
Model Compiler Construction Based on

Aspect-Oriented Mechanisms

Naoyasu Ubayashi1, Tetsuo Tamai2,
Shinji Sano1, Yusaku Maeno1, and Satoshi Murakami1

1 Kyushu Institute of Technology, Japan
2 University of Tokyo, Japan
{ubayashi,tamai}@acm.org

{sano,maeno,msatoshi}@minnie.ai.kyutech.ac.jp

Abstract. Model-driven architecture (MDA) aims at automating soft-
ware design processes. Design models are divided into platform-independent
models (PIMs) and platform-specific models (PSMs). A model compiler
transforms the former models into the latter automatically. We can re-
gard PIMs as a new kind of reusable software component because they
can be reused even if a platform is changed. However, a generated PSM
is useless if it does not satisfy system limitations such as memory us-
age and real-time constraints. It is necessary to allow a modeler to
customize transformation rules because model modifications for deal-
ing with these limitations may be specific to an application. However,
current model compilers do not provide the modeler sufficient customiza-
tion methods. In order to tackle this problem, we propose a method for
constructing an extensible model compiler based on aspect orientation,
a mechanism that modularizes crosscutting concerns. Aspect orientation
is useful for platform descriptions because it crosscuts many model el-
ements. A modeler can extend model transformation rules by defining
new aspects in the process of modeling. In this paper, an aspect-oriented
modeling language called AspectM (Aspect for Modeling) for supporting
modeling-level aspects is introduced. Using AspectM, a modeler can de-
scribe not only crosscutting concerns related to platforms but also other
kinds of crosscutting concerns. We believe that MDA is one of the ap-
plications of aspect-oriented mechanisms. The contribution of this paper
is to show that a model compiler can actually be constructed based on
aspect-oriented mechanisms.

1 Introduction

Model-driven architecture (MDA) aims at automating software design processes.
Design models described in Unified Modeling Language (UML) are divided into
platform-independent models (PIMs) and platform-specific models (PSMs). A
model compiler transforms the former models into the latter automatically. The
current MDA primarily focuses on platform-related issues. However, model trans-
formations are not limited to these concerns, as in the case of application-specific
optimization. A PSM generated by a model compiler is useless if the PSM does

II

not satisfy system limitations such as memory usage and real-time constraints. It
is necessary to allow a modeler to customize transformation rules because model
modifications for dealing with these limitations may be specific to an applica-
tion. It would be useful to apply the idea of active libraries[5] to model compiler
construction. However, most current model compilers support only specific kinds
of platforms, and do not provide the modeler sufficient customization methods.

This paper proposes a method for constructing an extensible model compiler
based on aspect orientation[12] in order to tackle the above problem. Aspect
orientation is a mechanism that modularizes crosscutting concerns as aspects.
Platform descriptions also can be regarded as crosscutting concerns. For ex-
ample, descriptions for conforming a model to a specific database middleware
cut across many elements in a model. There are several reasons why adopting
aspect-oriented mechanisms for describing database concerns is useful: persis-
tence can be modularized; persistence aspects can be reused; and applications
can be developed unaware of the persistent nature of the data[18]. The approach
of [18] is effective not only at the programming level but also at the modeling
level. In this paper, an aspect-oriented modeling language called AspectM (As-
pect for modeling) is introduced for supporting modeling-level aspects. Using
AspectM, a modeler can describe not only crosscutting concerns related to plat-
forms but also other kinds of concerns related to model transformation. That is,
a modeler can extend model transformation rules by defining new aspects in the
process of modeling: that is, defining model transformation rules at the same
level of ordinary modeling. Using AspectM, we can realize not only MDA but
also techniques for supporting early aspects and crosscutting properties at the
requirement-related and architectural levels[6]. MDA and aspect orientation are
not different software development principles; rather, we believe that MDA is an
application of aspect-oriented mechanisms. The contribution of this paper is to
show that a model compiler can be actually constructed based on aspect-oriented
mechanisms.

The remainder of this paper is structured as follows. In Section 2, we illus-
trate the process of model transformation using a simple example. In Section
3, we propose a method for model transformations based on aspect-oriented
mechanisms. We introduce AspectM for supporting the method, and provide a
technique for implementing AspectM in Section 4. We show a model transfor-
mation example using AspectM in Section 5. In Section 6, we evaluate AspectM
qualitatively based on our experience. In Section 7, we introduce some related
work, and discuss future directions of this research. Section 8 concludes the pa-
per.

2 Motivation

Here, we illustrate typical model transformation steps in MDA, show how platform-
specific concerns cut across model elements, and demonstrate how aspect-oriented
mechanisms can be applied to describe these crosscutting concerns.

