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Preface

The Internet has become an important infrastructure and continues to expand. With the

ubiquitousness of the Internet in our daily lives, the amount of data, the number of flows,

and the types of applications that coexist on the Internet have been increasing. Originally,

people used the Internet to realize connectivity between senders and receivers. Currently,

however, connectivity that meets a diverse range of requirements for various applications is

desired. In a well-provisioned network in which the number of users is limited, it is easy to

realize connectivity that meets various requirements with no dedicated controls. On the In-

ternet, however, flows that have various requirements coexist and limited network resources

are shared among those flows. Thus, in order to realize connectivity under these environ-

ments, congestion controls are important in the network. The present research, therefore,

focuses on the congestion control mechanisms in order to realize end-to-end communication

qualities that are adequate and suitable for the diversity of the network. Three diversities in

the network are considered, i.e., network environments, application types, and the quality

of services required by users. In addition, the problems in the current congestion control

mechanisms are clarified in order to achieve various levels of end-to-end quality of service

in the network and schemes are proposed to solve the problems. The congestion controls in

the network can be classified into two categories from an architectural viewpoint: controls

conducted between end hosts and controls conducted at all nodes along the path, including

intermediate nodes in addition to end hosts. In the following discussion, these two categories

of congestion control, working between end-to-end hosts and working at all nodes along the
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path, are described.

Chapter 1 describes the background of the present research and outlines the present ap-

proach to target issues.

In Chapter 2, the congestion control conducted between end hosts is introduced. Trans-

mission Control Protocol (TCP) is a representative protocol working between end hosts and

has been adopted as a transport protocol in the network, which can provide a highly reliable

networking environment for non-real time application flows. However, it is well known that

TCP cannot achieve efficient data transfer in fast long-distance networks. Therefore, various

high-speed transport protocols have been proposed to solve this problem, and these protocols

will also be introduced in Chapter 2.

In Chapter 3, the congestion control conducted at all nodes along the path is introduced.

In Chapter 4, the basic characteristics of a number of existing high-speed transport pro-

tocols are presented, which are obtained in testbed network. In this chapter, I primarily

observe the throughput characteristics of a single high-speed transport protocol and discuss

its efficiency and fairness for a Standard TCP flow.

In Chapter 5, a number of experimental results are discussed for various scenarios con-

sidering the future high-speed Internet. High-speed transport protocols were originally de-

veloped for realizing efficient data transfer in fast long-distance networks. Therefore, in the

case of coexisting high-speed transport protocol flows and standard TCP flows, the perfor-

mance of the standard TCP flow is affected by high-speed transport protocol flows. On the

other hand, on the future Internet, the end-to-end network will be faster. Under these cir-

cumstances, I believe that users may be interested in transferring their data using high-speed

transport protocol instead of the current Standard TCP. Therefore, in Chapter 5, an envi-

ronment in which high-speed transport protocols are adopted to transfer data by users, and

experimental scenarios are considered.

In Chapters 6 and 7, I describe the congestion control mechanisms in which intermedi-

ate nodes work in conjunction with end hosts. In Chapter 6, I evaluated the performance
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of end-to-end non-real time flows that pass through multiple DiffServ domains. Research

on the quality of service of end-to-end flows achieved by DiffServ technologies focuses pri-

marily on a single DiffServ domain. However, the actual network environment is a network

of networks, in which multiple DiffServ domains are connected. Therefore, the end-to-end

throughput characteristics of a minimum bandwidth guarantee service flow (AF (Assured

Forwarding) service flow) that passes through multiple DiffServ domains in the DiffServ

framework are investigated. In the AF service, the packets are marked according to ser-

vice class in their headers based on the measurement at the ingress edge routers, and are

then forwarded to the intermediate nodes. At the border router to another DiffServ domain,

the packet arrival rate is measured again and the service classes are re-marked if necessary.

I investigate the impact of packet remarking that occurs at edge router on the end-to-end

throughput characteristics of AF flow. In Chapter 7, early packet discarding schemes are

proposed in order to improve the delay characteristics of real-time application flows. Some

real-time applications set limits for acceptable network delay. For example, VoIP defines

service classes based on the end-to-end packet delay limit. In these applications, packets

delayed longer than an acceptable limit are invalidated by their applications when they reach

their destinations, even though they have successfully arrived at the receiver. These packets

are considered to be useless by the applications and thus impose an excess load on the net-

work. Therefore, an early packet discarding scheme is proposed as a kind of active queue

management scheme, in which packets that do not contribute to the quality of real-time ap-

plications are discarded in advance at intermediate nodes. I evaluate the effectiveness of the

proposed schemes via network simulation in Chapter 7.

Finally, concluding remarks are presented in Chapter 8.

Mar. 2007

Kazumi Igarashi
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Chapter 1

Introduction

1.1 Background

The Internet is a well-established form of infrastructure and has come to be used by not

only industry but also as local infrastructure. Initially, the Internet was developed to pro-

vide best-effort service, that is, the Internet was designed to guarantee network connectivity.

Currently, however, Internet service is required to provide best-effort connectivity while sat-

isfying various diversities observed in the network. There are three elements of diversity on

the network: the network environment, the user application type, and the level of quality of

service required by users.

The network environment is becoming increasingly heterogeneous, for example, rapid

progress is being made in the status of coexisting wired and wireless environments. In addi-

tion, several types of application flow coexist in the network, each of which requests different

end-to-end service classes. For example, some applications give top priority to reliability and

others applications assign the greatest importance to the real-time property. In the future In-

ternet, the number of different application flow types will increase. Thus, the diversity of the

requirements of the service classes will be greater. In addition, different diversities observed

in the network are the level of service classes provided for users. The range of services

1



CHAPTER 1. INTRODUCTION

provided to the users in the network will become widespread with the rapid progress of net-

work technology, for example, including the minimum bandwidth guaranteed service based

on the contract or the priority service, such as a leased line. To provide connectivity while

considering variousness observed in the network, the congestion control algorithm plays an

important role in the network. Thus, in the present thesis, various congestion controls that

consider the variousness of network elements were investigated.

The congestion control is conducted to reduce the degree of congestion in the network.

For example, in TCP congestion mechanisms, the sender resends packets that are detected

as discarded in the network, by reducing the original sending rate of the sender by half. TCP

congestion control is conducted between end hosts. Therefore, if the sending rate is not

reduced based on feedback information from the network, the congestion status is not im-

proved, and as a result, most of the packets on the path become invalid. Congestion controls

are designed to resolve the causes of network congestion and deterioration in communication

quality in order to make efficient use of network resources.

In the network, the various congestion controls are used to achieve different goals. Ta-

ble 1.1 lists the congestion controls described in the present thesis, including the purpose

for the inclusion of each congestion control and the location at which the congestion control

works.

Table 1.1: Targeted congestion control

# Research theme Goal Place of implementation

1 Performance evaluation for high-speed transport protocols over a fast-long distance network Variousness of network environment End-to-end

2 Evaluation of minimum bandwidth guaranteed service in multiple DiffServ domains Variousness of end-to-end service End-to-end & intermediate node

3 Evaluation of proposed adaptive early packet discarding scheme Variousness of application flows End-to-end & intermediate node

As shown in Table 1.1, from the viewpoint of the framework of the control, the conges-

tion controls are classified into the following two categories: those conducted only between

end-to-end hosts and those in which the intermediate node works in conjunction with the end

equipments. The congestion control conducted between end hosts has scalability compared

to the schemes working with the intermediate nodes. However, the latter case has possibility

2
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of conducting precise controls depending on network status.

In sections 1.2 and 1.3, the problems of the congestion controls adopted in the current

network are described. In section 1.2, the congestion control conducted between end hosts

is targeted, and in section 1.3, the controls conducted at an intermediate node are described.

In section 1.4, an outline of the proposed mechanisms with which to address these issues is

presented.

1.2 Problems of congestion control conducted between end

hosts

The representative congestion control mechanism conducted between end hosts in the net-

work is that in Standard TCP protocol. Many non-real-time applications on the Internet,

including the World Wide Web and e-mail, adopt Standard TCP as their transport proto-

col. Standard TCP executes the error control, the flow control and the congestion control to

realize high-reliability data transfer.
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Figures 1.1, 1.2, and 1.3 show the mechanisms of each control. In an error control, the

receiver sends acknowledgement packets back to the sender after receiving the data packets.

Standard TCP conducts flow control, in which the transmission rate is adjusted based on

a sliding window mechanism. In addition, Standard TCP executes congestion control also

based on the window control to adjust its transmission rate according to the degree of net-

work congestion. The congestion control of Standard TCP consists of two phases, a slow

start phase and a congestion avoidance phase, as shown in Fig. 1.3. In the slow start phase,

the congestion window size (cwnd) is doubled every time the sender receives the acknowl-

edgement packet. In the congestion avoidance phase, the cwnd is managed by the Additive

Increase and Multiplicative Decrease (AIMD) algorithm as shown below:

ACK : cwnd = cwnd + 1

DROP : cwnd = 1/2(cwnd)

Both flow control and congestion control in Standard TCP are conducted between sender

and receiver hosts. Thus, particularly in the congestion avoidance phase, cwnd is increased

very slowly , as shown in Fig. 1.4

That is, the longer the distance between end hosts and the wider the bandwidth, the more

difficult it is to realize efficient data transfer. Therefore, various alternative techniques have

been proposed and developed to meet the requirement of highly reliable and high-speed

transfer on fast long-distance networks, which can be grouped into the following four major

activities: (1) current TCP parameter tuning, (2) modification of the congestion control in

the current TCP, (3) proposals for new high-speed transport protocols based on the UDP,

and (4) creation of entirely new frameworks on transport protocols suitable for applications

in fast long-distance networks working with the support of routers. As examples of (1),

dynamic system buffer tuning techniques[FGE03] and the GridFTP protocol, based on mul-

tiple parallel TCP streams[ABB+02], are proposed. In addition, in the Internet2 Land Speed

Record[lsr], it is reported that high performance is achieved by adopting the jumbo frame
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technique in Standard TCP. In addition, unlike in the case of (4), protocols of (2) and (3) are

based upon only end host processing, so that their performances have been reported through

various experiments on worldwide testbeds, using a network emulator[RX05][SL04] and a

network simulator. However, the evaluation of high-speed transport protocols is not suf-

ficient. In particular, their performances in a realistic network environment are needed in

order to determine the performance of each high-speed transport protocol on real networks

such as the Internet.

1.3 Problems of congestion controls conducted at both end

hosts and intermediate nodes

All nodes along the path must be replaced in order to perform congestion control, in which

the intermediate nodes work in conjunction with endpoint equipment. Therefore, this frame-

work was not a realistic solution. However, considering the availability of high-performance

CPU technologies and the recent reduction in the price of memory, another framework of
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congestion control, in which the intermediate nodes work in conjunction with endpoint

equipment, may offer an alternative solution. The present thesis considers two technolo-

gies, DiffServ-based schemes and adaptive early packet discarding schemes.

sender
receiver

conditioner

conditioner

router

router

router

router

Figure 1.5: Framework of Diffserv Technology

Figure6.1 shows an DiffServ domain model. In the DiffServ domain, the service class of

each packet is marked based on the packets contract at the ingress edge node at the DiffServ

domain. In addition, each packet is operated in the intermediate node based on the mark

in the header. Namely, in DiffServ technology, the intermediate nodes do not just forward

the arrival packets, but they also provide suitable operation depending on the service class

indicated in the header of the node in order to achieve the relative quality of service in the

network. DiffServ technology classifies each packet into a finite service class by a marking

strategy and then allocates the appropriate QoS for each class. Thus far, two different types

of Per Hop Behavior (PHB) have been proposed, Expedited Forwarding (EF) and Assured

Forwarding (AF) PHB. EF PHB provides services such as Virtual Wire, and AF PHB of-

fers a minimum bandwidth allocation service based on Service Level Agreement (SLA). In

the present thesis, we examined AF service in order to guarantee the end-to-end minimum

bandwidth. In the AF service framework, the packets are discarded probabilistically at the

intermediate nodes according to the degree of congestion at each node in order to achieve

end-to-end quality of services. A survey of the research activity of DiffServ revealed to be

the only study to examine the QoS characteristics of flows over multiple DiffServ domains.

Most reports investigated the properties over a single DiffServ domain, whereas the network
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is composed of a large number of domains. Therefore, in the present thesis, the throughput

characteristics of AF flows over multiple DiffServ domains will be redefined.

Various kinds of application flows have been emerged on the Internet and they expect

to achieve their requirements of each quality of service. For example, TCP protocol real-

izes highly reliable communication for non-real-time application flows. On the other hand,

for real-time application flows, real-time communication is more important than reliable

communication. Although active queue management (AQM) has the advantage of possibly

reducing queuing delays [BCC+98], no schemes have focused on methods to reduce the num-

ber of worthless packets in real-time flows, which needlessly consume network resources.

Therefore, an early packet discarding scheme in the intermediate nodes is proposed herein

in order to improve the delay characteristics of real-time flows.

1.4 Outline of the Thesis

In Chapter 2, an outline of existing high-speed transport protocols is presented. In Chapter

3, the DiffServ framework and the proposed early packet discarding schemes are presented

and categorized in conjunction with end equipment.

In Chapter 4, the experimental results, which focus mainly on a single high-speed trans-

port protocol on a testbed network, are presented. In response to emerging requirements for

high-throughput data transfer on fast long-distance networks, a variety of high-performance

transport protocols have been proposed recently, and preliminary experiments on their per-

formance have been reported. However, these have mainly focused on the throughput charac-

teristics of a single connection or under a stable condition. Therefore, this chapter provides a

further investigation of the throughput characteristics of these high-speed transport protocols

from various aspects for practical use. The throughput characteristics of multiple connec-

tions of different protocols that share a link or with dynamically varying competitive UDP

traffic, are examined through experiments on the Japan Gigabit Network (JGN), an open

testbed in Japan, for four typical protocols: HighSpeed TCP (HSTCP), Scalable TCP, FAST,
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and Simple Available Bandwidth Utilization Library (SABUL). For TCP-based protocols,

the influence of the receiver-side OS on throughout performance is also investigated, which

is of practical importance from a deployment viewpoint.

In Chapter 5, the experimental results, focusing mainly on multiple high-speed transport

protocol flows on a testbed network, are presented. A variety of high-speed transport proto-

cols for high-throughput data transfer over fast long-distance networks have been proposed,

but insufficient attention has been paid to the problems involved when these protocols are

deployed in shared and heterogeneous network environments such as the global Internet. A

variety of high-speed transport protocols — HighSpeed TCP, Scalable TCP, FAST, CUBIC,

HTCP, and UDT — is investigated extensively in experiments using several testbed environ-

ments, such as the Japan Gigabit Network (JGN)II and the TransPAC2, both of which are

open 10-Gbps-class high-speed networks between the United States and Japan/Asia-Pacific.

Here, the question as to what will happen if these protocols are run on the Internet is consid-

ered. The preliminary results of experiments evaluating the characteristics of these transport

protocols in cases with realistic conditions (e.g., a variety of receiver-side OSs, coexisting

short-lived Standard TCP flows, and the coexistence of constant bit-rate UDP flows) indi-

cated that none of these protocols are effective or efficient in terms of network resource

sharing in various situations, although each protocol behaves very differently. These results

provide useful insights to realize high-speed data transfer that can co-exist with such Internet

applications as short-term web-browsing and long-term streaming video on heterogeneous

global networks.

In Chapter 6, we analyzed the QoS performance in a model consisting of multiple Diff-

Serv domains, and focused in particular on the quality of service provided by Assured For-

warding Service (AF) to achieve statistical bandwidth allocation with AF-PHB. Differenti-

ated Service (DiffServ) is a technology designed to provide Quality of Service (QoS) in the

Internet, and is superior to Integrated Service (IntServ) technology with respect to the sim-

plicity of its architecture and scalability of networks. Although various simulation studies
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and estimations over testbeds have investigated the QoS offered by the DiffServ framework,

most of these focused on the characteristics in a single DiffServ domain. However, the Inter-

net is actually composed of a large number of AS domains, and thus packets are very likely

to arrive at their destinations after passing through many different domains. Therefore, we

have analyzed the QoS performance in a model consisting of multiple DiffServ domains and

have focused particularly on the quality of service provided by Assured Forwarding Service

(AF) in order to achieve statistical bandwidth allocation with AF-PHB. Our simulation re-

sults show some throughput characteristics of flows over multiple DiffServ domains, which

clarifies the impact of network configurations on the QoS over multiple DiffServ domains.

In Chapter 7, we propose two active queue management mechanisms in which packets

that experience too much delay are discarded at intermediate nodes based on the delay limit

for the application and the delay experienced by each packet in order to improve the delay

characteristics of real-time flow. The quality of real-time networked applications is signifi-

cantly affected by the delay in packets traversing a network. Some real-time applications set

limits for acceptable network delay, and thus, a packet that is delayed longer than the limit

before arriving at its destination is not only useless to the flow to which the packet belongs

but is also harmful to the quality of the coexisting application flows in the network because it

may increase the queuing delay in other packets. Therefore, we proposed an adaptive scheme

involving two mechanisms in which packets that experience too much delay are discarded at

intermediate nodes based on the delay limit for the application and the delay experienced by

each packet. Such early discarding of packets is expected to improve the overall delay perfor-

mance of real-time flows competing for network resources when the network is congested.

The results of an extensive simulation show that the proposed scheme has a great potential

to improve the delay performance of the real-time traffic not only in homogeneous scenarios

but also in heterogeneous scenarios in terms of traffic intensity and the delay requirements

of applications.

Concluding remarks are presented in Chapter 8.
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Chapter 2

End-to-end congestion control

In section 2.1, the congestion control mechanism of TCP is introduced, and the reason why

the Standard TCP cannot use the network resources efficiently in fast long-distance networks

is explained. Section 2.2 describes the survey of the targeted high-speed transport protocols

in the present experiments.

2.1 Congestion control of Standard TCP

TCP has following functions to realize reliable end-to-end data transfer in IP networks, where

the packet reachability is not guaranteed: (1) error control: when packet loss, an error, or

packet misordering is detected, the packet is resent and sorted correctly, (2) end-to-end flow

control: the sending rate is adjusted adaptively in order to avoid receiver buffer overflow, (3)

congestion control: the available bandwidth and the status of the path are estimated and the

transmission rate is adaptively adjusted.

The faster the network link becomes, the more important it is for the end hosts to respond

quickly to packet losses. In fast long-distance network feedback from the end hosts is delayed

because the distance between end hosts is long. Therefore, under these circumstances, it is

essentially difficult for the transport protocols, which work based on end-to-end control, to
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achieve efficient data transfer.

First, the window control implemented by TCP protocol, in which the sending rate is

adjusted based on the combination of the error control, the flow control and the congestion

control, is described. In the following, terms and their abbreviations are defined.

• Round Trip Time (RTT): Time required for an IP packet to pass back and forth be-

tween end hosts. The RTT is used as a measure of time granularity for the end-to-end

controlled protocol. Therefore, the TCP must measure the RTT value continuously in

order to determine the timeout value and other various control sequences. The min-

imum value of the RTT depends on the distance between hosts (propagation delay),

while the instantaneous RTT value fluctuates depending on the degree of network con-

gestion along the paths.

