
is a vector valued function of class C". A function of class C" means an r times con-
tinuously differentiabel function if r=0, 1, 2,..., o0 and an analytic function r=w.

Introducing a sequence of linearly independent functions of real values {1, ¢,(x), ¢,(x),



voos Pn(x),...}, the nonlinear system Y, is transformed into a formal linear system Y., on a
function space Z as follows (see [2]).
Let the function space Z include

My=¢p(M)A{d(x): xe M}

where

P()=[91(x), ¢2(x),..., ox(x)s...]7 . @

The superscript T means transposing and & denotes defining. The dynamic equation of
¢N(x) (N= 1’ 23 3:-") iS

Dn(x(1)) = Dpn(x(1)/OxT (1) f (2, X(8)) - A3)
The right hand side is associated with

IPN(x()/OxT(Df(t, x(D)< gl an(D)P«(x() + oy o) ©)
where ay; € R for i=0, 1, 2,... and N=1, 2, 3,..., so it follows that

(D) ADS(xD)+b(1)  P(x(to)) € M, ®)
where
A= ay(t) ayo(t)--ay5()- 1
“21:(1) 0‘2.2(')"'“25(1’)"'
aNé(t) “sz(t)' : 'aN:N(t)‘ -
B =[010(t)  ozo(t)-~owo®) 17
P(x(to)) =[1(x(t0)), P2(x(t))s. .., Pn(x(to))-+-1"

Let us write an element of Z by z(f)=[z,(%), z,(1),..., z5(),...]1T. Since ¢(x)eM,cZ,
we regard ¢(x) as an element of Z and derive a linear equation from (3) as follows:

>, 2()=A)z()+ b(t)
2(to)=p(x(t)) € Z 6

which is called “a formal linear system’’. We here give the definition of isomorphic
systems which comes from [5]. For (1) and (6) to make sense, it is necessary to interpret
them as Appendix B. '
[DEFINITION]

The two systems > ; and Y, of (1) and (6) are isomorphic if (I) ¢: M;—>M, is an
diffeomorphism and (I1) d¢(f(z, x(1))=A(t)z()+ b(¢) for all (¢, x(1)) e I".
We will consider conditions for the isomorphism in the following sections.

II. ISOMORPHISM

We now state and prove the isomorphism of a given nonlinear system with a corre-
sponding formal linear system.

[Theorem 1]

Let 3>, of (1) be a given system defined on I Let >, of (6) be the corresponding
formal linear system. Then Y ; and Y, are isomorphic on the two n-dimensional C'-
manifolds M,(=R") and M,(<=Z) if the following assumptions hold:



[A-i] (1) has a unique solution on I'=I"x M, where M, is an n-dimensional C’-mani-
fold. ~
[A-ii] (6) of an initial value problem has a unique solution on 7.
[A-iii] The equality* of (5) holds for I': ; .
D)= ADS) DD @)
[A-iv] ¢: M,—M, is a homeomorphism. BT
(Proof) k
A differential equation (1) has a unique solution x(f)(te€ T) from [A-i], so its image

¢(x(t)) by a mapping ¢ is uniquely determined. Let us consider (7) a differential equation
defined on a linear space Z and integrate (7) on [ty, t]=T':

Hx(0)— 9(x(to) = [ (ADP() + b
Similary, regard (6) as a differential equation on Z, then we have
) =2(ty) + S: (A(2)2(1) + b(D)dx .
From [A-ii] and the initial condition z(¢,) = ¢(x(t,)), the last two equations indicate that,
for all (¢, x(1)) eI,
z(t)=p(x(1)). ®

That is, we have had the existence and the value of the solution of (6).

M, is assumed to be an n-dimensional C'-manifold. Let an atlas of M, be {(U,, ¥,):
A€ A} where. A is an index set, U, is an open set of M,, O, is an open set of R", and
¥, is a homeomorphism from U; onto 0;. From Appendix (Al-c),

Va¥et ¥ (UanUY) — (U, nU)Y) ®

is bijective and both Yo and (Y00, )" =y 03! are of class Cr. :
We turn to M,. From [A-iii], ¢: M,—M, is a homeomorphism, so V,=¢(U,) is an
open set of M,=¢(M,) such that M, = lu V, ((A1-a) hols).
€A