III

Message

- subject
- name
- message

MessageProfile

- messageID
- date
- subject
- name

PostMessageForm

- messageID
- date
- subject
- name
- message

+ getMessageID()
+ setMessageID()
+ getDate()
+ setDate()
+ getSubject()
+ setSubject()
+ getName()
+ setName()
+ getMessage()
+ setMessage()

ActionForm

PostMessageAction

+ execute()

PIM PSM

Step1: merge two PIMs
Step2: convert the merged class
 to an action form bean
Step3: create an action class

Transformation steps

Action

<<refer>>

Fig. 1. An example of a model transformation

2.1 Model transformation steps in MDA

The steps of model transformation can be explained using the following simple
bulletin board system as an example: a user submits a message to a bulletin
board, and the system administrator observes administrative information such as
daily message traffic. This system must be developed using the web application
framework called Struts[22].

We define PIMs that do not depend on a specific platform, and transform
these PIMs into PSMs targeted to Struts, the platform of this system. Figure
1 illustrates this transformation process. There are two PIMs in this example3.
One is the Message class, and the other is the MessageProfile class. The for-
mer is a PIM defined from the viewpoint of a user. The latter, which includes
administrative information such as message id and date, is a PIM defined from
the viewpoint of a system administrator. Although these PIM classes represent
different viewpoints in the system, the substance of the classes should be the
same. All attributes included in the Message class and the MessageProfile

class are necessary for handling a message. The following shows the steps of
transformation of PIMs to a PSM.

Step 1: The two PIM classes, Message and MessageProfile, are merged into
a single class whose name is PostMessage. Attributes/Operations that have
the same name (signature) are merged into a single attribute/operation.

Step 2: In Struts, a request from a web browser is stored in an action form bean
class. The PostMessage class is transformed to an action form bean class.
First, the name of the PostMessage class is changed to PostMessageForm

because an action form bean class must have a name ending with the string

3 In general, PIMs and PSMs are described as sets of UML diagrams. In this example,
we use only class diagrams for simplicity.

IV

Form. Next, the parent class of the PostMessageForm is set to the ActionForm
framework class because it is specified in Struts that a bean class must inherit
the ActionForm class. After that, a set of accessors (setter/getter) is added
to the PostMessageForm class. The transformations in Step 2 are needed for
every data request. That is, the transformations cut across classes related to
the requested data.

Step 3: In Struts, an action logic that handles a request from a web browser is
defined as the execute operation in an action class. First, the action class
PostMessageAction is created, and its parent class is set to the Action class
prepared in Struts. Next, the execute operation is added to the PostMessage-
Action class. The execute operation gets the data of the request from the
corresponding action form bean class, and executes a business logic.

We can implement a model compiler that supports the above transformation
steps because each step is clearly defined. We can also develop a new model
compiler that supports other platforms. A series of PSMs can be generated from
a single PIM by applying different model compilers. MDA enables us to shift
from code-centric product-line engineering (PLE)[5] to model-centric PLE.

2.2 Advantages of introducing aspect orientation

In this paper, we introduce aspect-oriented mechanisms for describing model
transformation rules. As pointed out in the above, platform-specific descrip-
tions are one of the crosscutting concerns that can be well dealt with by aspect
orientation. Although MDA and aspect orientation at the modeling level are
considered different technologies, they are closely related, as we claim in this
paper. Applying aspect orientation to model compiler construction, we obtain
the following advantages: a modeler can extend model transformation rules by
defining new aspects in the process of modeling; a modeler can describe not only
crosscutting concerns related to platforms but also other kinds of crosscutting
concerns including optimization, persistence, and security; and aspect orienta-
tion can be applied at the modeling level, at which design information can be
used to represent crosscutting concerns.

3 Applying aspect orientation to model compiler

construction

3.1 Aspect orientation at the modeling level

Aspect-oriented programming (AOP), a modularization mechanism for separat-
ing crosscutting concerns, is based on the join point model (JPM) consisting of
join points, pointcuts, and advice. Program execution points including method
invocations and field access points are detected as join points, and a pointcut
extracts a set of join points related to a specific crosscutting concern from all
join points. A compiler called a weaver inserts advice code at the join points
selected by pointcut definitions.

V

join point(class)

join point(class)

join point(class)

classA||classB
(extract join point
 whose name is
 classA or classB)

pointcutclassA

attributes

operations

classB

attributes

operations

classC

attributes

operations

classA

attributes

operations

new attributes

new operations

classB

attributes

operations

new attributes

new operations

advice

add new attributes
add new operations

weave

Fig. 2. Aspect orientation at the modeling level (example)

Although JPMs have been proposed as a mechanism at the programming
level, they can be applied to the modeling level as shown in Figure 2. In this
example, a class is regarded as a join point. The pointcut definition ’classA ||
classB’ extracts the two classes classA and classB from the three join points
class A, classB, and classC. Model transformations such as add new attributes
and add new operations are regarded as advice. In Figure 2, new attributes and
operations are added to the two classes, classA and classB.