• Maximum Segment Size (MSS): The maximum length of a data segment in the TCP

packet that the IP packet can convey. The MSS is equal to the value obtained by

subtracting both the IP and TCP headers from the MTU.

• Bandwidth-Delay Product (BDP): Product of bandwidth and delay. The maximum

amount of data that senders can send back to back until the ACK packet is returned.

In the remainder of this subsection, we assume that the characteristics of targeted Stan-

dard TCP are as follow: TCP protocol definition (RFC793), Slow start based on RFC2581

(TCP Reno), congestion control, fast retransmit, fast recovery, and SACK function imple-

mentation based on RFC2018 and RFC3517.

1. Each TCP packet that is sent and received has a sequence number (SN) in bytes. If

the packet is received successfully, the receiver sends an ACK packet to the sender,

in which the SN that is next expected to be sent from the sender to the receiver is set

as an acknowledged number (AN). At the sender side, the data packets that are sent

are stored until the corresponding ACK packets for the sent data are received. For

simplicity, in the following, an ACK packet is supposed to be sent for each transmitted
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IP packet. (Actually, the delayed ACK scheme, in which one ACK packet is sent for

more than two IP packets, is employed in most cases.)

2. The sender may send the next MSS data on the next IP packet without waiting for

the arrival of the ACK packets for the previously sent data. The window size at each

moment is set to the smaller of the congestion window (cwnd) and the advertised

window.

For simplicity in the following discussion, the advertised window is assumed to be

sufficiently large, thus we can consider the instantaneous window size to be identical

to cwnd. Accordingly, adjusting the sending rate is equivalent to adjusting cwnd, and

the average throughput is defined as the average cwnd divided by the RTT.

3. cwnd is adjusted by the Additive Increase and Multiplicative Decrease algorithm.

cw

time

Figure 2.1: Congestion window

As shown in Fig. 2.1, the change of cwnd occurs in two phases: (1) the slow start phase

and (2) the congestion avoidance phase.

(1) In the slow start phase, cwnd starts at some initial value. Each time an ACK packet

arrives at the sender, cwnd is added by MSS [byte]. Therefore, cwnd increases exponentially.

As a result, bursty packet loss occurs due to congestion and a timeout occurs. In this case,

the slowstart threshold (ss) is set to half of cwnd when the congestion was detected. Then,
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cwnd is again set to the initial value and increases exponentially thereafter. When the cwnd

reaches the value of ss, the phase is switched to the congestion avoidance phase.

(2) In the congestion avoidance phase, each time an ACK packet arrives at the sender,

the sender increases its cwnd by MSS/cwnd bytes, that is, the packet increases MSS [byte]

during RTT [ms]. Although the cwnd is increased slowly compared to that in slow start, in-

termittent packet losses occur and the next three duplicated ACK packets are sent back from

the receiver to the sender. In this case, the packet is retransmitted based on the three dupli-

cated ACK packets (fast restransmit), and both cwnd and ss are set to half of cwnd when the

packet loss was detected (fast recovery). On the other hand, for the case in which a timeout

occurred due to successive packet losses, the phase is switched to the slow start phase. The

average throughput S in the congestion avoidance phase is given by the following equation:

S = 1.2 MSS/(p RTT), where the p is packet loss rate. Thus, the problems encountered when

TCP is adopted as a transport protocol in a fast long-distance path are as follows: [1] The

throughput is given as cw/RTT. Therefore, cwnd must grow to BDP in order to use up the

resources on the path. [2] In the slow start phase, although cwnd increases exponentially, it

takes a long time to grows to a large value, when BDP is large. If packet loss occurs after the

cwnd has increased to a certain extent, a massive number of packets must be retransmitted,

and as a result excessive congestion will occur. [3] In the congestion avoidance phase, cwnd

is increased by MSS per RTT. Therefore, the rate of increase is limited if the RTT is large.

On the other hand, intermittent packet losses occur even if the network is not so congested.

The cwnd is then half of the value when the loss is detected, and the cwnd is again increased.

However, the rate of increase is very small, so it takes a very long time for cwnd to recover

to the original level. Namely, it is absolutely essential that the packet loss rate is very low

in order to keep the average cwnd large. For example, we consider the situation in which

an average throughput of 10 [Gbps] must be achieved in the stable congestion avoidance

phase, that is packets are not dropped successively. MSS is set to 1,500 [byte] and RTT is

100 [ms]. From the average throughput equation, we can obtain the random packet loss rate,
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p, as 2e-10. This means that one in every 4,822,500,000 packets is dropped, which is not

realistic.

Issues in above [1] are related to the framework of error control in TCP, where control

information is exchanged between end hosts. Therefore, it is difficult to solve the problem

caused by [1]. First, it is important to prepare the configuration in which cwnd can grow

sufficiently. Then, the key to solving the issues in [2] and [3] must be found in order to

rapidly increase cwnd. In order to sufficiently increase cwnd, the following settings are

basically required in end hosts: (i) a large socket buffer size at the sender, (ii) a large socket

buffer size at the receiver, and (iii) to expand the window size, the window scale option and

time stamp option must be adjustable.

Consequently, the issues mentioned in [2] and [3] must be solved. One solution for [2]

is to set the initial cwnd to be large. This solution can improve the performance of data

transfer of short-lived flow. However, limited use is expected for data transfer on long-lived

flows. For example, adopting a large MTU and establishing multiple TCP connections is

effective for improving the performance to some extent. However, in order to improve the

performance significantly, it may be necessary to redesign the slow-start or AIMD algorithm.

2.2 Targeted high-speed transport protocols

In our experiments, we examine six TCP-based high-speed transport protocols (HSTCP,

Scalable TCP, FAST, BIC, CUBIC and HTCP) and one UDP-based high-speed transport

protocol(UDT). The TCP-based protocols adopt flow control techniques based on the sliding

window and can be classified into two categories according to whether they change their

congestion window (cwnd) based on the packet loss event or delay information.

• updating cwnd based on the packet loss event: HSTCP, Scalable TCP, BIC, CUBIC,

and HTCP

• updating cwnd based on the delay and loss information: FAST
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In the following subsections, the mechanisms of congestion control of each high-speed

transport protocol are described.

2.2.1 HSTCP

Sally et al. analyzed the performance of Standard TCP in a fast long-distance network and

reported a problem of Standard TCP when it is adopted as a transport protocol in a fast

long-distance network[Flo03]. The cwnd in Standard TCP flow is updated by the following

equation and thus is determined by the packet loss rate, p.

cwnd = 1.2/
√

(p)

From the response function of Standard TCP, the packet loss rate has to be smaller than

3 ∗ 10−−8 in order to achieve a throughput of 1 [Gbps], when the MSS is 1,500 [byte] and

the RTT is 100 [ms]. Namely, the packet loss rate must be very low in order to achieve stable

1 [Gbps] performance. The most frequently cited example of the performance achieved

by Standard TCP flow in the fast long-distance network is that a Standard TCP connection

can achieve a steady state throughput of 10 [Gbps] when the average congestion window

grows to 83,333 segments, with 1,500 [byte] packets and a round trip time of 100 [ms].

This means that the packet drop rate is at most one congestion event every 1 2/3 hours. The

average packet drop rate of at most 2∗2−10 needed for full link utilization in this environment

corresponds to a bit error rate of at most 2 ∗ 10−14. This is an unrealistic requirement for

today’s network environment.

To solve this problem, Sally et al. proposed the HSTCP protocol. The behavior of the

response function of HSTCP flow is defined using three parameters: Lowwindow, Highwindow,

and HighP. In order to realize compatibility with Standard TCP flow, the response func-

tions of Standard TCP and HSTCP are identical in area where the cwnd is smaller than the

Lowwindow. For the case in which cwnd is larger than the Lowwindow, it is set to 38-MSS, the

HSTCP response function is adopted. Highwindow is set to 83,000 segments, and this value is
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equal to the cwnd needed to achieve 10 [Gbps] in the environment where the MSS is 1,500

[byte] and RTT is 100 [ms]. The packet loss rate in this case is HighP, 10−7. The response

function of the HSTCP flow when the cwnd is larger than the Lowwindow (that is 38-MSS) is

defined as follows:

cwnd = (p/Low−P)S Low−Window, S = (logHigh−Window−logLow−Window)/(logHigh−P−logLow−P)

The cwnd is given as 0.12/p0.835 when the Lowwindow is 38-MSS, LowP is 10−3, Highwindow

is 83,000, and HighP is 10−7. Based on the response function of the HSTCP, the HSTCP

flow can reach 1 [Gbps] when the packet loss rate is 8 ∗ 10−5 in the environment where the

MSS is 1,500 [byte] and the RTT is 100 [ms]. This packet loss rate is realistic in comparison

to the adoption of Standard TCP, in which case the packet loss rate is 8 ∗ 10−7.

In case of an equation-based protocol like TFRC, the response function is adopted as

an equation directory, however, the response function of HSTCP should be translated to

the additive increase and multiple decrease parameters of the AIMD algorithm. HSTCP

flows determine their cwnd size based on the AIMD algorithm, in the same manner as the

Standard TCP flow. These parameters are constant in the Standard TCP, while the parameters

in the HSTCP flow are determined as a function of the size of the instantaneous cwnd in the

congestion avoidance phase.

ACK : cwnd = cwnd + a(cwnd)/cwnd

DROP : cwnd = cwnd − b(cwnd)xcwnd

2.2.2 Scalable TCP

Scalable TCP takes a similar approach to that of HSTCP in controlling its cwnd size. In the

HSTCP flow, the increase and decrease parameters of the AIMD algorithm are determined

as a function of the current cwnd, while in Scalable TCP these parameters are constant, as

shown below:

ACK : cwnd < −cwnd + a
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Drop : cwnd < −cwnd − b ∗ cwnd

where a is set to 0.01 and b is set to 0.125. When the cwnd is smaller than 16-MSS, it is

determined in the same manner as the Standard TCP flow. In the Standard TCP flow, the

packet loss reduces the cwnd by half, while 87.5 percent of the cwnd is adopted after the

packet loss detected in the Scalable TCP flow. In the congestion avoidance phase, the cwnd

is increased by one segment per RTT in the Standard TCP flow, while the Scalable TCP

flow increases its cwnd by 0.01 ∗ cwnd every time an ACK packet arrives at the sender.

As described above, Scalable TCP used a multiplicative increase multiplicative decrease

algorithm for updating the cwnd size.

For example, the cwnd size is 100 when the packet loss is detected, and the cwnd is

updated by every ACK packet received from the receiver as 50, 51, 52, and 53 in Standard

TCP, and the cwnd is updated as 87.5, 88, 89, and 90, each time an ACK packet is received,

that is, the cwnd is multiplexed by 1.01.

In Standard TCP flow, it takes 28 [minutes] to recover the sending rate from 500 [Mbps]

to 1 [Gbps] in the environment where the MSS is 1,500 [byte] and the RTT is 200 [ms],

whereas in the case of a Scalable TCP flow, it takes 2.7 [s] to recover the original sending

rate, with a = 0.01 and b = 0.125.

2.2.3 FAST

Most high-speed transport protocols, including HSTCP and Scalable TCP, determine their

cwnd based on the feedback information of packet losses during the congestion avoidance

phase, while the cwnd of the FAST flow is updated by the delay information. The cwnd of

FAST flows is controlled by following equation:

cwnd < −min2 ∗ cwnd, (1 − gamma)cwnd + gamma(baseRTT/RTT )cwnd + α(w, qdelay)

In this subsection, information on the FAST protocol is summarized based on [CL03],
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[PWSJ03], [JWL04], [ml], and e-mails from Dr. Cheng Jin of FastSoft.

As Dr. S. H. Low noted in [ml], the ”algorithm there can be thought of as a high speed

version of Vegas”, and thus FAST might have its origin in Vegas. The FAST might start a

“Stabilized Vegas” in [CL03]. A short summary of [CL03] is given below.

1. Vegas has discrete properties and therefore oscillates around equilibrium. To keep the

status of Vegas stable, the bandwidth delay product (BDP) must be small.

2. To stabilize Vegas in the environment in which the BDP is large, a sequential model

should be adopted instead of a discrete model.

3. The proportional differential (PD) controller, the dual algorithm, and the addition of

slow timescale dynamics are introduced to the source in order to stabilize Vegas.

4. As a result, the status of Vegas is stabilized, which can be confirmed based on a Nyquist

diagram.

5. Note, however, that “The stabilized Vegas proposes a solution to fix the existing Vegas

protocol for stability. It is still no clear whether the stability presented in the paper is

significant enough in real networks.”

6. Therefore, the Caltech group based the first FAST implementation, called FAST ver-

sion 1, on Stabilized Vegas.

[PWSJ03] also tried to stabilize Vegas by using a dual algorithm and adding slow timescale

dynamics without adopting the fluid flow model. In [PWSJ03], [CL03] was introduced as an

another approach to stabilize Vegas, thus [PWSJ03] is a different approach from [CL03] for

stabilizing Vegas. In conclusion, they stated that “Based on our preliminary success in sim-

ulations, we are currently pursuing experimental deployment of these kinds of protocols.”

in reference to the FAST protocol. Therefore, FAST is thought to have been implemented

based on [PWSJ03], but it was not accurate. Dr. Cheng Jin reported that Dr. Paganini’s

work was mostly theoretical and different from the present implementation. For the actual
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FAST implementation, the reader should refer to [JWL04], and other studies are basically

theoretical. Therefore, it seems that the origin of [JWL04] is not [PWSJ03].

The background of FAST is conjectured to be as follows:

• TCP Vegas has a problem in that it can become unstable if the delay is large.

• However, a simple modification enables its stabilization. In addition, [CL03] and

[PWSJ03] were introduced to solving the utility maximization problem (as a dual

problem) and find an equilibrium point for delay(p) and cwnd(w).

• αlogx is the utility function of the FAST flow. Here, p and w can be found by solv-

ing the optimization problem, or the utility maximization problem, as shown below:

max
∑
αlogxRt <= c

• The above equation can be rearranged to obtain the following dual problem: min
∑

cp−
∑
αlog

∑
Rp, which can be solved by adopting a scaled gradient projection algorithm.

Here, (w,q), which is the achieve equilibrium point of the equation, can be found upon

updating cwnd.

According to Dr. Cheng Jin, the biggest differences between FAST TCP and Vegas lies

in how the delay is used. Vegas actually uses delay to avoid packet loss, whereas FAST uses

delay for an entirely different purpose, i.e., to measure how far the connection is from its

equilibrium state. Knowing the actual distance enables FAST to take the appropriate actions

with respect to increasing/decreasing the window size. Namely, Vegas estimates the current

throughput based on the measured RTT and determines the cwnd based on this information,

whereas FAST decides the cwnd based on the information on the distance between current

status and the equilibrium point. There are some additional difference points between Vegas

and FAST. For example, the maximum increase rate of the cwnd per RTT is limited to 1 in

TCP Vegas, whereas FAST has no such limit. In addition, FAST will use ECN bit when it

becomes available. These protocols have the following similarities. They update their cwnd

value based on the delay information, and the methods for measuring the RTT adopted in
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both protocols are identical. In [CL03], the proportional differential (PD) controller was

adopted to stabilize Vegas. However, FAST is an equation-based approach and is not based

on a special control theory. Dr. Cheng Jin stated that “Control theory is used as the principle

in fast design, and will be used to show the stability of FAST. However, it is not used in terms

of implementation.” FAST is an equation-based approach. Based on the measured RTT

information, FAST can determine how far the current status is from the equilibrium point.

If the current point is far from equilibrium, then the cwnd is increased/decreased drastically.

When the current point is close to equilibrium, the cwnd is adjusted on a narrow range. The

method for measuring the distance to equilibrium is described below. In equilibrium, we

want to put alpha packets into the buffer for each TCP stream, and the number of packets

we are currently putting into the buffer is cwnd/rtt * q, where cwnd is the window, rtt is the

average rtt, and q is the queuing delay. The difference between alpha and cwnd/rtt * q tells

us how far we are away from equilibrium. We then go halfway between where we are now

and where we want to be (keeping alpha packets in the buffer).

From an implementation standpoint, a FAST flow can only reach the equilibrium point

when the sum of the buffer size is equal to the number of flows x α packets. Otherwise,

packet losses occur before reaching the equilibrium point and the cwnd is halved, as is the

case with a NewReno flow. Therefore, when running FAST TCP, we must consider the buffer

size along the path.

2.2.4 BIC

BIC is a high-speed transport protocol in which cwnd is updated by the information of packet

loss proposed in 2004.

BIC regards the congestion control as a search problem for an optimal cwnd size, and

cwnd is updated in a binary search algorithm. Linux implements BIC protocol as a conges-

tion control algorithm in its kernel standard from kernel 2.6.7.

Figure 2.2 shows the behavior of cwnd observed in a BIC protocol flow.
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Figure 2.2: congestion window on a single BIC flow

• At the beginning of the flow, the cwnd is updated by the original slow-start algorithm.

In order to maintain compatibility with the performance achieved by a Standard TCP

flow, the algorithm for updating cwnd is identical for Standard TCP and BIC TCP

when cwnd is smaller than 14 MSS. The cwnd is updated to Wmax + S max by the slow

start algorithm (where S max is originally set to 32 MSS).

• Then, BIC enters the additive increase mode in which it increases the cwnd by S max

until a packet loss is detected. When the packet loss is detected, the instantaneous

cwnd is set to Wmax.

• The cwnd is set to Wmax(1 − β), where β is set to 0.125. The cwnd updating mode

enters the binary search mode.

• In the binary search mode, when the updated cwnd is larger than Wmax, BIC re-enters

the additive increase mode and finds updated Wmax.

As described above, the BIC flow increases its sending rate aggressively in the additive

increase mode. In addition, it detects that its sending rate approaches the target rate, which is

the point at which the packet loss was detected previously and updates the rate by the binary

search algorithm. Comparing the behavior of the cwnd update phase observed in HSTCP,

Scalable TCP, the cwnd approaches the optimal value smoothly in BIC flow.
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The achievable maximum throughputs in HSTCP and Scalable TCP flow are limited by

the socket buffer size of each flow, whereas that observed in BIC flow (and CUBIC flow) is

not limited by the socket buffer size. This is a unique characteristic observed only in BIC

and CUBIC flows, among the high-speed transport protocols examined herein.

2.2.5 CUBIC

CUBIC was proposed as a successor to the BIC protocol by the research group that developed

the BIC protocol. BIC achieves stable performance by increasing cwnd slowly around the

point where the packet loss was detected. BIC achieves its effectiveness by increasing the

rate linearly in the additive increase max proving phase. However, the degree of increase of

the cwnd for a BIC flow is too aggressive compared to that of the Standard TCP flow. In

order to improve this point, the CUBIC protocol, which extends the growth function of the

BIC protocol, was proposed and developed. In CUBIC flow, the degree of increasing cwnd

is approximately zero around the point at which the packet loss was previously observed. Dr.