Defining h, £ ,0¢~': M,—R" for each A€ A, h; is an homeomorphism from V;, onto O,
((A1-b) holds). It follows that

hioht =(Wa0d™ oW ,0h™ ) =Y 0y,
h(Van V) =y00 " d(U) n (U ) =y,(U,nU,).
h(V,nV)=¢,(U,nU),.
By these equalities and the property mentioned at (9),
hyohit: h (VN V) — hy(V,n V)

is bijective and both hoh;! and (h;oh;')~! are of class C* ((Al—c) holds). Hence M,
has been given a structure of an n-dimensional C™-manifold by {(V;, h;): A€ A} as shown
at Appendix Al. From Appendix A2, both ¢ and ¢! are of class C" because ‘

hiodourst =(riod o =1
Yaod ol = Y0871 - (oY) =1

¥ The equalty means the following: The function of the left hand side is expanded into a series of the right
hand side. Conversely, the seires of the right hand side converges to the function of the left hand side.
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where 1 is an identity map which is of class C"(r=w). Therefore, using [A-iii] and
Appendix A3, we have that ¢: M;— M, is a diffeomorphism (Definition (I) holds).

Pay attention to (1) and (B1) of Appendlx B. For fixed (¢, x(t,)) € I' and any function
£ of class Cr, it follows that :

do(f (2, x() (&)= d¢(><(t)) = (dx(t))d/du(é°¢) :
=d[du(Zo¢ex) ()=d[du(Cp(x(®)). v (10)
Substituting (8) into (10) and using (B2) and (6) yield
do(f(t, x(1))) (§)=d[du(Zez(1)) =d[du(E-z) (1)
=dz(t)d/du(&)=2(1) ()
=(A()z()+ b(1)) (&),

thus we have

do(f(t, x()))= A(D)z(H) + b(?)

(Definition (II) holds).
After all, the two systems > ; and Y, are isomorphic. (Q.E.D)

We here remark a replacement for the assumption [A—i] of Theorem 1.

Assume that
[A-v] M, is an open set of R™ and Tis an open interval of R.

I'=Tx M, is thus an open set of R"*!, Then there exists a unique solution of the
differential equation (1) if the following holds (see [7]):
[A-vi] Both f(t, x) and 0 (¢, x)/0xT are continuous on I'.
By choosing an identity map as the coordinate functions y,;, M, has a structure of an
n-dimensional C"-manifold where n=n, and r=w. Therefore we have:

[Lemma] The assumption [A-i] of Theorem 1 is replaced by [A-v] and [A-vi].

We will study a case of finitely many independent functions.
[Theorem 2]

Let a nonlinear system of (1) be given. Assume that the number of linearly independent
functions required is finite and both A(¢) and b(¢) of (6) are continuous on the entire in-
terval T. If the assumptions of [A-i], [A-iii], and [A-iv] hold, then this nonlinear system
is isomorphically transformed into a linear system on a manifold contained in Euclidean
space.

(Proof)

Let a vector of the linearly independent functions be ¢(x)=[¢(x),..., dx(x)]T and the
function space be Z=R¥. To R, we assign a natural Euclidean topology. A(f) and
b(t) are continuous, so there exists the unique solution of (6) and [A-ii] holds (see [7]).
Consequently the assumptions of Theorem 1 are all satisfied. (Q.E.D.)

The following examples illustrate this situation.

[Example 1]
Consider the nonlinear system:

Y x=\/ax2+2bx+c  (=f(x)) (1)
on M ={xeR: ax?+2bx+c>0}, (x(to0)2x,eM,)

where a, b and c¢ are all constant. For this system, all assumptions of Theorem 2 are
satisfied as follows. Thus this is isomorphically linearizable on C®-manifolds.
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(Proof)
1) [A-i]: Both f(x)=./ax?+2bx+cand
| 0f (x)/0x =(ax + b)//axZ+ 2bx + ¢

are continuous on M,. Tis restricted to an open interval of ¢ such that

M3 X0+ S' JaxZ@)+ 2bx(z) F e dr.
to .

[A-v] and [A-vi] are satisfied, so [A~1] holds by Lemma.
2) [A-iii], A, b: Let us choose ¢,(x)=x and @,(x)=%X=./ax?+2bx+c. [Aiii]
holds because

do(x)/dt=0¢(x)[0xf(x) = ¢,(x)
d2(x)/dt=0¢(x)/0xf(x)=ap,(x)+b.

These equations indicate that the linearly independent functions are {1, ¢(x), ¢,(x)} and
are finite in number. Thus we define

() =[¢:(x), $(x)]7 =[x, %I”

=[x, Jax?2+2bx+c]T.
In this case, the formal linear system is obtained as follows:

_ 01 0
z(t)—[ Y0 }z(t)+[ 5 :|

2(to) = P(x(t0)) = [x0, \/ax3+2bxo+c]T € R?

whose coefficients are constant, i.e., continuous.