3.2 JPMs for model transformations

There has been research supporting modeling-level aspect orientation based on
a specific AOP language such as AspectJ[13]: an aspect at the modeling level is
converted to an aspect in AspectJ[21]. However, there are problems with these
approaches: a PSM is limited to a specific AOP language; most current AOP
languages are based on a few fixed set of JPMs; and we cannot separate cross-
cutting concerns that cannot be separated by current AOP languages. Indeed,
there are several kinds of JPMs as shown in [14]. In order to deal with this prob-
lem, multiple JPMs should be supported at the modeling level, and these JPMs
should not correspond to specific kinds of AOP languages.

AspectM, an aspect-oriented modeling language proposed in this paper, sup-
ports six kinds of JPMs: PA (pointcut & advice), CM (composition), NE (new
element), OC (open class), RN (rename), and RL (relation). Table 1 shows model
transformation types and corresponding JPMs. With aspect composition based
on these JPMs, the model transformation in Section 2 can be realized as shown
in Table 2. Model elements including classes, methods, and relations specific to
Struts are woven into the original PIMs.

PA is an AspectJ-like JPM. A join point is a method execution, and advice
changes a behavior at join points selected by a pointcut. Three kinds of advice

VI

No Model transformation type PA CM NE OC RN RL

1 change a method body ©

2 merge classes ©

3 add/delete classes ©
4 add/delete operations ©
5 add/delete attributes ©

6 rename classes ©
7 rename operations ©
8 rename attributes ©

9 add/delete inheritances ©
10 add/delete aggregations ©
11 add/delete relationships ©

Table 1. JPMs for model transformation

Step Model transformation PA CM NE OC RN RL

step 1 1-1) merge Message and MessageProfile ©
into PostMessage

step 2 2-1) rename PostMessage to PostMessageForm ©
2-2) add an inheritance relation ©

between ActionForm and PostMessageForm

2-3) add accessors to PostMessageForm ©

step 3 3-1) create an action class PostMessageAction ©
3-2) add an inheritance relation ©

between Action and PostMessageAction

3-3) add the execute method to PostMessageAction ©
3-4) add the body of the execute method ©

Table 2. Model transformation steps for Struts

can be described: before (a pre-process is added), after (a post-process is
added), and around (a process is replaced). PA is used when we want to add
platform-specific logics to PIMs. CM is a Hyper/J-like JPM[4]. In this case, a
join point is a class, and advice merges classes selected by a pointcut: operations
with the same name are merged into a single operation, and attributes with
the same name are merged into a single attribute. CM is used in the case of
converting multiple PIM classes to a single PSM class. NE is a JPM for adding
a new model element to a UML diagram. In this case, a join point is a UML
diagram such as a class diagram. Advice adds a new class to a class diagram
selected by a pointcut. NE can be used to add a platform specific class to PIMs.
OC is a JPM for realizing the facility of an open class. In this case, a join point
is a class, and advice inserts operations or attributes. OC, which is similar to an
inter-type declaration in AspectJ, is used in the case of adding platform-specific
operations or attributes to PIMs. Figure 2 in Section 3.1 is an example of an OC.
RN is a JPM for changing a name, in which a join point is a class, an operation,
and an attribute. Advice changes the names of classes, operations, and attributes
selected by a pointcut. RN is used for following the naming conventions specified
in a platform. RL is a JPM for changing the relation between two classes, in which

VII

JPM type Join point type Advice type

PA operation before, after, around

CM class merge-by-name

NE class diagram add-class, delete-class

OC class add-operation, delete-operation
add-attribute, delete-attribute

RN class, operation, attribute rename

RL class add-inheritance, delete-inheritance
add-aggregation, delete-aggregation
add-relationship, delete-relationship

Table 3. Types of JPM, join point, and advice

case, a join point is a class, and advice adds an inheritance, an aggregation, and
a relationship between two classes selected by a pointcut. There is a case that
a class must inherit a specific class defined in an application framework such as
Struts. RL is used in this situation.