Injong Rhee noted that ”The essential difference between the BIC and CUBIC algorithms is

evident in that the CUBIC algorithm attempts to reduce the amount of change in the window

size when near the value where packet drop was previously encountered.” According to

the developers of CUBIC, the CUBIC protocol is triggered by the HTCP, ”Our work was

partially inspired by HTCP whose window growth function is also based on real time.’ This

means that the growth function of CUBIC flow is governed by the cubic function, where the

cwnd is updated at the time elapsed since the last packet loss was detected:

Wcubic = C(t − K)3 +Wmax

where C is the scaling factor, t is the elapsed time from the last window reduction, Wmaxis

the cwnd when the last packet loss is observed, and K is the 3 root SWmax β/C

The difference in the behavior in increasing cwnd between BIC and CUBIC protocol is

shown in Fig.2.3.
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Figure 2.3: Window Adjustment for BIC and CUBIC

Both are similar but the degree of increase of the cwnd is slower in the CUBIC flow than

in the BIC flow.

2.2.6 HTCP

HTCP is also a high-speed transport protocol that modifies the congestion control algorithm

of the Standard TCP. HTCP updates its cwnd size by the AIMD algorithm and changes the

increasing parameter α as a function of the time elapsed since the last packet drop expe-

rienced by its source. That is, HTCP changes its increase parameter as a function of the

elapsed time since the last congestion event occurred, as follows:

∆: time in seconds that has elapsed since the last congestion event experienced by a flow

α(∆): AIMD increases the parameter according to some function, denoted as α(∆)

α(∆) = 1(∆ < ∆L) = αH(∆)(∆ > ∆L)

∆L: threshold for switching from standard/legacy operation to the new increase function.

As noted in the previous subsection, the CUBIC protocol was partially inspired by HTCP.

Both CUBIC and HTCP manage the cwnd based on the time elapsed since the last packet was

dropped, whereas the HSTCP and Scalable TCP control the cwnd based on the information
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of the packet loss event. To control the cwnd smoothly according to the network status, it

might be useful to use the historical information on packet loss and delay.

2.2.7 UDT

Most high-speed transport protocols are based on the Standard TCP and modify its con-

gestion control algorithm of Standard TCP. In the present experiment, we also investigated

high-speed transport protocols based on the UDP protocol, UDT(UDP-based Data Transfer

Protocol). UDT has some differences from other the high-speed transport protocols investi-

gated in the present experiments. First, UDT is a high-speed transport protocol that is based

on the UDP protocol. Second, the UDT is an application level solution, and thus can work on

various kinds of OS, whereas most high-speed transport protocols can only work on Linux.

The UDT congestion control algorithm combines rate control and window control (flow

control), where the rate control adjusts the packet-sending period and the flow control limits

the number of unacknowledged packets. The UDT measures the available bandwidth along

the path periodically using the receiver based packet pair method and adjusts its sending rate

(rate control).

Originally, UDT was not intended to replace TCP in the Internet, where the bottleneck

bandwidth is relatively small and there are a large number of multiplexed short life flows.

The UDT was expected to be used in situations in which a small number of bulk sources

share abundant bandwidth. In other words, the UDT was developed for a Grid environment,

not for the internet. However, users can obtain the source code for the UDT from the web

and install it to their machines to enjoy high-speed data transfer. Therefore, we examined

the UDT protocol as a high-speed transport protocols in the present experiments.
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2.3 Activities on evaluation of high-speed transport proto-

cols

The activities on evaluation of high-speed transport protocols is divided into three cotegories:

simulation based, network emulator (working on PC routers) based and testbed network

based.

There are several evaluations of high-speed transport protocols via the simulation. The

performance of HSTCP and the impact of its use on the present implementation of TCP is

analyzed in different network conditions, including different degrees of congestion, different

levels of loss rate, different degrees of bursty traffic and two router queue management poli-

cies (RED and DropTail) were presented[AD]. And detailed results of evaluation via simula-

tion targeted various high-speed transport protocol variants in [RX05]. These results indicate

that each high-speed transport protocol can achieve effectiveness on high-speed network but

they all have difference on achieving the fairness between coexisting different protocol flows.

A number of research groups have also been conducting a variety of experiments for

high-throughput data transfer on fast long-distance networks. For example, the Hamilton

Institute group developed a common benchmarking environment using dummynet, where

different protocols were implemented with common network stacks and were evaluate in

terms of a common performance measure[LLS]. They show detailed performance of each

targeted high-speed transport protocols in both where no background traffic exists and back-

ground traffic coexist. The web traffic is used as background traffic.

The BIC Lab team tried to realize realistic performance evaluations by creating a realis-

tic network environment in which high-speed transport protocols are likely to be used with

background traffic[HKL+06], [inj]. They targeted to evaluate the protocols in the environ-

ment with more realistic background traffic. Therefore, they plan to use some of the existing

traffic generators which rely on real network traces as seeds for generating synthetic network

traffic.
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The Work in [CAK+05] were the first evaluations in testbed targeted various high-speed

transport protocols. Various basic characteristics of each high-speed trasport protocols were

shown. For benchmarking in 10Gbps class environment, the Caltech group is constructing

the Wan-in-Lab, which is a 2,400 [km] long-haul fiberoptic testbed in the lab as a benchmark

testing platform for the research community and for evaluating different protocols in a more

realistic environment[wan].
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Chapter 3

Controls on intermediate nodes

3.1 DiffServ

The specifications of Assured Forwarding (AF) Per Hop Behavior (PHB) in the DiffServ

framework are provided in [HBWW99]. The architecture to realize AF PHB is presented by

D. D Clark and W. Feng in [CF98]. They proposed the TSW tagger as a marker, which is

suitable for TCP flow, and RIO queue management based on RED queue management im-

plemented at intermediate nodes to assure the throughput of the TCP flow to the contracted

value. They described the contract between users and ISP achieved by this framework as

an expected capacity, rather than a strict guarantee. They evaluated the performance of AF

flows, where the number of flows is 50, the sum of bandwidth contract is 50 [Mbps], and

bottleneck bandwidth is 50 [Mbps], and found that AF service based on [CF98] cannot pro-

vide contracted service quality for each flow. Therefore, it is difficult to apply DiffServ AF

architecture on the Internet. However, the targeted model in [CF98] has some questionable

areas regarding the evaluation of the performance of AF service. First, the sum of the target

rate of each flow is set equal to the value of the bottleneck bandwidth. Second, the maxi-

mum value of the RTT was set to be very large, 160 [ms]. Therefore, we will evaluate its

performance in a more realistic model. In [GDJL00], it is shown that the service class-based
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packet marking is useless in the circumstance where the sum of the target rates of each flow

is equal to the bottleneck bandwidth, therefore the sum of the contract of each flow should

be smaller than the bottleneck bandwidth.

N. Seddigh, B. Nandy, and P. Pieda reported that the throughput characteristics achieved

by AF service affect the RTT, contract, packet size, and parameters adopted at RIO active

queue management[SNP99]. It is also reported that the quality of AF service is affected by

the RTT and the number of active flows, which indicates that the parameter of RIO must

change according the number of active flows[NSP99]. In addition to the interaction between

coexisting UDP flow and TCP flow, the contract rate between users and the ISP, the number

of aggregate flow, the type of TCP, and the buffer size, the parameter of RIO is very important

for the performance of end-to-end AF service.

RIO (RED with IN/OUT), which is adopted as the queue management algorithm in the

DiffServ AF framework, has two packet drop classes for IN and OUT packet, and thus can

provide users with two different service classes. The Time Sliding Window Three Color

Marker (TSWTCM), a conditioner that can treat three service classes, has been proposed. In

our research, however, we adopted a two color marker as a conditioner because the Three

Color Marker is suitable for environments in which the UDP and TCP flow coexist[GDJL00].

Figures 3.1 and 3.2 show the conditioner and RIO queue, respectively.

classifier marker
shaper/

dropper

meter

Conditioner

Figure 3.1: Conditioner

W. Fang et al. selected the Time Sliding Window (TSW) tagger as a meter and marker as

a result of adopting several algorithms[CF98]. On the other hand, the Token bucket algorithm
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was selected as the meter and marker algorithm in [JN98], because the TSW tagger marks a

class on each packet probabilistically so that the marking probability is not strictly related to

the circumstances.

Based on our results, we can observed a number of points on the characteristics of Tagger,

as follows:

• Compared to packet marking using the TSW marker, The Token bucket mechanism

marks packets in a bursty manner. Therefore, it appears desirable to adopt the TSW

Tagger as a meter and marker.

• In the case of adopting the token bucket algorithm, the parameters should be selected

based on the burst length.

• In a previous study, it was recommended to set for window size in the TSW Tagger,

avg-interval, to 1 [s]. We adopted an avg-interval of 1 [s] for our simulation based on

the results acquired in the previous works.

• No difference in the throughput characteristics of flow over a single domain DiffServ

network achieved by Token Bucket and TSW tagger was observed when the token

bucket parameter is set to appropriate value.
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• W. Feng et al. reported that the difference in the meter and marker architecture does

not affect the performance by rebuilding the TCP architecture to suit the DiffServ

framework[FPes].

Although various simulation studies and estimations over testbeds have investigated the

performance offered by the DiffServ framework, almost all of these studies have focused on

the characteristics in a single DiffServ domain. However, the Internet is actually composed

of a large number of domains. The characteristics of TCP flows over multiple DiffServ do-

mains were investigated, and the end-to-end throughput characteristics of TCP flow were not

affected by the packet re-marking that occurred at the cascaded tagger[Fan99]. In the present

research, we investigate the throughput characteristics of flows that pass through multiple

DiffServ domains, and, in particular, the effect of the cascading tagger on the throughput

characteristics.

3.2 Active Queue Management

Real-time applications such as VoIP and video conferencing adopt UDP as a transport pro-

tocol. For example, real-time applications such as VoIP define service classes based on an

end-to-end packet delay limit for a flow in a network. In such applications, a packet that

is delayed longer than this limit before arriving at its destination is not only worthless, but

is also harmful to the quality of the application. In the present research, we propose the

adoption of active queue management at intermediate nodes in order to improve the quality

of real-time traffic flows[BCC+98]. In [BCC+98], it is reported that an active queue man-

agement mechanism may have some advantages, including providing lower-delay interactive

service. That is, by keeping the average queue size small, queue management will reduce the

delays experienced by flows. This is particularly important for interactive applications such

as real-time traffic. In the present research, we propose a type of active queue management

in which the packets are discarded according to the status of an intermediate node to improve
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the delay characteristics of real-time flows.

3.3 Related work

From the viewpoint of deployment, it is easier to implement controls only between end-to-

end equipment in a network. However, networks can obviously provide more finely grained

services when intermediate nodes work in conjunction with endpoint equipment. Various

schemes using intermediate nodes have been proposed to realize better network performance.

Early packet discarding, in which some packets might be dropped even though the queu-

ing buffer is not full, is not an entirely new concept, and was introduced in the context of

Active Queue Management (AQM) [BCC+98]. For example, in Random Early Detection

(RED) [FJ93] and its variants, in order to mitigate instability and unfairness in the through-

put of TCP flows traversing an intermediate node, the node probabilistically discards incom-

ing packets based on its queue length by introducing random losses instead of burst packet

losses. In contrast, the proposed scheme attempts to reduce the delay in real-time application

flows. Although AQM has the advantage of possibly reducing queuing delays [BCC+98], to

the best of our knowledge no schemes have focused on methods to reduce the number of

worthless packets in real-time flows, which needlessly consume network resources. In a re-

cent study, a packet discarding technique was introduced to achieve fairness between wired

and wireless TCP sessions [MMY04], and another deterministic AQM was proposed to im-

prove TCP throughput over 3G wireless links [AC06]. In the context of TCP over ATM (in

which one large packet in the upper-layer is split into several small cells in the lower-layer),

if one cell is dropped then all remaining cells belonging to the same packet are useless and

degrade the upper-layer performance, even though they have not yet been dropped. Early

Packet Discard (EPD) [RF95] was proposed to improve the performance of TCP with re-

spect to this fragmentation problem. The proposed scheme is similar to EPD in terms of

the basic idea of discarding packets in advance if they are likely to be useless to the over-

all performance of the application. To reduce delays in real-time flows, a variety of packet
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scheduling policies, such as Earliest Deadline First (EDF) [GGP97], have been developed

along with various resource reservation schemes to optimally reorder the sequence of pack-

ets belonging to various flows. On the other hand, the proposed scheme does not require

such scheduling policies, but can be combined with them. Note that while complex packet

scheduling schemes are not generally scalable, the proposed scheme is so lightweight that

it can even be applied to heavily loaded nodes, such as core routers. The expected queuing

delay of a packet in an intermediate node using MTQ and QTL mechanisms can easily be

obtained from the queue length upon arrival of the packet, which can readily be managed at

the node. The delay is then simply compared with an MTQ/QTL value in the packet header

or subtracted from the QTL value there. In QTL, which is similar to the TTL mechanism, the

cost of updating the QTL value by subtraction is negligible. Another way to reduce delays

in real-time flows is by over-provisioning, in which a network has sufficient bandwidth to

ensure that all flows are within their delay limits [FTD03]. However, the appropriateness of

this solution depends on the time and circumstances of the network, because traffic demands

change faster than network provisioning in many situations. A scheme to fully and efficiently

utilize the existing network resources is still required, and the abovementioned approaches

are complementary.

3.4 Adaptive early packet discarding at intermediate nodes

The MTQ and QTL mechanisms were originally proposed in a lightweight practical frame-

work for active networks[TKFO03], and their effectiveness for time synchronization over a

network was shown [KMT+05]. However, in the present paper, we apply these mechanisms

to more general delay-sensitive applications.

The proposed target model, in which real-time application flows compete for resources

in a single domain network, is outlined in Fig. 3.3. The MTQ and/or QTL parameters are

set in the header of each packet entering the domain at the edge nodes, and these packets are

forwarded to intermediate nodes. Every time a packet arrives at the intermediate nodes, it is
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ISP single domain

Edge node

Intermediate node

Figure 3.3: Target network model

queued or discarded according to the MTQ and/or QTL mechanisms described below and in

Fig. 3.4.

Packets using the MTQ mechanism are managed based on the local queuing delay limit at

each intermediate node. The processing procedure for each packet at edge and intermediate

nodes is as follows:

1. A value for MTQ (i.e., the maximum queuing delay in one node) is set in the header

of each packet at an edge node.

2. When a packet arrives at an intermediate node and if the queuing buffer bound for the

next node to which the packet will be forwarded is not full, then (1) the local queuing

delay for the packet is calculated based on the queue length and output link bandwidth,

and (2) if the value for MTQ in the packet header is larger than the calculated queuing

delay, the packet will be queued. On the other hand, (3) if the calculated queuing delay

is larger than the MTQ value, the packet is discarded.

Because the MTQ mechanism limits the local queuing delay at each intermediate node,

setting the MTQ parameter is equivalent to limiting the size of the queuing buffer at every

node through which the packet passes.

Packets using the QTL mechanism, on the other hand, are managed based on the global

(total) queuing delay limit throughout the network (from an ingress edge node to an egress

edge node):
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as every packets arrives :

 (1) MTQ >= queuing delay -> queue the packet

 (2) MTQ <   queuing delay -> discard the packet

as every packet arrives :

(1)  QTL >= queueing delay -> queue the packet :

                 update the QTL to QTL – queueing delay

(2)  QTL <  queueing delay -> discard the packet 

mechanism for MTQ

mechanism for QTL

(b) Mechanism for MTQ and QTL schemes

Figure 3.4: MTQ and QTL mechanisms

1. A value for QTL (i.e., the maximum queuing delay in the network) is set in the header

of each packet at an edge node.

2. When a packet arrives at an intermediate node and if the queuing buffer bound for the

next node to which the packet will be forwarded is not full, then (1) the local queuing

delay is calculated based on the queue length and the output link bandwidth. (2) If the

value for QTL in the packet header is larger than the calculated queuing delay, then

the value for QTL in the packet header is updated to be “QTL minus the calculated

queuing delay” and the packet will be queued. On the other hand, (3) if the calculated

queuing delay is larger than the QTL value, the packet is discarded.

Because the packet is discarded if the updated QTL value is not positive, the initial value of

the QTL parameter corresponds to the global queuing delay limit.
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Chapter 4

Experiments for High-Speed Transport

Protocol of a Single Flow

4.1 Introduction

The majority of network applications adopt the Transmission Control Protocol (TCP) rather

than the User Datagram Protocol (UDP) as the transport layer protocol on IP networks. This

is because the TCP has important two functions; one is the error control function providing

a reliable, error free data transmission and another is the congestion control mechanism

realizing a modest sharing of network resources.

However, the current TCP is not always suitable for applications which require highly re-

liable and high speed transfer of a huge amount of data over long haul networks, such as in the

Grid Computing environment [FP00]. This results from its slow start algorithm and the Ad-

ditive Increase Multiplicative Decrease (AIMD) algorithm in congestion control; the former

limits initial throughput to a small value, and the latter further causes slow and inefficient ad-

justment of the transmission rate due to a large bandwidth-delay product. Hence, the flow of

the current TCP can not run out of vast bandwidth from the beginning of the flow and main-

tain a high stable throughput, even though abundant network resources are available[Flo03].
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Therefore, various alternative techniques have been proposed and developed to meet the re-

quirement of highly reliable and high speed transfer on fast long-distance networks, which

can be grouped into the following four major activities : (1) current TCP parameter tuning,

(2) modifying the congestion control in the current TCP, (3) proposals for new high-speed

transport protocols based on the UDP and (4) entire new frameworks on transport proto-

cols suitable for applications in the fast long-distance networks working with the support of

routers. As examples of (1), the dynamic system buffer tuning techniques[FGE03] and the

GridFTP protocol based on the multiple parallel TCP streams[ABB+02] are proposed. And

in the Internet2 Land Speed Record[lsr], it is reported that the high performance is achieved

by adopting the jumbo frame technique in Standard TCP. In addition, unlike in the case of (4),

protocols of (2) and (3) are based upon only end hosts processing, so that their performance

have been already reported through various experiments on worldwide testbeds[yan].

However, those experiments on various testbeds have mainly focused on the through-

put characteristics under a stable condition, particularly for a single flow, except for recent

experiment[BCRJ04]. Therefore, a wide variety of throughput characteristics should be in-

vestigated in more actual network environment for aiming at practical use. In this chapter,

we will show some results on the throughput characteristics of high-speed transport proto-

cols through extensive experiments on the Japan Gigabit Network (JGN), an open testbed in

Japan. This paper extends the results in [KHTO04]. In particular, we treat some practical

cases; multiple connections of different protocols share a link in one case and the amount

of UDP traffic sharing some link with them changes drastically in another case. We will

deal with some practical high-speed transport protocols of type (2) based on the TCP (High-

Speed TCP(HSTCP), Scalable TCP and FAST), and of type (3) based on the UDP (Simple

Available Bandwidth Utilization Library(SABUL)), using implementations contributed by

several researchers. For TCP-based protocols, the influence of the receiver-side OS (TCP

implementation) on the throughput performance, which is of practical importance from the

deployment viewpoint, is also investigated.
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This chapter is organized as follows. In Section 4.2, we explain new transport protocols

adopted in our experiment. In Section 4.3 we present the experimental configuration. Exper-

imental results are presented in Section 4.4. Finally, in Section 4.5, we conclude with some

consideration on transport protocols for fast long-distance networks.