3) [A-iv]: The mapping ¢: M, —>M,=¢(M,) is bijective, because if @(x)=p(x")
then ¢ (x)=¢,(x") or x=x"eM,. We assign M, the induced topology of R2. A p-
neighborhood of M, is {xeM,; |x—p|l<1/k} and a ¢(p)-neighborhood of M, is

{p(x)e M,; ,21 |¢dx)— ¢dp)I><1/k?}. If |x—p|—>0 then

2

1

) [di(x) — di(p)|* =(x—p)? +(Jax?+2bx+c—./ap*+2bp+c)?

=(x—p)*(1+(ax+ap+2b)?)/(\/ax?+2bx +c+./ap?+2bp+c)?) — 0,

so ¢ is continuous. Let ¢~! be a projection mapping:

671 My — My: $(x)— $:().

, .

If 3 |p(x)— d{p)|2—0 then |@,(x) ~ ¢,(p)| =0 or x—p, so ¢~1is continuous. Therefore
i=1 T .

¢: M,—>M, is a homeomorphism.

Appendix D gives the expressions of M, and M,. | (Q.E.D)
[Example 2]
Consider the scalar nonlinear system
D Xx=(x+a)l"l/2k (x(te)&xoeM,) (12)

defined on M;={xeR: x+a>0} where ae R and k is a positive integer. This system
is also isomorphically linearizable by Theorem 2.



(Proof) (One Linearization)
Paying attention that the m-th derivative of x is

xm = "fr;I:‘(l'e_-‘jlzk)(ﬂa)lrm/?k - (1sms2k)
S ¢ TR N S m22k41).
Let N=2k. Define o R
d(x)=[1(x)..., dx(x)]"

A[x, %,..., x(2k ~D]T

=[x, (x+a)l~1/2%, "ij; (1—j2k) (x+ a)t-m/2k,

Z:Ei:u — j12K) G+ a) /2T . (13)
Then ‘we have a 2k-dimensional formal linear system
¥, 2()=Az(t)+b z(t,) € R?* (14)
with |
A= O- L. 0
0 0

2k-1 !
b=[0"'"’ 03 }_I (1 _]/2k)]T
- =0
2k—2
2(to)=[x0, (X0 +a)!7H2k,..., T (1 = j[2k) (xo +a)t/2¥]T.
i=
The isomorphism of ¥, of (14) with }°; of (12) is easily proven in a way similar to the

proof of Example 1. In this case, Z=R2.
¢: M,-M, is continuous because

2k
3 16— P
2k—=1m—1

==+ 3 11 (1= J2KP (Gt @)t/ (p+ @)t i34y — 0

as x—»p. ¢~ 1: M,—M, is continuous because
2k
|¢1(x)—:1(p)|=|x—p| —> 0 as El |pi(x)— ¢(p)I>? — 0.
On the other hand, Y, is transformed into another form.

(Another Linearization)
Let N=2 and L=2k. Define

d(x)=[s(x), p2(x)]" =[(x+a)'/?*, (x+a)'/¥]". : (15)
Then we have a 2-dimensional formal linear system '
Y 2()=Az()+b  z(ty) € R? (16)

with
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=[0 0} b={1/2kj|
1/k 0 0
z(to)=[(Xo +a)'/?*, (xo+a)/¥]".

Eq. (14) is also an -isomorphic formal linear system of (12) by Theorem 2. .In this;(‘:ase',
Z=R2 ¢: M,—M, is continuous because : : ' :

El I¢i(x)" (P> =((x+a)V/2*k —(p+a)l/?¥)?
+(x+a) —(p+a)/*)* — 0 as x—p.

¢~1: M,—M, is continuous because of the following: If 22: |@i(x)— d{p)|*~0 then
. i=1

$1(x) — ¢4(p) or (PF(x)—a) — ($1*(p)—a), so
(¢1“(x)— a)— (83*()— @) =|x—p| — 0.
The other conditions of Theorem 2 are shown to be satisfied easily. (Q.E.D)

Example 2 shows the fact that a nonlinear system can be isomorphically transformed
in some different formal linear systems. That is, the linearization is not unique. But
the corresponding formal linear systems are isomorphic to one another.