4 AspectM

AspectM is an aspect-oriented modeling language that supports the six JPMs
introduced in Section 3. In AspectM, an aspect can be described in either a
diagram or an XML (eXtensible Markup Language) format. AspectM is defined
as an extension of the UML metamodel. Figure 3 shows the AspectM diagram
notations and the corresponding XML formats. AspectM is not only a diagram
language but also an XML-based AOP language. In this section, we show the
syntax of AspectM, which has two aspects: an ordinary aspect and a compo-
nent aspect. A component aspect is a special aspect used for composing aspects.
In this paper, we use simply the term aspect when we need not to distinguish
between an ordinary aspect and a component aspect. An aspect can have pa-
rameters for supporting generic facilities. By filling parameters, an aspect for a
specific purpose is generated. Using these kinds of aspects, a set of transforma-
tion steps can be described as a generic software component.

4.1 Notation

The notations of aspect diagrams are similar to those of UML class diagrams. An
oval at the upper left portion of a diagram indicates that the diagram represents
an aspect. A box at the upper right indicates parameters. This box can be
omitted when there is no parameter. An aspect with parameters is called a
template. Italic text in a diagram must be specified by a modeler. Types of
JPMs (jpm-type), join points (joinpoint-type), and advice (advice-type) are shown
in Table 3.

Diagrams of ordinary aspects are separated into three compartments: 1) as-
pect name and JPM type, 2) pointcut definitions, and 3) advice definitions. An

VIII

<aspect name=aspect-name type="ordinary"
 jpm=jpm-type>
 [<params>
 { <param> @parameter@ </param> } *
 </params>]
 { <pointcut name=pointcut-name
 type=joinpoint-type>
 <pointcut-body>
 pointcut-body
 </pointcut-body>
 </pointcut> } +
 { <advice name=advice-name
 type=advice-type
 ref-pointcut=pointcut-name>
 <advice-body>
 advice-body
 </advice-body>
 </advice> } +
</aspect>

a) ordinary aspect

<<jpm-type>>
aspect-name

pointcut-name : joinpoint-type
 {pointcut-body=pointcut-body}
 :
 :

advice-name [pointcut-name] : advice-type
 {advice-body=advice-body}
 :
 :

aspect @parameter@
 :
 :

<aspect name=aspect-name type="component" >
 [<params>
 { <param> @parameter@ </param> } *
 </params>]
 { definition of ordinary aspect
 or
 definition of component aspect} +
 { <aspect-precedence>
 <from>aspect-name</from>
 <to>aspect-name</to>
 </aspect-precedence> } +
</aspect>

b) component aspect

 aspect-name

aspect

<<precede>>

<<precede>>

@parameter@
 :
 :

<<jpm-type>>
 aspectA

pointcut defs

advice defs

aspect
<<jpm-type>>
 aspectB

pointcut defs

advice defs

aspect

<<jpm-type>>
 aspectC

pointcut defs

advice defs

aspect

c) parameter setting

<aspect name=aspect-name
 template="template-name" >
 {<set-param name="@parameter@">
 parameter-value
 </set-param> } +
</aspect>aspect-name

aspect @parameter@=parameter-value
 :
 :

<<generic-aspect-name>>

Fig. 3. AspectM diagram notations and XML formats

IX

 <<CM>>
MergeClasses

inputClasses:class
 {pointcut-body="cname(Message)
 ||cname(MessageProfile)"}

merge[inputClasses]:merge-by-name
 {advice-body="PostMessage"}

aspect <aspect name="MergeClasses"
 type="ordinary" jpm="CM">
 <pointcut name="inputClasses"
 type="class">
 <pointcut-body>
 cname(Message)||cname(MessageProfile)
 </pointcut-body>
 </pointcut>
 <advice name="merge" type="merge-by-name"
 ref-pointcut="inputClasses">
 <advice-body>PostMessage</advice-body>
 </advice>
</aspect>

Fig. 4. Example of aspect notation

aspect name and a JPM type are described in the first compartment. A JPM
type is specified using a stereo type. Pointcut definitions are described in the sec-
ond compartment. Each of them consists of a pointcut name, a join point type,
and a pointcut body. In pointcut definitions, we can use three predicates: cname
(class name matching), aname (attribute name matching), and oname (operation
name matching). We can also use three logical operations: && (and), || (or),
and ! (not). The following are examples of pointcut definitions: ’oname(setX) ||
oname(setY)’ (two operations setX and setY are selected from all join points);
’!aname(attribute*)’ (attributes not starting with a string attribute are se-
lected); ’cname(classA) || cname(classB)’ (two classes classA and classB

are selected); and ’cname(class*) &&oname(set*)’ (operations, which belong
to classes starting with a string class and start with a string set, are se-
lected if joinpoint-type is operation). Although we support only predicates for
name matching in the current AspectM, we plan to support predicates including
is-attribute-of(class),is-operation-of(class),is-superclass-of(class),
and is-subclass-of(class). Advice definitions are described in the third com-
partment. Each of them consists of an advice name, a pointcut name, an advice
type, and an advice body. A pointcut name is a pointer to a pointcut definition in
the second compartment. Advice is applied at join points selected by the point-
cut. The left side of Figure 4 shows a transformation rule corresponding Step 1
in Section 2: the JPM type is CM; the two classes Message and MessageProfile

are join points selected by the pointcut definition; and the merge-by-name type
advice is applied at these join points.