4.2 Targeted High Speed Transport Protocols

In our experiments, we targeted three TCP based protocols( HSTCP[Flo03], Scalable TCP[Kel03],

FAST[JWL04] ) and one UDP based protocol (SABUL[GG03]) and investigated their through-

put performance on the JGN.

HSTCP and Scalable TCP change their congestion window size(cwnd) according to the

AIMD algorithm with the following equations, same as the current TCP (which we will refer

to as the Standard TCP(RFC2581:TCP Congestion Control)[APS99] from now on) during

the congestion avoidance phase, where a is the increase parameter and b is the decrease

parameter.For the Standard TCP, the values of a and b are 1/cwnd and 0.5, respectively.

ACK : cwnd = cwnd + a ∗ MS S

DROP : cwnd = cwnd ∗ (1 − b)

The HSTCP behaves identically to the Standard TCP for a small cwnd, but in the area

of window size larger than a threshold (for example, 38 maximum segment size(MSS)),

cwnd is governed by a modified AIMD algorithm, where a and b vary in a complex way

depending on the current value of the cwnd. Scalable TCP also modifies the characteristic

AIMD behavior of the Standard TCP and has a threshold window size (the default size is

16 MSS). When the cwnd exceeds the threshold, it will be updated using a of 0.01 and b of

0.125. Table 4.1 summarizes the values for a and b adopted in each protocol.

FAST is a high-speed transport protocol which modifies the TCP Vegas[Veg]. FAST

uses the same acknowledgement and window control mechanism as the Standard TCP, but
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Table 4.1: Parameters in the AIMD algorithm of TCP-based Protocols

Standard TCP HSTCP Scalable TCP

a 1/cwnd a(cwnd) 0.01

b 0.5 b(cwnd) 0.125

it does not use Standard TCP functions like slow start and the AIMD algorithm. It updates

its cwnd based on the measured RTT information in the same manner as TCP Vegas. This

updating manner is different from the other TCP-based transport protocols such as HSTCP

and Scalable TCP in that they decide their cwnd based on the packet loss event information.

Several new UDP-based protocols have been proposed like TSUNAMI and RBUDP. We

treat SABUL as an example of UDP-based protocol among them, because it has received an

award at the Supercomputing Bandwidth Challenge [bc].

SABUL establishes two connections simultaneously between the sender and the receiver;

one is a UDP connection and the other a TCP connection. SABUL uses a UDP connection

to transfer data and a TCP connection to transfer ACK and control packets, which provide

error information and the total number of received packets during the constant period from

the receiver to the sender. Based on this information, lost packets are retransmitted on the

UDP connection and in addition the sending rate is periodically updated.

Table 4.2 lists the implemented protocols adopted in our experiment.

Table 4.2: Targeted Protocols

Protocol Proposer Contributer for Code Version

HSTCP Sally Floyd G.Fairey patch for Linux 2.4.19

Scalable TCP Tom Kelly Tom Kelly patch for Linux 2.4.19

FAST CALTECH CALTECH running on Linux 2.4.20

SABUL Yunhong Gu Yunhong Gu version 2.2
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4.3 Experimental Setup

We conducted experiments on the JGN, which was a public testbed for research and provided

users with ATM paths of up to 600[Mbps]. In our experiment, we use two types of UBR PVC

paths, nicknamed JAPAN and EARTH2, as introduced in Table 4.4. (These nicknames derive

from the length of the each path, i.e. JAPAN path was set its length to around Japan, and the

length of EARTH2 path is equal to the distance of round the earth two times.)

The network topology and equipment specifications are illustrated in Fig. 4.1 and Table

4.3, respectively.

JGN

(GX550)

GigaEther NIC

...

...
JAPAN

ATM
SW

622Mbps

622Mbps

ATM
SW

GigaHUB

SmartBits600
(LAN-3300A)

622Mbps ATM NIC

IP Router A

IP Router B
End Host D

End Host C
ATM
SW

ATM
SW

ATM
SW

Figure 4.1: Network Topology

Table 4.3: Equipment Specifications

IP Router A,B End Host C End HOST D

OS Red Hat Linux 8.0 Kernel 2.4.18 Red Hat Linux 9.0 Kernel 2.4.20 Red Hat Linux 9.0 Kernel 2.4.20

Windows 2000 SP3

Solaris9 12/02

FreeBSD 4.7 Release

CPU PentiumIV 2.4[GHz]

Memory 512[Mbyte] 1[GByte]

PCI BUS 32[bit]

EtherCard Intel Pro

ATM NIC Fore(Marconi) HE 622SMF -
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Table 4.4: Path Characteristics in Japan Gigabit Network

Path Nickname Distance[km] *1[Mbps] *2[Mbps] *3[Mbps] Measured RTT[ms] Bandwidth-Delay Product

JAPAN 8,000 600 522 305 100 3.88[Mbyte]

EARTH2 40,000 120 105 98 460 5.75[Mbyte]

1: ATM Cell Rate, 2: Theoretical Maximum Bandwidth, 3: Measured Maximum Bandwidth

In Fig. 4.1, we establish TCP or UDP connections from end hosts connected with router

A to those connected with router B. The performance of TCP-based protocols is monitored

by Iperf[ipe], while that of SABUL is measured by itself. We will show the throughput

characteristics for every two seconds, unless otherwise noted.

Bottleneck bandwidth and round-trip time(RTT) in a load test measured by Smartbit on

JAPAN and EARTH2 paths are listed in Table 4.4. In the load test over the JAPAN path, no

UDP packet losses are observed in a range of throughput up to 310[Mbps], which corre-

sponds to 305[Mbps] of TCP throughput. However, with reference to Table 4.4, bottleneck

bandwidth of the JAPAN path is 522[Mbps], which indicates that the actual bottleneck band-

width is limited to 305[Mbps] in our configuration. This is due to the PCI bus performance

restriction in IP router machines.

On the other hand, to avoid ATM cell losses caused by traffic policing on the ATM PVC

path, we insert a 100[Mbps] hub in the access line to the EARTH2 path, which is expected

to be a traffic shaper. In this configuration, no packet loss events occurred on the EARTH2

path, in a range of throughput up to a 100[Mbps] UDP packet load with Smartbit, which

corresponds to 98[Mbps] of TCP throughput.

Hereafter, we use a configuration in which the buffer size at the sender, s-buf, is set at

8[Mbyte] or autotuning of the buffer size is turned on[aut], and the buffer size at receiver,

r-buf, is set at 8[Mbyte] and 16[Mbyte] in the JAPAN and EARTH2 path test environments,

respectively, referring to the value of Bandwidth-Delay Product in Table 4.4.

We adopted Linux as the sender-side OS in our experiments because, except for SABUL,

the function codes are provided as patches for source code(HSTCP and Scalable TCP) or the
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kernel(FAST) in the Linux.

Before showing our experimental results, we note the following. The JGN paths used in

our experiment are ATM UBR PVC connections which share ATM network resources with

other constant or temporary traffic on the JGN. To avoid the influence of such unexpected and

uncontrollable concurrent background traffic, we conduct five or ten trials in each experiment

with the same configuration, and then discard irregular cases. Unless otherwise noted, the

results we show hereafter are for the cases exhibiting good throughput performance, which

is expected to be obtained when the influence of background traffic is weak enough to be

negligible.

4.4 Experimental Results

In this section, we investigate various performance characteristics of several high-speed

transport protocols from practical viewpoints.

First, as fundamental characteristics, throughput performance of a single connection is

examined in Section 4.4.1, and that of multiple connections of the same transport protocol

in Section 4.4.2. Moreover, we treat cases of more practical interest in the following subsec-

tions. In actual networks, traffic from the high-speed transport protocols treated here is very

likely to share a link with UDP traffic as well as with traffic of different high speed transport

protocols, which are investigated in Sections 4.4.3 and 4.4.4. Finally, there are actually var-

ious TCP implementations with many operating systems. We examine behavior of some of

them depending upon their TCP implementations. Section 4.4.5 will show the effect through

experiment results.

4.4.1 Throughput Performance Comparison on a Single Connection

In this section, we report throughput of a single connection adopting each targeted protocol.

Figure 4.2 presents throughput characteristics of a single flow on the JAPAN path, for each
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target high-speed transport protocol shown in Table 4.2. The autotuning buffer function at

the sender is turned on. We conduct five trials and show the results for the largest throughput

characteristics obtained among them.

We also show some properties of each protocol flow, including time to achieve 100[Mbps]

throughput, maximum throughput, average throughput over 300 [s] and packet loss rate in

Table 4.5.

And we also trace the size of cwnd(i.e., the burst size for transmission) in the TCP-based

protocol flows via tcpdump[tcp] in Fig. 4.3.
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Figure 4.2: Throughput Characteristics on a Single Flow on JAPAN Path

As Fig. 4.2 and Table 4.5 indicate, there are distinct differences in the behavior of high-

speed transport protocols treated here. With a high-speed transport protocol, throughput

increases rapidly and the achievable maximum throughput is also larger than that of the

Standard TCP. Especially with SABUL, the flow could achieve about 280[Mbps] throughput

constantly. The bottleneck bandwidth in our environment is 305[Mbps], hence on adopting

SABUL as the transport protocol, 92% of the available bandwidth could be used.
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Table 4.5: Characteristics of Various Transport Protocol Flows

time to achieve 100Mbps[s] maximum throughput[Mbps] average throughput[Mbps] packet loss rate[%]

Standard 120 120 92 0.0082

HSTCP 35 230 106 0.023

Scalable TCP 10 250 125 0.058

FAST TCP << 1 272 186 0.028

SABUL << 1 300 271 0.12
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We find that the FAST flow achieves good performance, but at the same time we observe

that the throughput deteriorates periodically. We assume that this may come from the fact

that we cannot set an appropriate value for the TCP Vegas parameters which must be set in

FAST and it seems to have a large impact on the throughput characteristics.

In Fig. 4.2, we find that the throughput changes dynamically in HSTCP and Scalable TCP

flow. This is because the cwnd becomes too large very quickly, which causes congestion in

the networks, shrinks its size, and drastically deteriorates the throughput. A sequence of

these events occurs repeatedly, as shown in Fig. 4.3.

In addition, Fig. 4.3 tells us that the changes of cwnd of the FAST flow is considerably

different from other protocols. This is likely to come from the fact that the FAST controls its

cwnd based on the measured RTT information instead of the packet loss information.

Comparing packet loss rates of protocols in Table 4.5, the larger throughput the protocol

achieves, the greater loss rate it exhibits, except for FAST.

Next we compared the throughput characteristics of the multiplexing the Standard TCP

flow (# of flows is set to eight.) with that of the high-speed transport protocol flows. In

Fig. 4.4, it is observed that multiplexing Standard TCP flows can achieve similar levels in

throughput of a single HSTCP flow or a Scalable TCP flow.
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We also investigate the throughput characteristics for a single flow in the EARTH2 en-

vironment, which has a longer RTT and a smaller bandwidth. From Fig. 4.5 and Table 4.6,

we observe tendencies similar to those in the JAPAN environment on the throughput perfor-

mance.
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Table 4.6: Maximum and Average Throughput on EARTH2 path

Protocols Maximum Throughput[Mbps] Average Throughput[Mbps]

Standard TCP 20 9.8

HSTCP 78 42.1

Scalable TCP 78 55.8

FAST 100 90.1

SABUL 100 98

These results indicate that the flows adopting the new high-speed transport protocols can

achieve higher throughput than that of the Standard TCP. In particular, SABUL and FAST

flows maintain high throughput characteristics in our environment.
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4.4.2 Multiplexing Characteristics of Flows from Homogeneous Proto-

col

Next, we investigate multiplexing characteristics of flows from same protocol; characteristics

of two flows will be examined as an example below. We have found that the HSTCP, Scalable

TCP, FAST and SABUL protocol could ensure fairness in throughput among homogeneous

protocol flows, like Standard TCP. Additionally, total throughput of two flows is larger than

that of a single flow, and all the protocols investigated effectively improve their throughput

performance by setting up multiple connections.

Figure 4.6 provides an example of throughput characteristics, where two Scalable TCP

flows were established simultaneously.

In addition, we show the average throughput over 300[s] of each of the transport pro-

tocol in Fig. 4.7. It tells us that all the protocols can ensure the fairness in the throughput

characteristics among homogeneous protocol flows.
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4.4.3 Ability to Adapt to Changing Available Bandwidth

In this section, we investigate the behavior of flows of each transport protocol when the

network congestion situation changes. Figure 4.8 illustrates the throughput characteristics

on a single connection between end hosts C and D in Fig. 4.1, with an interruption by a UDP

flow of 200[Mbps] starting at 200[s] and lasting 100[s], which causes congestion.
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As shown in this figure, when there is no co-existing UDP flow on the path, TCP-based

protocols repeatedly increase and decrease their throughput, while the SABUL flow could

sustain high-level throughput from the beginning of the flow. After a UDP flow begins data

transfer at a rate of 200[Mbps], the Standard TCP, HSTCP and Scalable TCP flows rapidly

reduce their throughput to nearly zero, and the throughput remains at the same level until the

UDP flow stops its transfer. The SABUL and the FAST flows also reduce their throughput

due to the influence of the UDP flow, but they can achieve certain level of throughput even in

this case. Especially the SABUL flow can sustain a throughput of approximately 100[Mbps]

when sharing the path with the UDP flow. In our experimental environment, the achievable

throughput is 305[Mbps] so that we can see that the SABUL flow can almost fully utilize the

bandwidth that is unused by the UDP flow.

After the UDP flow stops transmitting, Standard TCP, HSTCP and Scalable TCP take a

large amount of time until recovering their throughput. On the contrary, the throughput of

SABUL and FAST flows can recover rapidly to the level attained previously.

Table 4.7 shows the average packet loss rate observed in the UDP flow. In this scenario,

although the observed packet loss rate in the UDP flow co-existing with FAST or SABUL

flow is larger than that with other protocol flows, we find that FAST and SABUL flow can

adjust their sending rate in response to the changing network condition. This must be due to

the flexible and the explicit rate-control of each of those protocols.

Table 4.7: Packet Loss Rate in the UDP Flows

Protocol Packet Loss Rate[%]

Standard TCP 0.87

HSTCP 0.84

Scalable TCP 0.91

FAST 1.9

SABUL 1.9

In addtion, Fig. 4.9 illustrates the throughput characteristics of establishing two SABUL

flows simultaneously under the same scenario in Fig. 4.8. The throughput performance of
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a single SABUL flow is shown there just for comparison. We can observe that the SABUL

flows can perform well, i.e., they can make good use of the network resources which is

unused by the UDP flow. But in the recovery phase after the UDP flow stops transmitting,

the single flow outperforms the multiple flows in their throughput characteristics.
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Figure 4.9: Throughput Characteristics on Multiple SABUL Flows with UDP Interruption

4.4.4 Inter-Protocol Throughput Characteristics

Currently, diverse TCP variants and their different implementations are used on the Internet,

and traffic of the upcoming high-speed transport protocols will thus encounter that of other

transport protocols on the Internet.

In this section, we investigate the throughput characteristics of different protocols sharing

the network resources: inter-protocol throughput characteristics.

Figure 4.10 shows the average throughput over 600[s] of two different flows on the link;

one is a Standard TCP flow and another is one of the high-speed transport protocols. In

Fig. 4.10, one of the flows is that of Standard TCP. Thus, the figure illustrates how the

Standard TCP is affected by the high-speed transport protocols. In all the cases, the share of

Standard TCP with different protocols deteriorates its performance. In particular, Scalable

TCP and FAST heavily deteriorated the performance of Standard TCP in our experiments.
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In Fig. 4.11, we also show the average throughput over 600[s] when two of high-speed

transport protocols share the network.

From these figures, we can see that Inter-protocol unfairness occurs when different pro-

tocols share the network, unlike in Fig. 4.7.

Furthermore, the Standard TCP and HSTCP are particularly affected by other protocols.

SABUL is superior to others in terms of achievable total throughput of two flows, and can

also attain its own excellent throughput performance in all the cases. The realized fairness

issue should be further studied.
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Figure 4.10: Inter-Protocol Average Throughput (Standard TCP - High-Speed Protocol)

4.4.5 Impact of OS at the Receiver on the Performance of TCP-based

Protocols

Among the protocols in our experiment, the SABUL protocol must be installed at both sender

and receiver sides, and works independently of the OS stack. On the contrary, the TCP-based

protocols, i.e., the HSTCP, Scalable TCP and FAST, are installed only at the sender, and they

can establish connections with receivers using various TCP stacks implemented on OS. In

this section, we discuss the throughput performance of flows on which TCP-based protocols
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Figure 4.11: Inter-Protocol Average Throughput ( High-Speed Protocol - High-Speed Pro-

tocol)

send data to receivers with various OSs, e.g., Linux, FreeBSD, Solaris and Windows 2000.

First, we carry out preliminary experiments of monitoring TCP SYN segments by tcpdump

in order to examine the use of TCP options on all the treated OSs. According to the results,

Linux, Windows 2000, and Solaris use the following options: (1) notification of MSS, (2)

available for TimeStamp Option, (3) SACK Option, and (4) Window Scale Option. We have

found that the SACK Option is not used by FreeBSD (ver.4.7 adopted in our environment).

Next we investigate the throughput of flows whose receivers are on various OSs. Table

4.8 shows the average throughput over 200[s] on the flows with receivers working on various

kinds of OSs. Also, Fig. 4.12 presents throughput characteristics on flows adopting Stan-

dard TCP as a transport protocol. Both of the results clearly indicate that the throughput

performance heavily depends on which OS is used at the receiver.

In order to reveal what happened to the data sequence in the flow with the receiver on each

OS, we monitored the sequence number of data and ACK packets in the flow via tcpdump,

when the Standard TCP is adopted as a transport protocol for example.

Figure 4.13 shows the cumulative distribution of interval of ACK packets returned by the

receiver with various OSs. From this figure, the interval of generated ACK packets varies
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Table 4.8: Average Throughput

receiver side OS Standard TCP HSTCP Scalable TCP FAST TCP

Linux 62 121 111 186

FreeBSD 151 62 46 50

Solaris 99 136 169 157

Windows2000 115 122 107 136
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Figure 4.12: Throughput Characteristics in the Standard TCP Flow (Linux to Various OSs)
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depending on the kind of OS used at the receiver; i.e., Windows 2000 and Linux send back

one ACK packet per a chunk of MSSs (up to 14 MSSs), whereas Solaris and FreeBSD send

one ACK packet per one or two MSSs.
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Figure 4.13: Cumulative Distribution of ACK Packet Interval
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Figure 4.14 and 4.15 show when data packets arrive and their ACK packets are sent out

at the receivers on Linux and FreeBSD during congestion avoidance phase, respectively. In

Fig. 4.14, the receiver on Linux OS sends out one ACK packet just after receiving a chunk

of data packets. However, the length of the chunk is not constant and may vary up to seven
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MSSs. In Fig. 4.15, the receiver on FreeBSD OS basically sends back one ACK packet

per two data packets, though it sometimes sends out two ACK packets simultaneously. This

event is counted as an event of ”Acked data is zero” in Fig. 4.13, which happens in 20 percent

of all ACK packets.