In the next section, we will consider the case of an analytic nonlinear function expanded
in a Taylor series. ’

IV. TAYLOR EXPANSION

We here study the isomorphism for analytic nonlinear systems by the Taylor exansion.
“Let (1) be given where f is analytic. Throughout this section, the Taylor expansion is
carried out in a neighborhood of 0 assuming 0 € M, without loss of generality.
As the linearly independent functions, we choose a set of all polynomials in x which ap-
pear in the Taylor series. That is,

¢(x)=[¢1(x), ¢2(x);..., ¢n(x),...]"

=| X, X3 x —l—x2 ——l—xx .ee ———1——ﬁ X r an
’ 2t Ay 1 11! 1V290 00y ’.1!“_’.”! i=1 i

where the elements are arranged in lexicographic order. From (3),
G(x(1) = 0(x())/OxT (1) f (8, x(1)).

Expanding d¢(x)/0xT f(t, x) in a Taylor series about x=0 and putting x=x(¢), it follows
that

P(x(1)) = A()P(x(1) + b(1) (18)
with
A(t)=0(0p(x)[0xT f(t, x))/0$T(x)| x=0
b(8)=(0p(x)/0xT f(t, X)) x=0 -
In this case, the next theorem follows:
[Theorem 3]

Let a nonlinear system of (1) be given. Assume that I'=Tx M, is open of R"*1, fis



analytic on I', and (6) of an initial value problem has a unique solution on T. Then by the
Taylor expansion, >, and Y, are isomorphic on M, and M, which is an n-dimensional
Ce-manifold contained in Hilbert space (/2).

(Proof) ‘
M, is _given an 1nduced topology of R" so that an open neighborhood base at peM 1
is {UMs(p): ke N} with

Ui(p)={xeMy: 3 (u—p<1/k?}. 9

M, is then an n-dimensional C®-manifold by putting

{Us ¥2): de Aj={M,, 1)}

at Appendix Al. fis analytic on an open set I" so [A-v] and [A-vi] hold, namely [A-1]
does. d¢(x)[0xT f(¢, x) is also analytic, so [A—iii] holds by using (18) and the property
of analytic function.

A Hilbert space is

(==Lt &d": £, It <0, 121 =V, 167, 20
while the elements of ¢(x) of (17) lead to
35 100IPS(E, 18D =(exp £, x| - 17 <oo.
These indicate that M, is included in (/2) and

Z=()>M,

by choosing (1?) as Z. In such a way, we have fixed a linear space Z which has contained
M, as a subset and assigned a topology Z. We now give M, an induced topology of Z.
The mapping ¢; M, —M, is onto. For any ¢(x)=¢(x’) € M,, it follows that

X = [d)l(x):'--, ¢n(x)]T= [¢1(x,)3"'9 ¢n(x’)]T=x, € M2 s

so ¢ is one to one. For all z € (I2), an open z-neighborhood base of (12) is {Vi(z): ke N}
where

VD= (Ee(®): £ 1—zl<1/k?).

For all ¢(p) € M,, the induced topology of M, is generated by an open ¢(p)-neighborhood
base {VM2(¢(p)): ke N} where

VESE) = (#0)  M;: T 1) —dipI><1/K%}. @n

In order to prove that ¢ is continuous on these topologies on M, and M,, all we have to
do is to show ﬁ () — Pp)I2 =0
i=1 .
as f‘, |x;— p,|*—0 for x, pe M, from (19) and (21). From (C3) of Appendix C, it follows
i=1
that

3 160 =i (PP= £ Ggr (L x5 T2 — 0

=1r4e :‘:r,,; (ryleeer

as 2"] (x;— p)?>—0 thus ¢: M,—M, is continuous.
i=1



Let g be a projection mapping which projects the first n components of ¢(x):

g: My — My: [$3()seres G0 Bt 1(Der-JF —— [$3(0)s-.or ()]
Since ¢,(x)=x; for i=1, 2, 3,..., n, U¥1(p) of (19) may be written as

V(@) ={[$:(0.... T M2 3 19— DI <1/K?}.

Therefore in order that g is continuous, it must be that Zn) [¢(x)—d(p)|>—0as i [(x)—
. i=1 i=1

¢(p)|*—0. This is clearly satisfied, so g is continuous. Now, this g is the inverse map-

ping of ¢ because ¢p-g=1and g-¢p=1. Thus ¢~l=g: M,—M, is continuous.
After all, it has been proven that ¢: M, —M, is a homeomorphism and [A-iv] holds.
(Q.E.D)

In the next section, we will consider the case of an periodic nonlinear function expanded
in a Fourier series.