Diagrams of component aspects are separated into two compartments: 1) as-
pect name, and 2) a set of ordinary aspects or component aspects. A component
aspect consists of the aspects specified in the second compartment. A stereo type
<<precede>> indicates the precedence of aspects as shown in Figure 3 b). This
is important when multiple aspects are applied to the same join points.

By filling parameter values, an aspect for a specific purpose is generated. The
name of a template is specified in a stereo type.

An aspect can be represented in XML format as shown in the right side of
Figure 3. The notations [] and {} show an option and a repetition, respectively.
The notations ∗ and + in {} show an occurrence of more than zero and more

X

Aspect diagram(XML)

XSLT processor

 XSLT style sheet
 for
converting aspect(XML)
 to XSLT style sheet

 XSLT style sheet
 for
converting UML(XML)
 to UML(XML)

XSLT processorUML diagram (XML) UML diagram (XML)

PIM PSM

The first transformation phase

The second transformation phase

Fig. 5. Implementation of AspectM model compiler

than one. An aspect is represented by the aspect tag distinguished by the type

attribute. A set of parameters is specified by the params tag. In an ordinary
aspect, pointcuts and advice are specified by the pointcut tag and advice tag,
respectively. In a component aspect, definitions of ordinary aspects or other com-
ponent aspects are specified after parameter definitions. After that, precedences
of aspects are specified using the aspect-precedence tag. Parameters are set
using the set-param tag. The right side of Figure 4 shows the XML descriptions
corresponding to the diagrams on the left.

4.2 Implementation

We have developed a prototype of AspectM. The tool for supporting AspectM
consists of a model editor and a model compiler. The model editor facilitates
editing UML and aspect diagrams. The model editor can save diagrams in the
XML format. The model compiler can be implemented as an XML transforma-
tion tool because UML class diagrams can be represented in XML. The AspectM
model compiler, which consists of two phases, transforms PIM classes into PSM
classes as shown in Figure 5. The first transformation phase converts an aspect
in the form of XML to an XSLT (XSL Transformation) style sheet with addi-
tional Java classes using an XSLT processor. The second transformation phase
converts PIM classes in XML form to the corresponding PSM classes in XML
form using the style sheet generated in the first transformation phase.

5 MDA with AspectM

5.1 Aspect descriptions for model transformations

Figure 4 shows Step 1 of transformation in the bulletin board system. In this
step, the MergeClasses aspect, whose JPM type is CM, is defined for merging
two PIM classes Message and MessageProfile into the PostMessage class.

XI

Although the MergeClasses aspect in Figure 4 is useful, there is a problem in
terms of reusability because the aspect cannot be applied to other models. The
pointcut body and the advice body are specific to the bulletin board system. In
order to deal with the problem, a generic mechanism can be used. The following
is a generalized version of the mergeClasses in XML form. A string enclosed by
’@’ is a parameter.

;; generic MergeClasses aspect
<aspect" name="Generic-MergeClasses" type="ordinary" jpm="CM">
<params>

<param>@input-classes@</param>
<param>@merged-class@</param>

</params>
<pointcut" name="inputClasses" type="class">

<pointcut-body>@input-classes@</pointcut-body>
</pointcut>
<advice name="merge" adviceType="merge-by-name"

ref-pointcut="inputClasses">
<advice-body>@merged-class@</advice-body>

</advice>
</aspect>

;; specific mergeClasses aspect
<aspect name="MergeClasses" template="Generic-MergeClasses">
<set-param name="@input-classes@">

cname(Message)||cname(MessageProfile)
</set-param>
<set-param name="@merged-class@">PostMessage</set-param>

</aspect>

Steps 2 and 3 can be also realized with the same approach. The following
aspect describes a transformation step that adds an inheritance relation between
the ActionForm class and an action form bean class. The <relation> is a tag
for adding or deleting a relation such as an inheritance, an aggregation, or a
relationship.