Standard TCP, which uses ACK packets for both congestion control and error control,

increases its cwnd every time an ACK packet arrives. The increase of the throughput thus

depends on the receiving rate of the ACK packets in number. Therefore, the flow with the

receiver on FreeBSD OS, which sometimes sends an ACK packet with no new data packet

arrival, increases its cwnd size rapidly. As a consequence, the flows with the receiver on

FreeBSD OS can increase their throughput quickly as observed in Fig. 4.12.

On the other hand, the receiver on Linux or Windows 2000 sending out an ACK packet

for a chunk of data packets limits the chance of increase of cwnd at the sender-side during the

congestion avoidance phase, and thus, prevents the throughput from being increased quickly,

as seen in Fig. 4.12.

In [All03], the modification of cwnd increment based on the amount of acknowledged

data, rather than the number of ACK packets, has been proposed in order to improve through-

put performance. The above-mentioned results indicate, however, the sender-side TCP on
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Linux does not implement that modification.
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Figure 4.16: Throughput Characteristics in the HSTCP Flow (Linux to Various OSs)

Figure 4.16 presents the throughput characteristics on flows adopting HSTCP with the

receivers on various OSs. Similarly to the case of Standard TCP (Fig. 4.12), while the flow

with the receiver on Solaris exhibits a rapid increase of the throughput, the flow with the

receiver on Linux or Windows 2000 exhibits a relatively slow increase of the throughput.

Thus, the case of Solaris achieves the highest throughput. On the other hand, the throughput

of the flow with the receiver on FreeBSD (no SACK option) rapidly increases but often falls

down to zero, and thus is considerably low on an average compared with other protocols

mainly due to the lack of the SACK option. The experiment on Scalable TCP also showed a

similar tendency.

Contrarily, the flow of FAST exhibits different throughput characteristics from those of

HSTCP and Scalable TCP. There is no significant difference in the degree of throughput

increment among the receiver OSs, because FAST updates cwnd based on the measured RTT

that does not depend on the strategy of sending ACK packets at the receiver-side. In details,

however, the case of the receiver on Windows 2000 achieves the highest peak throughput,

while the case of receiver on Linux achieves the highest averaged throughput. The case of

the receiver on FreeBSD cannot get high throughput.
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From these results, it can be concluded that the throughput characteristics of TCP-based

high performance protocols depend on the TCP implementation on the receiver-side OS in

general. In particular, protocols employing ACK-based congestion control (e.g., HSTCP and

Scalable TCP) are strongly affected by the strategy of sending ACK packets at the receiver-

side. Note that if those protocols adopt the modification of cwnd increment by [All03], this

dependency is expected to be reduced. The strong need of the SACK option in the high

performance protocols is also indicated.

4.5 Concluding Remarks

In this chapter, we investigated the throughput characteristics of a variety of high-speed

transport protocols (HSTCP, Scalable TCP, FAST, and SABUL) recently proposed for trans-

mitting a huge amount of data on fast long-distance networks, through experiments on the

Japan Gigabit Network.

All treated protocols in our experiments exhibited good performance in throughput com-

pared with the Standard TCP. They were listed in order of their achieving throughput as

follows : SABUL > FAST > Scalable TCP > HSTCP, while the packet losses were more

likely to occur in the following order : SABUL > Scalable TCP > FAST > HSTCP. SABUL

and FAST also showed that they could adjust their sending rate rapidly and appropriately in

response to the dynamic changes of competitive UDP traffic. For TCP-based protocols, the

performance was considerably affected by the kind of receiver-side OS due to the difference

in strategy of sending back ACK packets and ability of the SACK option.

The fact that SABUL and FAST outperform implies that the conventional congestion

avoidance mechanism of TCP based on receiving ACK packets may not be suitable for fast

long-distance networks. For high-speed transport protocols, it seems desirable to separate

the congestion control from the error control, and further to make the rate control smooth

and rapid.

However, all treated protocols suffered from the problem of unfairness or undesirable
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interference when multiple connections of different protocols share a common link. Further

progress in high-speed transport protocols is needed to solve this problem.
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Chapter 5

Experiments for High-Speed Transport

Protocol of Multiple Flows

5.1 Introduction

In response to the emerging requirements for high-throughput data transfer on fast long-

distance networks in distributed data processing and data sharing environments such as Grid,

a variety of high-speed transport protocols have been proposed. Among them are two practi-

cal end-to-end approaches: modification of the congestion control mechanism in TCP at the

sender-side, and implementation of new transport protocols over UDP. Their performances

(throughput characteristics) in dedicated and/or homogeneous network environments have

been studied in various experiments on worldwide testbeds (e.g., [CAK+05]). The band-

width of the Internet, on the other hand, has been increasing in both access networks and

core networks. In Japan, for example, reasonably priced 1-Gbps broadband access (FTTH)

services have recently become available and 10-Gbps services might be available soon. In-

ternet users, including large application service providers (ASPs), may thus want to use

high-speed transport protocols on the Internet to transfer a larger amount of data, regardless

of the intentions of the original developers of those protocols. Little attention, however, has
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been paid to the problems involved when those transport protocols are deployed on shared

and heterogeneous network environments like the global Internet.

We therefore started investigating several promising high-speed transport protocols —

HighSpeed TCP (HSTCP) [Flo03], Scalable TCP [Kel03], FAST [JDS04], CUBIC [RX05],

HTCP [SL04], and UDT [GG05] — in experiments using several testbed environments such

as the Japan Gigabit Network II (JGNII) 1 and the TransPAC2 2, both of which are open

10Gbps-class Ethernet-based network between US and Japan/Asia-Pacific. We focus on

examining what happens under realistic conditions, such as those with change of network

routes, i.e. propagation delay, with a variety of receiver-side OSs (Linux, FreeBSD, and

Windows XP), coexisting flows with different RTTs and different protocols, coexisting short-

lived TCP flows (e.g., web browsing flows), and coexisting constant bit-rate UDP flows (e.g.,

video stream flows)

This chapter is organized as follows. Section 5.2 explains the configuration of the exper-

imental environments, Sections 5.3 and 5.4 present the experimental results, and Section 5.5

makes some closing remarks.

5.2 Configuration of our experiments

Figure 5.1 summarizes our view of the locations of bottleneck links for TCP flows in the

Internet. Cases 1 and 2 show the typical cases in which the bottleneck link is in an edge

router on the sender side, while Case 3 shows an example of a bottleneck link in an edge

router on the receiver side. This paper reports experimental results obtained in the Case 1

configuration: a 1-Gbps bottleneck link in an edge router on the sender side.

In our experiment we used the JGNII and TransPAC2 as the backbone network shown in

Fig. 5.1. Both the JGNII and TransPAC2 provide a maximum bandwidth of 10 Gbps. The

information of traffic load on both networks are continuously available at the website of the

1http://www.jgn.nict.go.jp/e/index.html
2http://www.transpac.org
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Figure 5.1: Locations of bottleneck links for TCP flows in the Internet.

APAN Operations Center3. The end-to-end packet loss rates over these international lines

are very low in usual.

Figure 5.2 shows the network configurations in our experiments: (a) the network emula-

tor path (emulated by a Hurricane II from PacketStorm), (b) the network emulator and the

JGNII domestic loopback path (Kitakyushu-Tokyo-Kitakyushu), (c) the network emulator or

the JGNII domestic loopback path, and (d) the JGNII/ TransPAC2 path between the US and

Japan (Chicago - Tokyo - Kitakyushu/ Chicago - Los Angeles - Tokyo - Kitakyushu). The

measured RTT of JGNII domestic line, the JGNII international line and the TransPAC2 are

39[ms], 180[ms] and 189[ms], respectively. The number of intermediate nodes (routers) on

the JGNII domestic line, JGNII international line and TransPAC2 are 3, 4 and 11, respec-

tively. Using the network emulator, we can configure RTT at values ranging from 0.1 to

10000[ms] and change the bandwidth at values ranging from 0 to 1000 [Mbps].

3http://www.jp.apan.net/NOC/
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Figure 5.2: Network configurations.

The sender and receiver equipment specifications are listed in Table 5.1. We used Linux

(RedHat 9.0 Kernel 2.4.20) as the sender-side OS in our experiments mainly because the

function codes for the protocols we used, except for UDT, were provided as patches for the

source code of Linux. We tuned various parameters (e.g., Linux txqueuelen, system memory,

and RxDescriptors of the NIC(e1000) driver) according to the technical information provided

in the web pages of each of the targeted protocols.

We usually used the default output buffer size of the edge routers but also used a larger

buffer size in order to investigate the effect of the buffer size of the edge router at the sender

side, that is a bottleneck in Case 1 shown in Fig. 5.1. It is known that the performance of

high-speed transport protocol was considerably affected by the buffer size of the bottleneck

link (router). The edge router we used has a distributed packet-buffering architecture, which

has several internal output buffers, and the size of one of them is configurable. We therefore

show the experimental results obtained when the buffer size was the default size (indicated

as Buf=Small) and when the size was as large as possible (indicated as Buf=Large). Note

that, a recent study ([Hir06]) reported a single TCP flow did not work well with the small

buffer sizes less than 200 packets in their configuration where the bottleneck bandwidth is

limited to 800[Mbps] using dummynet. In our experiments, the small (default) buffer size is

less then 200 packets and the large buffer size is more than 200 packets.

In the following sections, we targeted six high-speed transport protocols and used the im-
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plementations listed in Table 5.2. We used Iperf to measure the throughput for TCP flows and

the packet loss and delay jitter for UDP flows. We usually showed the throughput character-

istics as time series of the one-second-averaged throughput of individual flows. In addition,

if we observed similar tendencies on two or more protocols (e.g., HSTCP and Scalable TCP),

we reported the result for only one of these protocols.

Note that the international and domestic testbed networks we used generally accommo-

date other constant or temporary traffic. To avoid the influence of unexpected large back-

ground traffic, we monitored the traffic load of the network while conducted several trials of

each experiment with the same configuration and then discarded irregular cases. Unless oth-

erwise noted, the results reported here were for cases exhibiting relatively good throughput

performance.

Table 5.1: Equipment specifications

End host in Chicago End host in Kitakyushu

OS Debian Linux Red Hat Linux 9.0 Kernel 2.4.20

CPU Xeons 2.4 GHz/opteron Xeons 3.2 GHz

Memory 1 GByte 2 GBytes

PCI bus 64 bits

NIC (1 Gbps) Intel Pro(e1000)

Table 5.2: Targeted protocols

Protocol Version Protocol Version

HSTCP patch for Linux 2.4.19 CUBIC patch for Linux 2.4.25

Scalable TCP patch for Linux 2.4.19 HTCP patch for Linux 2.4.20

FAST patch for Linux 2.4.20 UDT version 2.0
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5.3 Experimental results for a single data flow

This section shows the fundamental characteristics of each of the high-speed transport proto-

cols revealed by examining the throughput performance of a single connection under various

conditions that is likely to be met in the global Internet. In fact, in the daily use of the In-

ternet, an optimal tune of the socket buffer size at an end-host for a specific situation is not

easy; the buffer size of a bottleneck router cannot be changed; the receiver-side OS is not

always Linux; and the end-to-end route likely changes by some reasons.

5.3.1 Buffer sizes in end-hosts and in bottleneck routers

First, we investigate the effect of the socket buffer size in end-hosts, which is directly re-

lated with the upper-limit of the congestion window size (cwnd) of TCP, on the through-

put characteristics of the targeted high-speed transport protocol flows. In the international

line, the maximum cwnd required to theoretically achieve 1 [Gbps] (actually, payload band-

width is 941[Mbps]) throughput with RTT of 189 [msec] is approximate 22 [MB], that is

the bandwidth delay product (BDP) of the end-to-end path. Figure 5.3(a) shows the long-

term averaged throughput of a single flow over the international line configured as illus-

trated in Fig. 5.2(d) with the default (small) buffer in the edge routers, which indicates that

all TCP-based high-speed protocols except for CUBIC are sensitive to the socket buffer

size around the BDP and damaged by an inadequately large socket buffer. Figure 5.4(a)

shows the throughput characteristics of a FAST flow with different socket buffer sizes from

80% to 106% of BDP using the international line with the small buffer in the edge routers,

and Fig. 5.4(b) shows the throughput characteristics of HTCP and Scalable TCP flows with

socket buffer sizes set to 95% and 100% of BDP in the same configuration.

From these figures, it is clearly observed that the maximum throughput is limited by the

socket buffer size but seems stable when the socket buffer size is smaller than the value of

BDP. On the other hand, when the socket buffer size is more than or equal to the BDP, the
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throughput characteristics may become unstable depending on the protocols.
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Figure 5.3: Influence of the socket buffer size on the throughput characteristics
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Figure 5.4: Effect of the buffer size at the end hosts, international line (a) FAST and (b)

HTCP and Scalable TCP.

Therefore, in our experiments, we investigated the throughput characteristics of each of

the high-speed transport protocols adopting various socket buffer sizes, e.g., 0.95 BDP, BDP,

and 1.06 BDP.

Next, we investigate the effect of the output buffer size in bottleneck edge routers on the

throughput characteristics of the targeted flows. Figure 5.3(b) shows the long-term averaged

throughput of a single flow over the international line configured as illustrated in Fig. 5.2(d)

with the large buffer in the edge routers. The adverse effects of too large socket buffers (in

the end-hosts) are considerably mitigated by using a large edge router buffer for most of the
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targeted protocols, although HSTCP and Scalable TCP are still damaged by the too large

socket buffers. Figures 5.5 (a) and (b) show the throughput characteristics of a single flow

of some targeted protocols (Scalable TCP, FAST, and CUBIC) with 1.06BDP socket buffer

over the international line using the small buffer and the large buffer at the edge routers,

respectively.

From these figures, when using a large socket buffer (1.06 BDP) in end-hosts, it can be

seen that the throughput of the FAST flow is greatly improved by setting the output buffer

size of the edge router large, while that of the Scalable TCP flow is compromised by setting

so. In addition, the throughput of the CUBIC flow is not so affected by the edge router buffer

size. For Scalable TCP (and HSTCP), the above preference for a smaller buffer in the edge

routers in case with a large socket buffer may comes from its nature of rapid growth of cwnd.

That is, a large socket buffer in combined with a large edge router buffer may cause too many

successive packet losses in intermediate routers.
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Figure 5.5: International Line single-flow throughputs obtained with (a) small and (b) large

buffers at an ingress edge router,socket buffer size = 1.06BDP.

Before ending this subsection, we address the use of real testbed networks and the net-

work emulator by comparing the experimental results of the throughput characteristics of

a single flow in those different network environments. Figures 5.6 (a) and (b) show the

throughput characteristics of a single flow of some targeted protocols with 1.06BDP socket
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Figure 5.6: Emulator single-flow throughputs obtained with (a) small and (b) large buffers

at an ingress edge router,socket buffer size = 1.06BDP.

buffer over the network emulator configured as illustrated in Fig. 5.2 (a) using the small

buffer and the large buffer at the edge routers, respectively. The RTT of this configuration

is approximate to that of the real testbed over international line. Comparing these figures

with Fig. 5.5 (the international line scenario), it can be observed that the throughput charac-

teristics for all protocols in the network emulator were somewhat similar to, but much more

stable (and much less sensitive to the edge router buffer size) than, those in the real testbed

networks. This is because packet losses do not occur in the network emulator unless a packet

loss rate is set in the emulator. Thus, we then examine the throughput characteristics using

the network emulator with setting the packet loss rate to several values.

Since buffer-size-dependent differences were not significantly observed in their through-

put characteristics of CUBIC and HTCP flows in our experiment, in Fig. 5.8 we show their

throughput characteristics using the network emulator with setting the packet loss rates to

some values. In Fig. 5.8(a), we see that the behaviors of CUBIC flows observed in the in-

ternational line and in the network emulator with a small loss rate are very similar during an

initial increase of the throughputs but their behaviors slightly differ in ways depending on

the packet loss rate once the maximum throughput has been reached. On the other hand, the

HTCP flow throughput characteristics observed in the network emulator and in the interna-
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Figure 5.7: International line single-flow throughputs obtained with (a) small and (b) large

buffers at an ingress edge router , socket buffer size = 0.95BDP.
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tional line are very different as shown in Fig. 5.8(b).

From these results, we ran our experiments in both environments when that was pos-

sible, and used the network emulator to investigate the basic characteristics and the JG-

NII/TransPAC2 lines to investigate characteristics under more realistic environments, re-

spectively.

5.3.2 Variety of receiver-side OSs

The TCP-based high-speed transport protocols are installed only on the sender side and can

established connections with receivers using various TCP stacks implemented on the differ-

ent OS. This subsection shows the performance measured when the FreeBSD (ver.5.3) and

Windows XP (SP2), which are commonly used in the Internet, were used as receiver side

OSs in the network configurations shown in Fig. 5.2(c). We first tuned several performance

related parameters of each OS according to the technical information in [tun].

We carried out preliminary experiments of monitoring TCP SYN segments by tcpdump

in order to examine the use of TCP options on all the treated OSs. And we confirmed that all

targeted protocols used the following options: (1) notification of MSS, (2) available for TCP

Stamp Options, (3) SACK options, and (4) Window Scale Option.

Figures 5.9 (a) and (b) show the throughput characteristics of a single flow on the net-

work emulator in cases that FreeBSD and Windows XP are used as the receiver-side OS,

respectively. In both cases, we set the RTT to 189 ms and the socket buffer size to 0.95BDP.

Basically, we observed that all protocol flows could achieve high throughput regardless of the

kinds of receiver side OS in the environment where no packet losses occurred, although the

detailed throughput characteristics of individual protocols vary depending on the receiver-

side OS. For example, the throughput in the case with an XP receiver increases more slowly

than do the throughputs in the cases with Linux and FreeBSD receivers.

To find out what happened to the data sequence in the flow when each OS was used

on the receiver side, we monitored the sequence number of data and ACK packets in the
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Figure 5.9: Throughput characteristics observed in (a) emulator(RTT=189 ms) with

FreeBSD ver.5.3 receiver, socket buffer = 0.95BDP, (b) emulator (RTT=189

ms) with Windows XP receiver, socket buffer = 0.95BDP.

flow via tcpdump when the Scalable TCP was used as the transport protocol. Figure 5.10(a)

shows the cumulative distribution of interval of ACK packets returned by the receiver with

various OSs, which indicates the interval of generated ACK packets varies depending on the

receiver-side OS. Figures 5.10(b), 5.10(c), and 5.10(d) respectively show when data packets

arrive and their ACK packets are sent out during congestion avoidance at receivers running

on Linux, FreeBSD, and Windows XP.

Figure 5.10(b) indicates that a Linux receiver sends out an ACK packet after receiving a

chunk of data packets but the length of the chunk is not constant. Figure 5.10(c) indicates

that a FreeBSD receiver basically sends back one ACK packet per two data packets but

sometimes sends out two ACK packets simultaneously. Figure 5.10(d) that a XP receiver

sends out an ACK packet after receiving a long chunk of data packets.