V. FOURIER EXPANSION

We study the isomorphism by the Fourier expansion. For simplicity, we here only treat
with the linearization of a scalar periodic system by the trigonometric Fourier expansion.

A multi-dimensional case is straightforward by making a direct product of scalars (see [2]).
That is, Eq. (1) of n=1is givenon M, < (—- -721 , -;-) and f(¢, x) is a periodic function such

as sinx, cosx, etc.
The following trigonometric functions are chosen as the linearly independent functions:

Gop_1(x)=r"%sinrx a>1/2
[ ¢, (x)=r"*cosrx <r=1, 2, 3,...)'
Thus ¢(x) is

d(x)=[¢1(x), $2(x);..., dx(x),...,.1

=[sin x, cos x,..., N"*sin Nx, N~*cos Nx,...]T. (22)

Expanding 0¢(x)/0xf(t, x) in a trigonometirc Fourier series in x and putting x=x(?), it
follows that

32 Ple(1) = A(M(x(1)) + b(r) (23)
with

Ap=@n $ 29 7 agjoxte, ecdx

b(f) = 2n)~* g d¢(x)/oxf(t, x)dx.
In this case the next theorem follows:

[Theorem 4]

Let a scalar nonlinear system of (1) (n=1) be given. Assume that f(t, x) is a periodic
function of period 27 in xe M, and [A-ii] [A-v] and [A-vi] hold. Then by the tri-
gonometric Fourier expansion, Y., of (1) and Y, of (23) areisomorphic on M, and M,



(Proof)
Since f(t, x) is a differentiable function of period 2n with respect to x, so is d¢(x)/
0xf(t, x). Thus [A-iii] holds by (23) The elements of ¢(x) of (22) lead to

> |¢,(x>|2— 2 F~25(sin 2rx +cos rx)
r= 1

= Z r‘2“<00
r=1
which indicates M, <(I?)=Z by choosing (1?) as Z. Therefore we have made a linear
space Z which has contained M, as a subset and assigned Z a topology. The induced
topology of Z is now given to M 2

It is assumed that M; < ( ) )for simplicity. If ¢(x)=¢d(x") e M, then ¢,(x)=
¢,(x") orsin x=sin x’' so x=x"e M,. Hence the mapping ¢: M,—M,=¢(M,) is bijective.

we recall that a ¢(p)-neighborhood of M, is the same form as (21). If [x—p|—0 or x—p,
then

&£ sup ((sin rx —sin rp)? +(cos rx —cos rp)?) — 0
reN
namely

' i‘,l [¢.(x)—P(P)I2= il r~2#((sin rx —sin rp)?> +(cos rx —cos rp)?) <ne — 0

o0
where n= Y r-2¢,
r=1

Thus ¢ is continuous from M, onto M,.

- Let a function g: M,~M; be defined as g(¢(x))=sin"! ¢,(x) where ¢(x)= [¢,(x)
¢5(x),...]Te M,. The function g is an inverse mapping of ¢ because ¢og=1 and gogp=1,
Since M, is assigned the indeced topology of (I2), the identity mapping 1 is continuous from
M, into (I?). Define §(z)=sin"! z,: 2—R where

DL {z=[z,, 2,5,...]T € (1?): |z{| <1},

and § is continuous from 2 <(I?) into R. Accordingly g=§-1: M,—»M; <R is con-
tinuous.
After all, ¢: M, —»M, is a homeomorphism, and [A-iv] holds. (Q.E.D)

VI. CONCLUSIONS

We have studied the isomorphism between a given nonlinear system and a formal linear
system. The following cases have been treated: a general form including the others as
special cases, a linear combination of finitely many independent functions, a Taylor series,
and a trigonometric Fourier series.

One would be interested in the study of the isomorphism when the formal linearization
method is applied to nonlinear estimation and/or nonlinear control problem. Further
studies including it are left for the future.

APPENDIX A
DEFINITIONS OF MANIFOLD

(A1) 1If the following conditions (Al1-a)~(A1l-c) hold, then a Hausdorff space M has a
structure of differentiable manifold by an atlas {(V;, h;): A€ A}, the dimension of M is
n, and M is refered to an n-dimensional Cr-manifold or a manifold simply.



(A1-a) Given an open covering {V;: A€ A} such that M=\ V,.