<aspect name="Generic-InheritActionForm" type="ordinary" jpm="RL">
<params>

<param>@sub-class@</param>
</params>
<pointcut name="super-sub-classes" type="class">

cname(org.apache.struts.action.ActionForm)||cname(@sub-class@)
</pointcut>
<advice name="inherit-action-form" type="add-inheritance">

<ref-pointcut>super-sub-classes</ref-pointcut>
<advice-body>
<relation>

<end1>org.apache.struts.action.ActionForm</end1>
<end2>@sub-class@</end2>

</relation>
</advice-body>

</advice>
</aspect>

We can compose a set of related aspects within a component aspect. The fol-
lowing aspect, which generates an action form bean from PIM classes, composes
aspects that describe Step 1 and 2.

XII

<aspect name="Generic-Classes2ActionFormBean" type="component">
<params>

<param>@input-classes@</param>
<param>@merged-class@</param>

</params>
<aspect name="MergeClasses" template="Generic-MergeClasses">

<set-param name="@input-classes@">@input-classes@</set-param>
<set-param name="@merged-class@">@merged-class@</set-param>

</aspect>
<aspect name="SetActionFormBeanName" template="Generic-SetActionFormBeanName">

<set-param name="@class@">@merged-class@</set-param>
</aspect>
<aspect name="InheritActionForm" template="Generic-InheritActionForm">

<set-param name="@sub-class@">concat(@merged-class@,"Form")</set-param>
</aspect>
<aspect name="AddAccessors" template="Generic-AddAccessors">

<set-param name="@class@">concat(@merged-class@,"Form")</set-param>
</aspect>

</aspect>

Four generic aspects are used for defining this component aspect. The defini-
tions of the two generic aspects Generic-SetActionFormBeanNameand Generic-

AddAccessors are omitted here due to limitations of space. Sub-aspects are ap-
plied in the order of appearance when the aspect-precedence tags are omitted.
The concat is a library function for concatenating two strings.

5.2 Extension of model transformations

Adopting AspectM, we can extend the functionality of the model compiler by
adding aspect definitions. This extensibility is effective for defining application-
specific model transformations. The following is the aspect that deletes the date
attribute when the two classes Message and MessageProfile are merged.

<aspect name="DeleteAttribute" type="ordinary" jpm="OC">
<pointcut name="postMessageClass" type="class">

<pointcut-body>cname(PostMessage)</pointcut-body>
</pointcut>
<advice name="deleteDate" adviceType="delete-attribute"

ref-pointcut="postMessageClass">
<advice-body>date</advice-body>

</advice>
</aspect>

This kind of aspect is useful for product-line engineering in which a variety
of PSMs are generated from a single set of PIMs. A specific PSM, a model of a
specific product, may have to be optimized in terms of memory resources. The
above aspect, which eliminates the date attribute unused in a specific product,
is applied after the MergeClasses aspect is applied. Using AspectM, a process
of tuning up can be componentized as an aspect.

5.3 Descriptions for other crosscutting concerns

AspectM can also describe the type of crosscutting concern that AspectJ sup-
ports. The following is an aspect for logging setter method calls. Log.write()
is a log writer.

XIII

<aspect name="LoggingSetter" type="ordinary" jpm="PA">
<pointcut name="allSetter" type="method">

<pointcut-body>oname(set*)</pointcut-body>
</pointcut>
<advice name="logSetter" adviceType="before" ref-pointcut="allSetter">

<advice-body>Log.write()</advice-body>
</advice>

</aspect>

6 Discussion

It is not easy to quantify the effectiveness of AspectM because MDA based on as-
pect orientation is still young. In this section, we evaluate AspectM qualitatively
based on our experience.

We can extend the functionality of the model compiler by adding aspect
definitions. However, it is not realistic for a modeler to define all of the aspects
needed to construct a model compiler from scratch. It is necessary for model
transformation foundations, aspects commonly applied to many transformations,
to be pre-defined by model compiler developers. For example, it is preferable to
prepare aspect libraries that support de facto standard platforms such as J2EE
and .NET. It is also useful to construct aspect libraries that support platform-
independent model transformations commonly applied to many applications:
fusion of classes having certain kinds of patterns, generation of setter/getter
methods, change of naming conventions, and so on. Although aspect libraries are
effective, it may be inconvenient to construct them by defining aspect diagrams
because the number of aspect definitions tends to be large. It would be more
convenient to use XML formats in the case of aspect library development. If a
set of aspect libraries could be provided by model compiler developers, modelers
would have only to define application-specific aspects as shown in Figure 6.

AspectM includes JPMs supported by major AOP languages. However, it
is still not clear whether all kinds of model transformations can be described
by the six JPMs. We think that there are situations for which new kinds of
JPMs must be introduced. It would be better if a modeler can modify the As-
pectM metamodel using the model editor. This function can be considered as a
modeling-level reflection, a kind of compile-time reflection.