For example, an OS-dependent difference in CUBIC flows observed by comparing Fig. 5.9(a)

(where the receiver-side OS is FreeBSD) and Fig. 5.9(b) (where the receiver-side OS is XP)

can be explained as follows. A TCP flow, which uses ACK packets for both congestion

control and error control, increases its cwnd every time an ACK packet arrives. Therefore

the throughput of the flow communicating to a FreeBSD receiver, which sometimes sends
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an ACK packet when no new data packet arrives, increases rapidly. On the other hand, the

throughput is not increased so quickly when a receiver is running on Windows XP because

a long chunk of data packets corresponding to an ACK packet for a chunk of data pack-

ets during the congestion avoidance phase limits the chance of increasing the cwnd on the

sender-side.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20

%

Acked Data/MSS

(a) Cumulative Distribution

Linux
FreeBSD

Windows XP

 8.5029

 8.503

 8.5031

 8.5032

 8.5033

 8.5034

 8.5035

 8.5036

 9.58e+08  9.5802e+08  9.5804e+08

s

sequence number

(b) receiver side OS : Linux, Scalable TCP

Linux-Linux:SEQ
Linux-Linux : ACK

 8.5058

 8.5059

 8.506

 8.5061

 8.5062

 8.5063

 8.5064

 8.5065

 8.5066

 9.3e+08  9.3002e+08  9.3004e+08

s

sequence number

(c) receiver side OS : FreeBSD, Scalable TCP

Linux-FreeBSD:SEQ
Linux-FreeBSD:ACK

 8.505

 8.5051

 8.5052

 8.5053

 8.5054

 8.5055

 8.5056

 8.5057

 8.5058

 8.5059

 8.506

 8.5061

 9.06e+08  9.0604e+08  9.0608e+08

s

sequence number

(d) receiver side OS : Windows XP, Scalable TCP

Linux-XP:SEQ
Linux-XP:ACK

Figure 5.10: Interval of ACK packets: (a) cumulative distribution, (b) Linux to Linux, (c)

Linux to FreeBSD, (d) Linux to XP.

Figures 5.11(a) and (b) respectively show the throughput characteristics of a single flow

for FreeBSD and Windows XP as the receiver-side OS with setting the socket buffer size to

0.95BDP on the JGNII domestic line in which packet losses likely occur, while Figs. 5.11(c)

and (d) are those with setting the socket buffer size to 1.06BDP. When the receiver side OS

is FreeBSD, ACK packets were sent out from the receiver to the sender in the bursty, by

which the sender could increase its cwnd rapidly generating packets got bursty. As a result,
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Figure 5.11: Throughput characteristics of JGNII domestic line when (a) FreeBSD or (b)

Windows XP(SP2) is the OS on the receiver side with socket buffer size are

0.95BDP, (c) and (d) is that for FreeBSD and XP with socket buffer size are

1.06BDP.
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packet losses increased and throughput characteristic was degraded. In case of the receiver

side OS is XP, on the other hand, since XP does not send ACK packets so frequently, the

degradation observed in case of FreeBSD does not occur. At least, Figs. 5.11(b) and (d)

imply that users who install the most popular OS (Windows XP) and tune the performance-

related parameters accordingly can enjoy high-throughput reception if the sender uses high-

speed transport protocols.

5.3.3 Rapid change of propagation delay

Route changes will be likely in the Internet because of operational errors and the need for

global traffic engineering. We therefore investigated how rapid changes of RTT affect the

throughput characteristics of each of the high-speed transport protocols by path switching

between the emulator-path (very stable) and the JGNII domestic path (somewhat unstable)

in the network configuration shown in Fig. 5.2(c). Note that the socket buffer size was set to

the maximum bandwidth-delay product − i.e., the longer RTT (80 ms) × the bandwidth (941

Mbps).

Figure 5.12(a) shows the throughput behavior of a single flow in case that the path was

switched from the original path with as 80-ms RTT (the emulator path) to an alternative path

with an 39-ms RTT (JGNII domestic path) 30 seconds after the start of the flow and was then

switched back to the original one 60 seconds later. At the moment of the change from the

original path to the one with a shorter RTT, the throughput of all protocols became unstable.

This change likely makes the cwnd the sender too large and also causes packet misordering

at the receiver, both of which can lead to bursty packet losses. On the other hand, at the

moment of the change back to the original path with the longer RTT, the throughput of each

of the TCP-based protocols decreased by nearly 50% (which might be due to a few packet

losses), which is followed by gradually recovering its original high level throughput, while

that of UDT seemed insensitive to this change. Note that the FAST flow cannot recover

its throughput when the RTT changes, because FAST changes its cwnd size on the basis of
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Figure 5.12: Single-flow throughputs in case that the path switches
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delay information.

To confirm the above observation, we investigated the acknowledged sequence number

in ACK packets (monitored at sender side by using the tcpdump). Figure 5.12(b) shows the

ACKed sequence number when a FAST flow was switched from the original path with a

longer RTT to the alternative path with a shorter RTT, in which many duplicated ACKs can

be seen successively. Figures 5.12(c) and (d) respectively show the ACKed sequence number

observed when a HTCP flow was switched at 30 s and at 90 s. Successive duplicated ACKs

are observed at the moment of changing from the path with the RTT to the shorter RTT path,

while no duplicated ACKs are observed on returning to the path with the shorter RTT.

5.4 Experimental results for coexisting data flows

This section reports our investigation in cases that various kinds of flows coexist on the

bottleneck link : long-lived flows with different round trip times (RTTs) or by different

transport protocols, short-lived Standard TCP flows, and constant-bit-rate (CBR) UDP flows.

In fact, a high-speed transport flow will run on the Internet by sharing resources with such

data transfer flows that traverse different locations and have different protocols including

Standard TCP. In addition, a high-speed transport flow should efficiently coexist with other

types of Internet application traffic such as short-term web browsing flows and long-term

video streaming flows.

5.4.1 Coexisting flows with different RTTs

We investigated the throughput characteristics when coexisting flows have different RTTs. In

the configuration shown in Fig. 5.2(b), we started two flows by a same high-speed transport

protocol (flow 1 and flow 2) simultaneously and set the ratio of the RTT of flow 2 to that of

flow 1 to either 1, 2, or 4 by using the network emulator.

Figure 5.13 shows the time-averaged throughput of these two coexisting flows where
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Figure 5.13: Long-term averaged throughputs of flows with different RTTs.

RTT of flow 1 is 39 ms and that of flow 2 is 39(=(4)), 78(=(5)), or 156(=(6)) ms. It also

shows for each protocol the throughput of a single flow where the RTT is 39(=(1)), 78(=(2))

and 156(=(3)) ms. Note that similar experiments in which the bottleneck bandwidth was

much lower than that in our case have already been reported [LLS].

We can see that each high-speed protocol is only slightly affected by RTT when a only

single flow is established. When the two flows of UDT protocol coexist, the performance is

insensitive to RTT. When two flows of a TCP-based protocol with the same RTT coexist((4)),

the total achievable throughput is almost the same as or larger than that achieved by a single

flow. When two flows of a TCP-based protocol with different RTTs coexist((5) and (6)),

however, we observe severe inefficiency as well as unfairness in throughput. For example,

in Case (6) where the RTT of flow 2 is four times larger than that of flow 1, the achievable

throughput of flow 2 significantly decreases and that of flow 1 increases just a little compared

with Case (4) where the RTT of two flows are same.

5.4.2 Coexisting flows with different transport protocols

We examined the scenario in which two long-lived data transfer flows with different pro-

tocols coexist on a same bottleneck link. When a high-speed transport protocol flow and

a Standard TCP flow simultaneously run, we observed the well-known unfairness problem:

that is, a high-speed transport protocol flow starved the long-lived Standard TCP flow for

bandwidth, while the performance of the high-speed transport protocol nearly unchanged.
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We also performed the simultaneous runs of all the combinations of two high-speed trans-

port protocols in the same path. Each of the bar graphs in Fig. 5.14(a) shows the sum of the

average throughputs of two flows over 300 seconds: a flow with the protocol indicated on the

X-axis and a flow indicated by an indicator coexist. We found that the sum of the through-

puts of different kind of two high-speed transport protocol flows was smaller than that for

two coexisting flows with the same high-speed transport protocol. That is, the link utilization

degrades when different kinds of high-speed transport protocol flows coexist. Figure 5.14(b)

shows average throughput of each flow when a HTCP flow coexists with another high-speed

transport protocol flow. It is clearly observed that there are unfairnesses in throughput. The

unfairness problem was found in all cases of coexisting different kinds of high-speed trans-

port protocol flows. UDT protocol flow, in particular, significantly affected the performance

of coexisting TCP-based protocol flows.
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Figure 5.14: Throughput when two kinds of high-speed transport protocol flows coexist:

(a) average throughputs for all pairs of protocols, (b) average throughput for

each of the protocols when its flow coexists with HTCP flow.

5.4.3 Coexistence of short-lived Standard TCP flows

We examined the throughput performance in case that a high-speed transport protocol flow

coexists with a number of short-lived Standard TCP flows. We performed simultaneous runs
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of a single long-lived flow using one of the high-speed transport protocols and 3000 short-

lived flows using the Standard TCP over the Japan-US international line as illustrated in

Fig. 5.2(d). The socket buffer size of high-speed transport protocol flows is set to 0.95BDP.

The transferred data size of each short-lived flow followed a Pareto distribution with a shape

parameter of 1.3 and a mean of 100, 300, or 500 KB. The starting time of each transfer was

randomly selected within a 300-s interval.
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Figure 5.15: Throughput of (a) high-speed transport protocol control flows and (b) coexist-

ing short-lived Standard TCP flows of various sizes when Buf=Small.

Figure 5.15(a) shows the average throughput (over 300 s) of a high-speed transport pro-

tocol flow coexisting with short-lived Standard TCP flows when the output buffer size of the

edge routers is small. The leftmost-side bar in each group of bar graphs shows the through-

put of a single high-speed transport protocol flow running alone on the path. It is clearly

observed that the performance of a high-speed transport protocol flow was considerably af-

fected by the coexisting short-lived Standard TCP flows, even through each of these flows

was small one. The larger the averaged file size of the short-lived Standard TCP flow was,

the larger the observed damage in the high-speed transport protocol flow became.

Figure 5.15(b) shows the averaged throughput of the short-lived Standard TCP flows de-

fined by (
∑

S i)/(
∑

ti), where S i denotes the file size of flow i and ti denotes the transfer time

of flow i. The larger the average file size, the higher the averaged throughput of short-lived
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Figure 5.16: Throughput characteristics of high-speed transport protocol flows coexisting

with short-lived Standard TCP flows for 50 –350 s.

Standard TCP flows. In cases with the average file size of 300KB and 500 KB, however, the

average throughput of short-lived flows coexisting with a high-speed transport protocol flow

was smaller than that without a coexisting high-speed transport protocol flow. Figure 5.16

plots the time-series of throughput of the high-speed transport protocol flows when short-

lived Standard TCP flows with an average file size of 500 KB were randomly generated for

50-s and 350-s periods.
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Figure 5.17: Effect of buffer size at edge routers: (a) throughput of high-speed transport

protocol flows, (b) throughput of short-lived Standard TCP flows.

Figures 5.17(a) and (b) show the average throughput of a high-speed transport protocol

flow and the average throughput of short-lived Standard TCP flows when the average file
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size of short-lived Standard TCP flows is 500 KB.

These results indicate that coexisting short-lived Standard TCP flows could degrade the

performance of high-speed transport protocol flows considerably although coexisting long-

lived Standard TCP flows could not. This may be because the slow-start phases of short-lived

standard TCP flows randomly change the available bandwidth. For example, the observed

long-term averaged throughput of short-lived TCP flows at the ingress router is 32.6-Mbps

when the averaged file size is 500-KB, and observed one second averaged instantaneous load

is over 100[Mbps].

The performance of short-lived Standard TCP flows with relatively large file size was

also adversely affected by coexisting high-speed transport protocol flows. Setting the buffer

size at the bottleneck nodes larger could mitigate the degradation of throughput of both high-

speed TCP flows and short-lived Standard TCP flows.

5.4.4 Coexistence of CBR UDP flows

We performed simultaneous runs of a single long-lived flow by one of the high-speed trans-

port protocols and two CBR (constant bit rate) streams by the UDP protocol on the path

shown in Fig. 5.2(d). Each stream consisted of 200-byte UDP packets sent at 1.6, 3.2, and 8

Mbps (representing n× 64-Kbps, where n = 25, 50, 125). We examined two scenarios: Case

1, in which a single high-speed transport protocol flow started 30 s after two UDP flows

started; and Case 2, in which two UDP flows started 30 s after a single high-speed transport

protocol flow started.

Figure 5.18(a) shows the jitter characteristics of two 8-Mbps UDP flows observed in

Case 1 when the buffer size at the edge routers was small or large. Comparing the averaged

jitter of two CBR flows with a coexisting high-speed transport protocol flow and without

that (indicated by “only UDP flows”), it is obvious that the jitter of the CBR flows is slightly

affected by the coexisting high-speed flow. Figure 5.18(b) shows the average throughput

over 300 s of high-speed transport protocol flows when the buffer size at the edge routers
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was small or large. In each grouped of bar graphs, the bar labeled “no UDP” shows the

throughput characteristics of the corresponding high-speed transport protocol flow without

any coexisting UDP flow. The throughputs of all the high-speed transport protocol flows

were affected by coexisting UDP flows when the buffer size at the edge routers was small.

We can also see that the adverse influence of UDP flow on the throughput of coexisting high-

speed transport protocol flows was smaller when the output buffers were larger. Especially,

throughput characteristics of FAST and CUBIC protocol flows were not affected by UDP

flows with large output buffers.

Figure 5.19 shows the performance characteristics observed in Case 2. The tendencies of

the jitter of UDP flows and the throughputs of the high-speed transport protocol flows were

similar to those in Case 1, but the throughput of the Standard TCP flow differed between

cases 1 and 2. Since the Standard TCP flow does not increase its window size aggressively

during its congestion avoidance phase, it might not be affected by coexisting UDP flows in

Case 2. In Case 1, on the other hand, where the UDP started first, the Standard TCP flow

competed for bandwidth with UDP flows during its slow starting phase.
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Figure 5.18: (a) Jitter of UDP flow and (b) throughput of high-speed transport protocol flow

in Case 1.

Figure 5.20 shows examples of time-series throughput characteristics of a single flow by

high-speed transport protocols (HSTCP and FAST) in cases of no UDP flows coexisting, of

UDP flows starting beforehand (Case 1), and of UDP flows starting afterward (Case 2) when
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Figure 5.19: (a) Jitter of UDP flow and (b) throughput of high-speed transport protocol flow

in Case 2.
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Figure 5.20: Throughput characteristics of high-speed transport protocol flows coexisting

with UDP flows.
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the buffer size at the edge routers was large.

In these experiments, the throughput of neither high-speed transport protocol flow could

increase rapidly during the slow starting phase in Case 1. This may have been due to the

packet losses caused by the coexisting UDP flows. In Case 2, although the UDP flows

started after the TCP flow entered the congestion avoidance phase, occasional packet losses

occurred when the throughput increased to near the maximum bandwidth. This prevented the

TCP flow from achieving a good average throughput. When the buffer size is large, FAST

and CUBIC flow were not affected by UDP flow in both cases.

Table 5.3 summarized mutual influences observed in the jitter characteristics of UDP

flow and in the throughput characteristics of high-speed transport protocol flows when they

were coexisting.

Table 5.3: observed characteristics in case of coexisting UDP and high-speed transport pro-

tocol flows

jitter for UDP flows throughput of high-speed protocol flows

HSTCP affected affected

Scalable affected affected

FAST affected not affected with large buffer at edge router

CUBIC affected not affected with large buffer at edge router

HTCP largely affected affected

UDT largely affected affected

These results demonstrated that the throughput of some high-speed transport protocols

are adversely affected by coexisting UDP flows even if the load of the UDP flows is only 16

Mbps. We also found that UDP flows with a lower load (3.2 or 6.4 Mbps) could affect the

performance of coexisting high-speed transport protocols when the output buffer size was

small.

85



CHAPTER 5. EXPERIMENTS FOR HIGH-SPEED TRANSPORT PROTOCOL OF
MULTIPLE FLOWS

5.5 Concluding remarks

Through experiments in the various network environments including open 10Gbps-class net-

work testbed between US and Japan, we are investigating what happens when high-speed

transport protocols are used in the global Internet. Our results (in cases with 1-Gbps end-

hosts) indicated that, when long-lived data transfer flows of high-speed transport protocols

run in coexistence with even small amounts of Internet application traffic such as short-term

web browsing flows and long-term video streaming flows, the performance of not only the

web access and video streaming but also that of the high-speed transfer flows is degraded.

In other words, such circumstances are neither effective nor efficient in terms of bandwidth

sharing. Our ultimate goal is to find a feasible and cost-effective way for the future Internet

comprising shared heterogeneous networks to simultaneously provide high-throughput data

transfer as well as various kinds of other applications traffic.

At this moment, while we have not found a silver bullet to this problem, we have been

knowing several interesting characteristics to pursue the problem, that is pros and cons of

each existing high-speed transport protocol in each typical realistic situation. We expect, by

sharing deep insights given from a variety of experimental results in a variety of realistic

network conditions, to finally develop some improved high-speed data transport protocols

and/or new management mechanisms for the intermediate nodes to meet our goal.
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Chapter 6

Quality of Assured Service through

Multiple DiffServ Domains

6.1 Introduction

The Intserv framework has been proposed as a technology to provide QoS in the Internet and

assure the quality per micro flow. It, however, needs to perform signaling processes before

sending data, and thus lacks scalability because of the huge amounts of status information

that must be maintained by each router. Therefore it has not really deployed in the real

Internet.

Consequently, DiffServ technology has been proposed in the IETF, and has very simple

architecture consisting of a marking strategy in ingress routers and packet management based

upon those marks of the packets in core routers. Namely, packets are classified into a number

of service classes in ingress routers, and are marked with a value to indicate their classes.

They are then managed depending on their classes at core routers.

So far, two different types of Per Hop Behavior (PHB) have been proposed: Expedited

Forwarding (EF)[KK99] and Assured Forwarding (AF) PHB[HBWW99]. EF PHB provides

service like a virtual wire, whereas AF PHB offers the assurance of minimum bandwidth
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based on a Service Level Agreement (SLA).

From the results of various studies and evaluations over testbeds, the QoS delivered by

the DiffServ framework, especially that offered via AF PHB, is rather poor; i.e., a variety

of factors influence its QoS characteristics, for example the size of the packet, the value of

RTT (Round Trip Time), the value of SLA, as well as the parameter sets for queue man-

agement in nodes[SNP99]. To resolve these issues, many studies have proposed various

techniques by mainly focusing on the following three points for modification, (1) the trans-

port protocol at the sender,(2) marking strategies at the marker, and (3) dropping policies at

the router[YN98].

In [Tei98], the architectures to attain QoS of flow over the Internet, i.e., over multi-

ple domains are shown, and experiments on them are reported. The QoS WG member-

ship constructed the DiffServ testbed for interdomain, and especially focused on EF service

and showed their experimental results. [IEP] is the log of a recent meeting on the IETF

of IEPREP BOF, and there were discussions about the importance of a policy mechanism

governing the entire Internet (i.e., over multiple domains) in times of crisis and emergency.