AeA
(Al-b) Given a homeomorphism h,: V,—h,(V,) for each A€ A where V, and hy(V))
are open sets of M and R” respectively.
(Al-c) Whenever ¥,nV, is not empty, a function hyeh,': h(V;, N V,)—hy(V,nV),)
is bijective and both h;oh;t and (h;oh,)~! are of C* class.

(A2) Let M and N be manifolds. A mapping ¢: M—N is of C class at pe M if there
exist a (U.¥) at pe UcM and a (V. h) at ¢(p) € V<N such that

hogpoyp=1: Y(U) — h(V)
is of Cr class at y(p).

(A3) Let M and N be manifolds. A mapping ¢: M—N is a diffecomorphism if ¢ is a
homeomorphism and both ¢ and ¢~! are of C* class.

APPENDIX B
SYSTEM ON MANIFOLD

Let M, be an n-dimensional Cr-manifold contained in R". Let M, be an n-
dimensional C-manifold contained in a topological linear space Z whose dimension may
be infinite. An open interval T<R is a 1-dimensional C'-manifold (r=w) if u: t—t is
a coordinate function.

We only consider the solutions {z()} =Z of (4) such that z(f)e M,. Then, 3., and 3,
on the manifolds are interpreted as follows. x: T-»M; and z: T-M, are C"-curves.
x(?) is a tangent vector of x at te T so that

x(t)=dx(t)d/du (B1)
where dx is a differential of x. z(f) is a tangent vector of z at t e T so that
2()=dz(t)d|du (B2)

where dz is a differential of z. d¢ is also a differential of ¢. For fixed te T, we regard
that f(t, -) is a vector field on M, and A(£)(-)+ b(t) is a vector field on M.

APPENDIX C
CONTINUITY OF ¢

We here study a continuity of ¢: M, —>M, of (11) in the Taylor expansion. If i (x;—
i=1

p)*—0, then x;—p, for i=1,2,...,n. For any ¢>0 and a sufficiently large integer N,
it follows that

& 1
xrj___ ri 2
l'l+"'+zfn=ND (rl!"'rn !)2 (.:Il;[l Y ]-_I P )
- F(f oy
ritetra=No \j=1 rj! j=1 l‘j!

o | n ry n rj
(.3 |2 -1
riteFra=No | j=1 Tj: j=1 rj

© no T n N
§< 3 (H | jl' + 11 |P1|' >
ritetr,=No \j=1 Fj: i

No—1 ]iI 'le

D'j)
riteFra=0 j=1 rj!

= ((exp (sl -+ + 12D —
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+ (exp (Ips] ++- +1p,)) - Noil ] lxj'!'j ))2

ritetr,=0 j=1 F;
<g/2.

The last inequality is due to a property of the exponential series. Let us fix £>0 and
N, so that (C1) holds. By the mean value theorem, there existes K >0 such that

Xy & W <K
=L - = Kné
JI—_II r;! ,IJ; r;l 1=

for 1<ry+--4+r,£No—1 and |x;—p|<é (i=1,...,n). Thus, choosing a sufficiently
small § >0 yields

5 L (T xy=TIprs 5 km62<ef2 (C2)
S AN CETN)CAY LR A L L2 A . =
The sum of (C1) and (C2) follows
3 _1____. . ry— . T2 <
z ”+“§m=i CAETL (,1;[1 X7 JI;[lpJ:) <e. (C3)
APPENDIX D

EXPRESSION OF MANIFOLDS

The manifolds M; and M, of Example 1 are expressed as follows.
Define N2 {y: ay?+2by+c>0}.

(i) A case of a#0:

M= {x: 20 = L (x0+ L) (b +-evar)

_1_ Jar _ ,—vary_ b
+2\/Z\/ax07+2bx0+c (evat — g=vat) 7 x(t)eN}

r“é (t)_W F__% X0+ %) (eﬁz +e—J7t) —1
1
+ iﬁ axg+2bxq+c(e/d — e~var) — —Z—
M,=¢ £(): =l b E(t)eN |
\/Za <x0+ _a_>(e,/a__e—,/zt)
52(1) 1 -—2_ \/——t - _l‘
L +—2—\/axo+2bxo+c(e at | g=vat) .
(ii)) A case of a=0:
M, = {x(t): x(@) = %bt2+\/2bxo+c t+x,, x(t)eN}
N0 —é—bt2+,/2bxo+ct+xo
M;=< &(@): = $i(DeN

&) bt+/2bxy+c ,
Both (i) and (ii) are satisfied with M, ={[x, \/axZ+2bx+c]T: xe M,}.
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