In AspectM, we regard mechanisms explained by extended JPMs as aspect
orientation. This definition might be slightly different from that of ordinary as-
pect orientation. If AspectM is not available, the users cannot describe such a
transformation rule within UML since AspectM deals with meta concerns and
UML deals with base-level concerns. In AspectJ, for example, a crosscutting con-
cern can be described in Java but the resulting code will be tangled. This means
that an aspect in AspectJ is not a meta concern. For this reason, it could be
argued that AspectM is not an aspect-oriented language but a meta language for
model transformations. However, AspectM can describe not only model transfor-
mation rules but also ordinary crosscutting concerns such as logging. AspectM
unifies lightweight meta-programming with ordinary aspect orientation by ex-
tending the idea of JPMs. It is not necessarily easy to separate platform-specific

XIV

Aspect library
 for J2EE

Aspect library
 for .NET

Aspect library
 for product line B

Aspect library
 for product line A

(Aspect in the form of XML)

Application-specific
 aspect

Application-specific
 aspect

(Aspect in the form of diagram)

UML diagram

UML diagram

provided as libraries defined by a modeler

weave

Fig. 6. Software development process using AspectM

concerns with only ordinary aspect orientation. In [18], not only AspectJ but
also Java reflection is used for describing database concerns. The approach of
AspectM can be considered reasonable.

7 Related Work

There has been research that has attempted to apply aspect-oriented mecha-
nisms in the modeling phase. D.Stein et. al. proposed a method for describing
aspects as UML diagrams[21]. In this work, an aspect at the modeling-level was
translated into the corresponding aspect at the programming language level,
for example an aspect in AspectJ. Y.Han et. al. proposed a meta model and
modeling notation for AspectJ[11]. An aspect in AspectM is not mapped to an
element of a specific programming language, but operates on UML diagrams.
U.Aßmann and A.Ludwig claimed that aspect weaving could be represented as
graph rewriting[1]. A UML diagram also can be regarded as graph. J.Sillito et.
al. proposed the concept of usecase-level pointcuts, and showed the effectiveness
of JPMs in early modeling phases[20]. E.Barra et. al. proposed an approach to
an AOSD working method, using the new elements added in UML 2.0[3].

There is a standard model transformation language called QVT (Queries,
Views, and Transformations)[17] in which model elements to be transformed are
selected by query facilities based on OCL (Object Constraint Language)[23],
and are converted using transformation descriptions. Since the purpose of QVT
is to describe model transformations, QVT does not provide facilities for de-
scribing crosscutting concerns explicitly. AspectM can describe not only model
transformation rules but also other kinds of crosscutting concerns.

Domain-specific aspect-oriented extensions are important. Early AOP re-
search aimed at developing programming methodologies in which a system was
composed of a set of aspects described by domain-specific AOP languages[12].
Domain-specific extensions are necessary not only at the programming stage
but also at the modeling stage. J.Gray provided significant research on topics

XV

including aspect orientation, model-driven developments, and domain-specific
languages[8][9]. He proposed a technique of aspect-oriented domain modeling
(AODM), and introduced a language called ECL (Embedded Constraint Lan-
guage), an extension of OCL. ECL included the idea of QVT and provided
facilities for adding model elements such as attributes and relations. Although
the approach of AODM was similar to AspectM, the purpose of AODM was
to realize domain-specific languages. He also proposed an approach that used a
program transformation system as the underlying engine for weaver construc-
tion[10]. M.Shonle et. al. proposed an extensible domain-specific AOP language
called XAspect that adopted plug-in mechanisms[19]. Adding a new plug-in mod-
ule, we can use a new kind of aspect-oriented facility. CME (Concern Manipu-
lation Environment)[4] adopted an approach similar to XAspect.

AspectM can be considered an XML-based AOP language. There are sev-
eral AOP languages that can describe aspects in XML formats. AspectWerkz[2]
is one such language. However, aspects in AspectWerkz are strongly related to
an AspectJ-like JPM, and do not support multiple JPMs as in AspectM. Us-
ing AspectM, we can use multiple pieces of design information in describing
modeling-level pointcuts. This is one of the advantages of applying aspect ori-
entation to the modeling level. Another approach for enriching pointcuts is to
adopt the functional XML query language XQuery[24]. M.Eichberg, M.Mezini,
and K.Ostermann investigated the use of XQuery for specification of pointcuts[7].

Introducing AspectM, model transformation rules can be accumulated as
reusable software components. This approach is similar to that of Draco[16]
proposed by J. Neighbors in 1980s. In Draco, software development processes
were considered as a series of transformations: requirements are transformed
into analysis specifications; analysis specifications are transformed into design
specifications; and design specifications are transformed into source code. These
transformations were componentized in Draco. J. Neighbors claimed that soft-
ware development processes could be automated by composing these transfor-
mation components. In AspectM, these components can be described by aspects.