In [Her99], two ways to control the connection over multiple domains are compared. One

employs a QoS server at each domain, which negotiate with each other for QoS provisioning.

In the other, each domain independently negotiates with adjacent domains. The material has

shown that a prompt and efficient policy exchange is needed to guarantee the end-to-end QoS

over multiple domains, and that a QoS server works well for that.

To implement policy exchange over domains, new protocols are proposed in [ETMK99].

While surveying issues in the AF service category, we have found that [Fang99] is the only

study that examined QoS characteristics of flows over multiple DiffServ domains, and most

of reports, except for [Fang99], have investigated QoS characteristics within a single Diff-

Serv domain, although actual networks are composed of a large number of domains.

In [Fang99], W. Fang et al. concluded that they could see no distinct differences in

throughput characteristics of flows, regardless of whether they went through a single domain
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or multiple ones. However, in their model, parameters set up at nodes were different in each

domain without any explanation, and the model considered as an intra-domain is a very lim-

ited one. Therefore, in this chapter, we will extensively study the throughput characteristics

of AF flows over multiple DiffServ domains.

The organization of this chapeter is as follows: Sections 6.2 and 6.3 provide the sim-

ulation configuration and results, respectively, and Section 6.4, we give some concluding

remarks.

6.2 Simulation Scenarios

In Fig. 6.1, we show the configuration of our evaluative model, through which we investi-

gated the throughput characteristics of AF service and its achievable QoS. If we apply the

DiffServ framework to the current Internet, an ISP domain will serve as a DiffServ domain.

Users will be able to contract with an ISP there to obtain some assured bandwidth, and a tar-

get rate Rt; SLA should be assured. In the same manner, adjacent domains contract with each

other at a domain boundary. Edge routers in DiffServ domains have meter and marker func-

tions, (called conditioner function in [BBC+98]), and according to metered results, packets

from end users are classified into two groups: IN and OUT, which respectively correspond to

the DSCP AF11 and AF12 in the DiffServ framework [NBBB98]. When the metered arrival

rate is over Rt, the marker marks the packet with OUT. Otherwise, the packet will be marked

with IN. For example in Fig. 6.2, packets are marked with IN or OUT at the entrance of

domain A according to rules stated previously and go through domain A. When they arrive

at the edge router of domain B, packets marked with IN are metered again and will be re-

marked with OUT if the amount of IN packets arriving into domain B exceeds the contracted

bandwidth, say
∑

Rt, between domain A and B. Packets marked with OUT are not checked

at all and go through the edge router.

To examine the possibility of AF service through multiple DiffServ domains, we will em-

ploy the simulation model shown in Fig. 6.2. Model(a) in Fig. 6.2 is an inter-domain model,
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Bandwidth Broker

Bandwidth Broker

DiffServ Domain : A

(ISP Network)

DiffServ Domain : B

(ISP Network)

Figure 6.1: Diffserv network

which has two different Diffserv domains, domains A and B. Model (b) is also examined

just for comparison, which is an intra-domain one consisting of a single Diffserv domain,

domain A. It has one difference from model (a), i.e., (a) has a conditioner function at the

edge of domain B,whereas model (b) does not.

Conditioner (ΣRt)

Conditioner (Rt)

...
...

...
...

...
...

Domain A

Source Destination

RIO RIO FIFO

C1[Mbps] C2[Mbps]
(Bottleneck Link)

(b) Intra-Domain
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...
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...

Domain A Domain B

Source Destination

RIO RIO FIFO

C1[Mbps] C2[Mbps]
(Bottleneck Link)

(a) Inter-Domain

Figure 6.2: Simulation model for AF service with multiple queues

Parameters used in both models are as follows: Rt is the target rate of each flow,
∑

Rt

denotes the contracted bandwidth between adjacent domains, domain A and B, and C1 and
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C2 respectively denote the output link capacity of upstream and downstream RIO queues. We

assume that the bandwidth on every link is large enough for routers to forward IN packets

without any loss within each domain. Thus if packets are discarded, it will occur at only the

edge router between two domains because of some inappropriate management in domain A.

There are two alternative schemes to realize the conditioner function at edge routers;

one is a method via Token Bucket and the another uses a TSW (Time Sliding Window)

algorithm introduced in [Fang99]. We do not show any obvious differences in the charac-

teristics of Token Bucket and TSW in our preliminary simulation, as are shown in several

other papers [IN98, CKKW, ADD00]. The size of Token Bucket greatly affects throughput

characteristics, and one that is too large degrades the throughput performance, so it is some-

times referred to as a ”TCP hostile network element” in [Hus00]. Therefore, we employ a

TSW mechanism for a conditioner in our simulation, in which the shaper is not used to al-

low flows to use available bandwidth left by the contracted one. All routers within domains

are equipped with a RIO (RED with IN/OUT) queueing mechanism, which is based upon

the RED algorithm. When congestion is detected in each router, packets marked with IN

are preserved via the RIO algorithm, which aggressively discards packets marked with OUT

compared to packets marked with IN, and as a consequence, end users are able to maintain a

minimum contracted throughput.

We used Network Simulator version 2(ns-2)[Pro] and Sean Murphy’s Diffserv package,

which is a contributed package for ns-2[Mur]. We also added some codes to simulate the

TSW mechanism and other components. Each source node (# of source is nine) sends one

TCP flow, which has a sack flavor and is used in many applications in the Internet, for

example ftp, telnet, http, etc. We set the packet size to 1000 [byte] referred to [TMW97], the

buffer size in each RIO queue to 200 [packet] and RIO parameters were set as below.

• (minin,　maxin,　 Pmaxin)= (100, 150, 0.02)

• (minout,　maxout,　 Pmaxout)= (50, 100, 0.1)
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6.3 Simulation Results

Our major concern was to clarify how flows going through multiple DiffServ domains are

different from those within a single domain in terms of their throughput characteristics. W.

Fang et al. examined such flows in simulations over a limited model and concluded that

there are no differences in throughput properties under both situations. They pointed out

that the number of re-marked packets at boundary nodes was too small to have an impact on

throughput characteristics.

In what follows, we examine the impact of re-marked packets on throughput characteris-

tics by focusing on the following two items, which were not mentioned. First we investigate

the influence of marking strategies adopted at a marker, and then examine the influence of

an intra-domain network configuration.

6.3.1 Influence of the marking policy at a marker on throughput char-

acteristic

(a) AF service with multiple queues

TSW is the algorithm enabling meter and marker functions in the DiffServ framework, in

which the average arrival rate is calculated in a fixed time period, AVG-INTERVAL second

(here, we set 1 second by referring to[FSN00]) and in cases where the metered average

arrival rate is greater than Rt, arrival packets are marked with OUT. Otherwise, packets will

be marked with IN with some degree of probability. We call this marking policy based on Rt

the ”original mark” one.

In addition, we investigate the properties of another marking policy in [Fan], which mod-

erates OUT packets generated in ingress routers because of the following reasons. First,

packets with OUT are more likely to be discarded in comparison with ones with IN in RIO

queues. Second, the TCP protocol halves its window size after detecting discarded packets,

thereby leading to severe throughput degradation during an interval. Therefore, packets are
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marked with OUT in the following way in [Fan].

Suppose that an arrival rate is metered to be over Rt. In that case, the arriving packet

is always marked with OUT in the original one, but will be marked with OUT with “some

probability” in the new one. The “some probability” depends on the number of IN packets

having already successively gone through until then; the probability becomes larger with the

number of the successive IN packets. This allows the amount of packets marked with IN to

exceed Rt for each flow. We call this policy ”excess in mark”.

Concerning provisioning matters in Diffserv domains, it is stated that the bottleneck link

bandwidth is wider than (not equal) to the sum of the contracted rates of each flow [GDJL00].

Our preliminary simulation results in the single domain model have shown that when bottle-

neck link bandwidth is configured over 1.3 × ∑Rt, the contracted of each flow is achieved.

From this result, we examined each provisioning situation shown in Table 6.1 over Fig. 6.2.

Table 6.1: Network provisioning in Fig. 3 (
∑

Rt = 24 [Mbps])

C1[Mbps] C2 [Mbps]

Case 1 1.5
∑

Rt = 36 1.4
∑

Rt = 33.6

Case 2 3.0
∑

Rt = 72 1.4
∑

Rt = 33.6

Case 3 3.0
∑

Rt = 72 2.0
∑

Rt = 48

Table 6.2 shows the throughput characteristics TH [Mbps] for each flow on model (a) in

Fig. 6.2, adopting the original mark policy at each conditioner. Table 6.3 shows one that

adopts an excess in mark policy. The mark, “*” in the TH column, indicates that the corre-

sponding flows do not achieve a throughput greater than or equal to their Rt. We observed

that all flows can achieve their Rt when the original mark policy is adopted as the policy in

a marker. However, degradations on the throughput of some flows can be observed when an

excess in mark policy is adopted. The flows with throughput degradation are very similar in

terms of their large Rt and RTT . Even though in Case 3, the bottleneck link is twice that of
∑

Rt, flow # 9 does not achieve its target rate.

For comparison, we ran a simulation in the single domain model shown in Fig. 6.2 (b),
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Table 6.2: Throughput characteristics in inter-domain (original mark)

# Rt RTT Case 1 Case 2 Case 3

[Mbps] [ms] TH[Mbps] TH[Mbps] TH[Mbps]

1 1 30 3.304 2.951 4.816

2 2 30 3.637 3.671 6.151

3 5 30 6.056 5.735 7.829

4 1 40 2.271 2.353 4.421

5 2 40 3.010 3.068 4.579

6 5 40 5.583 5.466 6.282

7 1 50 2.173 2.086 3.052

8 2 50 2.811 2.922 3.864

9 5 50 5.036 5.183 5.612

and give the obtained throughput in Table 6.4 and Table 6.5 by respectively adopting the two

policies.

In Table 6.4 and Table 6.5, no deterioration in the throughput characteristics can be ob-

served in either marking policy within a domain. Namely, the throughput degradation is only

observed in flows going through multiple domains using the excess in mark policy.

To investigate why the throughput characteristics of flows going through multiple do-

mains degrades, we examined the number of IN and OUT packets in individual flows at cer-

tain points along the way. Table 6.6 shows the # of remarked packets per flow in Fig. 6.2(a)

with excess in mark policy at the marker. Here, we will focus on one specific flow, whose

throughput characteristics degraded, which is Case 1 in Table 6.3.

Let’s check the number of packets with IN and OUT in flow #9; Table 6.6 indicates they

are respectively 26092 and 390 at the ingress router of domain A. In addition, 2329 packets

are re-marked from IN to OUT at an ingress conditioner of domain B, and consequently the

number of arriving packets marked with IN and OUT at the entrance of domain B is respec-

tively 23763 and 2719. Accordingly, the number of packets marked with OUT in domain B

is almost seven times larger than that of domain A. The packet loss probability can increase

as well in domain B, thereby resulting in degradation of the throughput characteristics. On
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Table 6.3: Throughput characteristics in inter-domain (excess in mark)

# Rt RTT Case 1 Case 2 Case 3

[Mbps] [ms] TH[Mbps] TH[Mbps] TH[Mbps]

1 1 30 3.596 3.569 6.168

2 2 30 4.049 3.773 5.639

3 5 30 5.723 5.205 6.623

4 1 40 3.031 3.021 4.502

5 2 40 3.414 3.371 4.894

6 5 40 4.542* 5.054 5.931

7 1 50 2.135 2.466 4.095

8 2 50 3.057 2.775 4.036

9 5 50 4.302* 4.220* 4.885*

the other hand, in flow #1, which has relatively small Rt and RTT , a smaller number of pack-

ets are re-marked, as shown in Table 6.6. This only slightly increases the number of OUT

packets, from 6761 to 7936, which does not cause the throughput performance to degrade.

For comparison, Table 6.7 gives the number of re-marked packets for the original mark

policy in Case 1. Quite a few packets are re-marked, indicating that the re-marking does not

cause the performance degradation.

(b) Influence of combination of marking policy

Next we will examine the impact on throughput characteristics of using a combination of

marking policies. Figure6.3 shows the simulation model, in which there are three different

domains, A,B, and C. Flows A and B go through two domains, and each of them experience

two markers.

Table 6.8 shows what kind of policy is used at the edge of each domain. Domain A uses

an excess in mark policy, while domain B adopts the original mark policy. Two cases are

examined: domain C employs the excess in mark policy in Case 1, but the original mark

policy in Case 2. Table 6.9 shows the throughput characteristics for each flow and the mark

“*” indicates that the corresponding flow does not achieve its Rt.

95



CHAPTER 6. QUALITY OF ASSURED SERVICE THROUGH MULTIPLE
DIFFSERV DOMAINS

Table 6.4: Throughput characteristics in intra-domain (original mark)

# Rt RTT Case 1 Case 2 Case 3

[Mbps] [ms] TH[Mbps] TH[Mbps] TH[Mbps]

1 1 30 2.964 2.930 5.114

2 2 30 3.549 3.581 5.885

3 5 30 5.958 5.915 7.452

4 1 40 2.446 2.383 4.364

5 2 40 3.391 2.985 4.876

6 5 40 5.389 5.525 6.276

7 1 50 2.141 2.150 3.398

8 2 50 2.791 2.972 3.758

9 5 50 5.243 5.027 5.610

Referring to Table 6.9, we focus on the results of the case where C1 and C2 are set at

36 [Mbps] and 67.2 [Mbps]. In such a case, flows #6 and #9 in flow group A cannot attain

their target throughput Rt from Table 6.9. On the other hand, flows #15 and #18 (in Flow B)

can achieve their Rt, although they are the same as flows #6 and #9 in terms of their Rt and

RTT . The only difference is their marking policy. In addition for the case where C1 is set to

72 [Mbps] and C2 is set to 96 [Mbps], the same goes for flows #9 and #18. The throughput

characteristics are determined by the marking policy employed at the upstream, but are not

dependent on the marking policy employed at the downstream.

6.3.2 Cases of multiple RIO queues in a domain

In the previous subsection, we showed that the marking policy can affect the throughput

performance of flows going through multiple domains. In addition, it has been demonstrated

that an appropriate, original mark policy can successfully prevent performance degradation.

However, the simulation model in Fig. 6.2 is very simple, and consists of only one node in

domain A. In fact, packets usually go through several nodes within a domain. Therefore, we

now present a case of multiple nodes with RIO queues within a domain, which is illustrated

in Fig. 6.4. The model shown in Fig. 6.4(a) is an inter-domain one, and (b) is an intra-domain
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Table 6.5: Throughput characteristics in intra-domain (excess in mark)

# Rt RTT Case 1 Case 2 Case 3

[Mbps] [ms] TH[Mbps] TH[Mbps] TH[Mbps]

1 1 30 2.901 2.984 6.006

2 2 30 3.748 3.730 5.828

3 5 30 5.988 5.808 7.109

4 1 40 2.619 2.672 4.544

5 2 40 3.159 3.108 4.622

6 5 40 5.452 5.247 6.254

7 1 50 2.223 2.168 3.423

8 2 50 2.868 2.680 3.846

9 5 50 5.091 5.140 5.704

configuration just for comparison. In Fig. 6.4(a), there are three groups of TCP flows, A1,

A2, and AB, and each group contains nine TCP flows. Flow AB goes through both of

domains A and B, while Flows A1 and A2 consist of only intra-domain flows. Flows A1 and

A2 share some queues with Flow AB, and they may make IN packets of Flow AB bursty.

We respectively set C1= 36 [Mbps], C2= 66 [Mbps], and C3= 30 [Mbps].

Table 6.10 shows results obtained in simulations lasting 50 seconds; the number of lost

packets is denoted by Nloss, and the packet loss rate is denoted by Ploss. Nremark indicates

the number of re-marked packets, and Premark represents a ratio of the number of re-marked

packets to that of all generated IN packets. Only a small number of IN packets are re-

marked with OUT in model (a), and we can see from Table 6.11 that there is not a significant

difference between the performance of the two models.

To explain the reason for this phenomenon, we will focus on Flow AB and compare the

distribution of its departure time interval at Point A and that of its interarrival time at Point

B, both of which are illustrated in Fig. 6.5. They are very similar. Going through multiple

queues does not make the packet interarrival time at the ingress of domain B so bursty, and

this successfully prevents IN packets from being adversely re-marked with OUT, as shown

in Table 6.8 (only 64 packets are re-marked from IN to OUT).
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Table 6.6: # of re-marked packets (excess in mark)

# Rt RTT Edge of Domain A Edge of Domain B

[Mbps] [ms] IN OUT IN→ OUT IN OUT

1 1 30 13969 6761 1175 12794 7936

2 2 30 17412 5603 1501 15911 7104

3 5 30 31924 2977 2788 29136 5765

4 1 40 12543 5901 1054 11489 6955

5 2 40 16005 4300 1418 14587 5718

6 5 40 29048 1414 2578 26470 3992

7 1 50 10260 4208 945 9315 5153

8 2 50 15062 3558 1276 13786 4894

9 5 50 26092 390 2329 23763 2719

6.4 Concluding Remarks

In this chapter we have investigated the throughput behavior of TCP flows over multiple AF

DiffServ domains. In particular, we focused on the influence of packets re-marked at the

domain boundary on the throughput characteristics, we were able to clarify the following

items:

• Re-marked packets at a Diffserv domain boundary can degrade end-to-end throughput,

i.e. quality of service.

• Applying an appropriate marking policy, (e.g. the original mark policy presented in

Section 6.1, which is based on a contracted rate) at the ingress node in each DiffServ

domain, can reduce the number of re-marked packets.