8 Conclusion

We proposed a method for constructing an extensible model compiler based on
aspect orientation. A modeler can extend model transformation rules by defining
new aspects in the process of modeling. We believe that the idea of AspectM
will provide a new research direction for model compiler construction.

References

1. Aßmann, U. and Ludwig, A.: Aspect Weaving as Graph Rewriting, In Proceedings
of Generative Component-based Software Engineering (GCSE), pp.24-36, 1999.

2. Aspectwerkz. http://aspectwerkz.codehaus.org/
3. Barra, E., Genova, G., and Llorens, J.: An approach to Aspect Modeling with

UML 2.0, The 5th Aspect-Oriented Modeling Workshop, 2004.

XVI

4. Concern Manipulation Environment (CME): A Flexible, Extensible, Interoperable
Environment for AOSD, http://www.research.ibm.com/cme/.

5. Czarnecki, K., and Eisenecker, U. W.: Generative Programming: Methods, Tools
and Applications, Addison-Wesley, 2000.

6. Early Aspects, http://early-aspects.net/.
7. Eichberg, M., Mezini, M., and Ostermann, K.: Pointcuts as Functional Queries,

In Proceedings of International Conference on Asian Symposium (APLAS 2004),
pp.366-382, 2004.

8. Gray, J.: Aspect-Oriented Domain-Specific Modeling: A Generative Approach Us-
ing a Meta-weaver Framework Ph.D. Dissertation, Department of Electrical Engi-
neering and Computer Science, Vanderbilt University, 2002.

9. Gray, J., Bapty, T., Neema, S., Schmidt, D., Gokhale, A, and Natarajan, B.: An
Approach for Supporting Aspect-Oriented Domain Modeling, In Proceedings of
International Conference on Generative Programming and Component Engineering
(GPCE 2003), pp.151-168, 2003.

10. Gray, J. and Roychoudhury, S.: A Technique for Constructing Aspect Weavers Us-
ing a Program Transformation Engine, In Proceedings of International Conference
on Aspect-Oriented Software Development (AOSD 2004), pp.36-45, 2004.

11. Han, Y., Kniesel, G., and Cremers, A., B.: A Meta Model and Modeling Notation
for AspectJ, The 5th Aspect-Oriented Modeling Workshop, 2004.

12. Kiczales, G., Lamping, J., Mendhekar A., Maeda, C., Lopes, C., Loingtier, J. and
Irwin, J.: Aspect-Oriented Programming, In Proceeding of European Conference
on Object-Oriented Programming (ECOOP’97), pp.220-242, 1997.

13. Kiczales, G., Hilsdale, E., Hugunin, J., et al.: An Overview of AspectJ, In Proceed-
ings of European Conference on Object-Oriented Programming (ECOOP 2001),
pp.327-353, 2001.

14. Masuhara, H. and Kiczales, G.: Modeling Crosscutting in Aspect-Oriented Mech-
anisms, In Proceedings of European Conference on Object-Oriented Programming
(ECOOP 2003), pp.2-28, 2003.

15. MDA, http://www.omg.org/mda/.
16. Neighbors, J.: The Draco Approach to Construction Software from Reusable Com-

ponents, In IEEE Transactions on Software Engineering, vol.SE-10, no.5, pp.564-
573, 1984.

17. QVT, http://qvtp.org/.
18. Rashid, A. and Chitchyan, R.: Persistence as an Aspect, In Proceedings of In-

ternational Conference on Aspect-Oriented Software Development (AOSD 2003),
pp.120-129, 2003.

19. Shonle, M., Lieberherr, K., and Shah, A.: XAspects: An Extensible System for
Domain-specific Aspect Languages, In Proceedings of Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2003), Domain-Driven
Development papers, pp.28-37, 2003.

20. Sillito, J., Dutchyn, C., Eisenberg, A.D., and Volder, K.D.: Use Case Level Point-
cuts, In Proceedings of European Conference on Object-Oriented Programming
(ECOOP 2004), pp.244-266, 2004.

21. Stein, D., Hanenberg, S., and Unland, R.: A UML-based aspect-oriented design no-
tation for AspectJ, In Proceedings of International Conference on Aspect-Oriented
Software Development (AOSD 2002), pp.106-112, 2002.

22. Struts, http://struts.apache.org/.
23. Warmer, J., and Kleppe, A.: The Object Constraint Language Second Edition

—Getting Your Models Ready for MDA, Addison Wesley, 2003.
24. XQuery, http://www.w3.org/TR/xquery/.