• The network configuration of an intra-domain has less effect on throughput degrada-

tion.
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Table 6.7: # of re-marked packets (original in mark)

# Rt RTT Edge of Domain A Edge of Domain B

[Mbps] [ms] IN OUT IN→ OUT IN OUT

1 1 30 6324 13167 13 6311 13180

2 2 30 12302 9756 27 12275 9783

3 5 30 30483 6974 59 30424 7033

4 1 40 6134 9082 17 6117 9099

5 2 40 12264 7438 28 12236 7466

6 5 40 29899 3246 57 29842 3303

7 1 50 6252 6302 11 6241 6313

8 2 50 12272 5296 29 12243 5325

9 5 50 28579 1715 66 28513 1781

Table 6.8: Combination of marking policy

Case1

Edge of Domain A Edge of Domain B Edge of Domain C

FlowA excess mark excess mark

FlowB original in mark excess mark

Case2

Edge of Domain A Edge of Domain B Edge of Domain C

FlowA excess mark original mark

FlowB original in mark original mark
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Figure 6.3: Simulation model for combination of marking policies

Table 6.9: Throughput characteristics in Fig. 6.3

C1=36,C2=67.2 C1=72,C2=96

# Rt RTT Case1 Case2 Case1 Case2

[Mbps] [ms] [Mbps] [Mbps] [Mbps] [Mbps]

Flow A 1 1 30 3.556 3.647 5.962 6.429

2 2 30 3.900 4.013 6.484 5.686

3 5 30 5.542 5.770 6.808 5.775

4 1 40 3.054 3.015 4.173 4.696

5 2 40 2.940 3.106 5.091 4.758

6 5 40 4.688* 4.400* 5.583 5.286

7 1 50 2.341 2.318 3.712 3.728

8 2 50 2.930 2.668 4.134 3.840

9 5 50 4.508* 3.973* 4.591* 4.153*

Flow B 10 1 30 2.734 2.855 4.680 5.211

11 2 30 3.298 3.637 4.955 5.462

12 5 30 5.788 5.843 7.371 7.387

13 1 40 2.223 2.284 3.708 4.030

14 2 40 2.977 2.918 4.407 4.520

15 5 40 5.457 5.406 6.290 6.335

16 1 50 2.081 2.063 3.048 3.321

17 2 50 2.848 2.863 3.804 3.639

18 5 50 5.132 5.118 5.594 5.649
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Figure 6.4: Simulation model for multiple RIO queues in a domain

Table 6.10: Packet loss prob.(simulation period = 50[sec])

model(a) model(b)

Nloss/Ploss in RIO2(IN) 0/0.0 0/0.0

Nloss/Ploss in RIO2(OUT) 379/0.00336 465/0.004141

Nloss/Ploss in RIO4(IN) 0/0.0 0/0.0

Nloss/Ploss in RIO4(OUT) 133/0.001166 193/0.001707

Nloss/Ploss in RIO6(IN) 0/0.0 0/0.0

Nloss/Ploss in RIO6(OUT) 283/0.007109 228/0.0005757

Nremark 64 -

Premark 0.00044 -
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Table 6.11: Throughput characteristics in Fig. 6.4

# Rt RTT model(a) model(b)

[Mbps] [ms]

Flow 1 1 30 2.027 2.036

AB/A 2 2 30 2.807 2.958

3 5 30 5.475 5.371

4 1 40 1.941 1.945

5 2 40 2.623 2.640

6 5 40 5.215 5.143

7 1 50 1.687 1.628

8 2 50 2.390 2.466

9 5 50 4.965 4.984

Flow 10 1 30 3.025 3.201

A1 11 2 30 3.864 3.842

12 5 30 5.864 5.767

13 1 40 2.533 2.547

14 2 40 3.222 3.073

15 5 40 5.448 5.342

16 1 50 2.146 2.103

17 2 50 2.769 2.739

18 5 50 5.211 5.290

Flow 19 1 30 2.884 3.079

A2 20 2 30 3.678 3.582

21 5 30 6.107 5.814

22 1 40 2.501 2.539

23 2 40 3.074 3.464

24 5 40 5.630 5.656

25 1 50 2.377 2.160

26 2 50 2.992 2.944

27 5 50 5.265 5.196
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Chapter 7

Adaptive Early Packet Discarding

Scheme to Improve Network Delay

Characteristics of Real-Time Flows

7.1 Introduction

The performance of real-time network applications is greatly affected by delay and loss

experienced by packets as they traverse a network. Some real-time applications set limits

for acceptable network delay. For example, VoIP defines service classes based on an end-

to-end packet delay limit and the rate of packet loss for flows in a network [SSS03]. In

such applications, packets delayed longer than an acceptable limit are invalidated by their

applications when they reach their destinations, even though they have successfully arrived

at the receiver. These packets are useless for their applications, and thus they just impose

an excess load on the network. In general, if network resources are exhausted by traffic that

will eventually be discarded, significant performance deterioration will be seen even though

those resources are fully utilized.

In this chapter therefore, by extending our preliminary work [KTO06], an early packet
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discarding scheme is proposed and its effectiveness in congested networks is demonstrated

through simulation. In the scheme, those packets not contributing to the performance of

real-time applications are discarded in advance at intermediate nodes. The proposed scheme

includes two kinds of router-supported mechanisms: one is called Maximum Transmis-

sion Queue Delay (MTQ), which resembles the concept of a Maximum Transmission Unit

(MTU), and the other is Queue Delay To Live (QTL), which is similar to the mechanism

for Time To Live (TTL). Both of these require the use of an additional header field in IP

or UDP packets (e.g. an IPv6 optional header) to convey the queuing delay information for

each packet.

It is assumed that a fixed amount of minimum delay (e.g. propagation and transmission

delays) can be known or predicted for packets traversing from the sender to the receiver

before they are sent, and thus only the variable part of the delay (mainly queuing delays)

has been taken into account in this scheme. For example, if the acceptable total network

delay for an application is 50 [ms] and the fixed delay on an end-to-end path is 30 [ms], the

acceptable total queuing delay is 20 [ms]. It is further assumed that real-time application

flows are treated separately at network nodes to other elastic traffic such as TCP flows, in

terms of the bandwidth (i.e. the queuing buffer) shared by the flows. Thus, this chapter

will focus only on real-time flows and their queuing delay in a network. As noted later in

Section 7.3, the intention is to apply the proposed scheme not to end equipment for improving

performance of individual flows, but to network nodes via a network provider to improve

overall network performance (and for increasing the number of flows accommodated). The

above assumptions are applicable to such a scenario.

To evaluate the proposed scheme on real-time application flows in terms of increasing the

number of packets that could be utilized by the receiver-side application, Effective Packet

Loss Rate (EPLR) is introduced. EPLR is equal to one minus the ratio of the number of

packets that successfully reach the receiver along a path in experiencing a total queuing

delay shorter than the acceptable upper limit induced by the delay-sensitive application.
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Since the flows competing for and sharing the network resource have individual different

conditions, our goal is to achieve a good overall performance in the sense of max-min fairness

on the application-induced delay performance among all flows. Namely, in the present work,

we try to minimize the worst condition flows’ EPLR on the network instead of the EPLR

averaged over flows.

This chapter is organized as follows. An extensive network simulation and its results are

described in Sections 7.2 (overview of simulation models), 7.3 (homogeneous environment),

and 7.4 (heterogeneous environment). Finally, some conclusions are presented in Section

7.5.

7.2 Simulation models

We performed the simulation using ns release 2.27 [Pro], with MTQ and QTL mechanisms

additionally implemented to manage the queues. The simulation models we used are outlined

in Fig. 7.1. We focused on two network configurations, models 1 and 2. In both models, the

length of each queuing buffer is equal to 200 packets for each output link with bandwidth

of 20 [Mbps]. In both models, a number of real-time application flows on the network

are grouped such that flows in the same group have the same source and destination along

the same path, and thus will experience an identical delay on average. These flows meet

queuing delays only at nodes 1, 2, and 3 (the gray-colored nodes in the figure) due to flow

competition.

Table 7.1 lists the number of flows for each group and the total transmission rate of

the flows in the group. In this configuration, flow group 0 is most likely to compete with

other flow groups (at three nodes) and to suffer the largest queuing delay. Only two flow

groups (group 0 and one other) will compete with each other at a node in model 1, while

three flow groups will do so in model 2. We targeted one traffic configuration in model

1, where the average utilization is 96 %, while two traffic configurations are considered in

model 2, where average utilization are 96 % and 84 %. Since the results we observed in
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Figure 7.1: Simulation model
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the simulation showed similar trends for all configurations, the simulation results for model

2(average utilization is 96 %) only will be shown, unless otherwise noted.

We applied an ON-OFF burst model to traffic of each real-time flow, in which an ex-

ponential distribution for its ON and OFF periods [Fio00] was used. We examined several

types of traffic, with average ON/OFF durations set to 250/650 [ms], 350/650 [ms], 450/650

[ms] and 3500/6500 [ms]. In each ON period, fixed sized packets flow at a constant rate. The

average rate (over ON and OFF periods) of each flow was fixed at 80 [kbps], and the packet

length was 200 [byte] (e.g. G.711 VoIP codec). Since we observed similar characteristics for

the results for all traffic types, the results for only one type (that with a reasonable burstiness,

i.e. average ON/OFF duration of 350/650 [ms]) will be shown due to space limitations.

Table 7.1: No. of flows in heavily congested scenario in model 1 (top) and in model 2

(middle) and in moderately congested scenario in model 2 (bottom)

(a) model 1, average link utilization: 96 %

Congested Flow id(fid) No. of Total rate

link 0 1 2 3 flows [Mbps]

1→ 2 120 120 240 19.2

2→ 3 120 120 240 19.2

3→ 4 120 120 240 19.2

(b) model 2, average link utilization: 96 %

Congested Flow id(fid) No. of Total rate

link 0 1 2 3 4 flows [Mbps]

1→ 2 80 80 80 240 19.2

2→ 3 80 80 80 240 19.2

3→ 4 80 80 80 240 19.2

In our simulation models, the maximum queuing delay at each node is 16 [ms], because

at most 200 packets each of length 200 [byte] are waiting to be sent to a link with a bandwidth

of 20 [Mbps]. A packet in flow group 0 competes with traffic in the other flow groups at three

nodes along the path, and thus the total queuing delay can be as much as 48 [ms]. Hence,
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(c) model 2, average link utilization: 84 %

Congested Flow id(fid) No. of Total rate

link 0 1 2 3 4 flows [Mbps]

1→ 2 70 70 70 210 16.8

2→ 3 70 70 70 210 16.8

3→ 4 70 70 70 210 16.8

we examined three cases of acceptable total queuing delay: 10 (strict), 20 (moderate), and

30 (loose) [ms], which could correspond to three different application delay constraints or

be derived from three different network environments that have different fixed delays. Since

we observed similar characteristics for the results for the two cases with acceptable delay of

20 [ms] and 30 [ms], only the results for cases with 10 [ms] and 20 [ms] will be shown due

to space limitations.

As mentioned in Section 7.1, we use Effective Packet Loss Rate (EPLR) as a metric for

evaluating performance with respect to delay in real-time applications. This is the ratio of

the number of packets discarded at nodes or invalidated by the receiver (due to a larger delay

than the acceptable total queuing delay), to the total number of packets sent by the sender.

7.3 Simulation results in homogeneous environments

We evaluated our mechanisms via network simulations in homogeneously congested envi-

ronments in which all flows had an identical delay requirement (i.e. an acceptable total

queuing delay).

Each flow traversed one or more nodes in which it competed with other flows, where

each node had an output queuing buffer corresponding to a maximum local queuing delay

of 16 [ms]. Therefore, if neither MTQ nor QTL were used, very high EPLRs could be seen

even for a moderate acceptable total queuing delay of 20 [ms], as illustrated in Fig. 7.2. In

particular, flows in flow group 0 experienced very high EPLRs because they competed with

other flows either in the same flow group or in different ones at three nodes. In order to
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Figure 7.2: EPLR (effective packet loss rate), using neither MTQ nor QTL

Table 7.2: Parameter list of Fig. 7.2

Cases Models
acceptable

queuing delays [ms]

(1) model 1 10

(2) model 1 20

(3) model 2 10

(4) model 2 20

(5) model 2 in Sec.7.3.4 10
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reduce the high EPLRs, in Sections 7.3.1, 7.3.2, and 7.3.3, schemes with MTQ only, QTL

only, and QTL plus MTQ are used.

Note that an MTQ value of more than 16 [ms] is meaningless, because that is the maxi-

mum queuing delay at each node. Meanwhile, a QTL value of more than 48 [ms] can also

be considered meaningless, because this is higher than the total queuing delay in traversing

at most three congested nodes along a path.

7.3.1 Effectiveness of MTQ mechanism

Setting MTQ for a packet is equivalent to limiting the length of the queuing buffer at every

node the packet traverses. In general, as the length of the queuing buffer at network nodes

decreases, the queuing delays experienced by packets decrease. The number of packets in-

validated due to the acceptable delay limit at the receiver also decreases, while the packet

losses due to buffer overflow at network nodes increase. This gives rise to a trade-off for low-

ering EPLR. To clarify the relationship between EPLR and MTQ, we first show the packet

losses occurring at intermediate nodes in the network, and then investigate EPLR.

Figure 7.3 represents the network packet loss rate of each flow group when applying the

MTQ mechanism for a variety of different MTQ values in the widest possible range. In this

case, for the original queuing buffer length of 16 [ms], the packet loss rate is about 2 % at

worst (i.e. in flow group 0). As the MTQ value decreases, the loss rate increases just slightly

as long as the MTQ value is larger than a threshold of about 1.8 [ms]. Below this threshold

however, the loss rate drastically increases due to the queuing buffer being so short that it

cannot absorb a moderate burstiness in those flows.

Figures 7.4 (a) and (b) show EPLR for a strict acceptable queuing delay of 10 [ms] with a

variety of MTQ values in models 1 and 2, respectively. Fig. 7.4(c) also shows EPLR against

MTQ, for a moderate acceptable queuing delay of 20 [ms] in model 2. Note that each figure

shows a very large EPLR corresponding to an MTQ of 16 [ms], and this is equivalent to the

EPLR achieved without applying our scheme. This can also be seen in cases (1) - (4) of
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Figure 7.3: network packet loss rate, using MTQ alone

Fig. 7.2. This clearly indicates a general and significant reduction of EPLR by applying the

MTQ mechanism.

In Fig. 7.4 (a) and (b) for an acceptable total queuing delay of 10 [ms], when the MTQ

value exceeds about 3.4 [ms] the EPLR of flow group 0 suddenly increases. This indicates

that a number of packets in that group suffer from large queuing delays over the 10 [ms] limit

allowed by the application. That is, setting the MTQ value in a range from 1.8 to 3.3 [ms]

significantly improves the EPLR of that flow group traversing three congested nodes along

its path. Considering flow groups 1, 2 and 3 in the first figure, these groups which traverse

one congested node show acceptably small EPLRs when MTQ is set in a wide range from

1.8 to 10 [ms], even though the reduction of MTQ within this range results in negligible

deterioration (increase) of EPLR. Therefore, an MTQ value of 3.3 [ms] can be considered to

be optimal for the overall performance of all flow groups for this setting. Similarly, in the

second figure, while the optimal MTQ for flow groups 1 and 2 which traverse two congested

nodes is about 5 [ms], the same MTQ value of 3.3 [ms] for flow group 0 still seems to be

optimal. These results imply that, for a flow obeying an acceptable total queuing delay of D

and traversing N equally congested links along a path, setting the MTQ to D/N (or slightly

less) significantly reduces the queuing delay experienced by the flow. An MTQ value less

than D/N ensures that the total queuing delay experienced by the packet traversing N nodes
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Figure 7.4: EPLR (effective packet loss rate), using MTQ alone
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is less than D if the packet is not discarded at those nodes.

Consequently, an appropriate MTQ value range could keep EPLR small for all flows.

In the above scenario, Fig. 7.3 indicates that packet losses remain low if the MTQ is larger

than a threshold (1.8[ms]), which is smaller than D/N (10/3 ≈ 3.3 [ms]), where N is the

largest number of congested links through which the worst case flows traverse. Therefore,

for every flow, setting MTQ to 3.3 [ms] means that no packets experience a total queuing

delay larger than 10 [ms], and only a small number of packets are discarded at intermediate

nodes. Figure 7.4(c) shows EPLR for an acceptable total queuing delay of 20 [ms], and also

supports the above findings. Compared with the previous figures, the delay performance of

flow groups 3 and 4 seems not to be improved by any MTQ value. The reason might be that

since these flow groups traverse only one congested node with an acceptable queuing delay

of 20 [ms], the original queuing buffer length of 16 [ms] is short enough to avoid significant

delays. Note that, obviously the above simple D/N-rule is not always suitable. For example,

the number N of the congested nodes may not be known or N may be such large that D/N

becomes shorter than a limit queuing buffer length necessary to avoid unacceptable packet

losses.

In congested networks, a packet experiencing a long queuing delay at a node is likely to

ultimately exceed the acceptable total queuing delay limit due to additional queuing delays at

following nodes, even if the delay experienced at that node does not exceed its limit. Setting

MTQ to an appropriate value might aggressively discard in advance those packets that will

probably exceed the limit before reaching their destinations, and thus improve the overall de-

lay performance. However, an appropriate value of MTQ, derived from a trade-off between

network packet losses and queuing delay, is sometimes difficult to determine in reality. The

lower boundary of the effective value range of MTQ depends directly on packet losses at a

node, which are related to link utilization and incoming traffic characteristics (e.g. bursti-

ness) at that node. The upper boundary is strongly dependant on how long a queuing delay

will be experienced at each of the subsequent nodes, which is related to the flow competition
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at those nodes. Both are not always easy to estimate, and in some cases are difficult. Note

that in this simple version of MTQ, the MTQ value in a packet traversing network nodes

does not change node by node. This simple version might therefore be ineffective when, for

example, a number of heterogeneously congested nodes are on a path. Thus, using only an

MTQ mechanism in a network may not always be effective. We will examine the use of QTL

in the next subsection.

7.3.2 Effectiveness of QTL mechanism

The EPLRs when only the QTL mechanism is used are shown in Fig. 7.5 (a), (b) and (c) for

a variety of QTL values.

These figures clearly show that the EPLR is reduced most for every flow when QTL is

set to exactly the acceptable total queuing delay limit; if QTL exceeds this optimal limit,

the delay performance deteriorates greatly. QTL can be set to a smaller value in order to

aggressively discard in advance those packets likely to exceed the limit before reaching their

destinations. However, the figures show that setting QTL to a value smaller than the optimal

limit is detrimental to some degree, unlike for MTQ. Note that Fig. 7.5 (a) for model 1

shows an interesting phenomenon due to the nature of QTL. For flow groups 1, 2, and 3

traversing one congested node only, setting QTL is equivalent to setting MTQ, and thus a

QTL value larger than the original queuing buffer length of 16 [ms] would be expected to

have no effect. However, this is not the case for flow groups 2 and 3 because if the QTL value

becomes larger, the larger volume of traffic in flow group 0 will survive when it competes

with groups 2 and 3 at nodes 2 and 3 respectively. This implies that an appropriate QTL

setting will become more important as the number of nodes along a path increases.

A QTL value exactly equal to the acceptable total queuing delay results in the conser-

vative discarding of packets which have already exceeded the total delay limit. Other sim-

ulation results (obtained in our simulation but not shown in this paper) also support this

observation that such a QTL setting is always optimal in terms of reducing EPLR regardless
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of the simulation model, optimal values, or degree of traffic burstiness.

This simple rule for setting the QTL value is of practical importance from an opera-

tional standpoint. However, the EPLR reduction achieved by using an optimal QTL alone

seems inferior compared to using optimal MTQ alone. Therefore, in the next subsection we

will examine the usage of QTL and MTQ together, in order to exploit the combination of

conservative discarding via QTL and aggressive discarding through MTQ.
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Figure 7.5: EPLR (effective packet loss rate), using QTL alone

7.3.3 Effectiveness of setting MTQ and QTL simultaneously

Figures 7.6 (a) and (b) show EPLR for an acceptable total queuing delay of 10 [ms] when

QTL and MTQ are used together. QTL is set to 10 [ms], equal to the queuing delay require-

ment. MTQ is set within a range from 0 to 16 [ms], although an MTQ value greater than the
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QTL value (10 [ms]) is meaningless in this combination (i.e. it is equivalent to setting QTL

alone).

The benefits of using MTQ together with QTL (compared to QTL alone) are clearly

shown by the fact that reducing MTQ from 10 [ms] causes a reduction in EPLR for flow

group 0, which is the worst flow group in terms of EPLR.
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Figure 7.6: EPLR (effective packet loss rate), using QTL plus MTQ

Compared with Fig. 7.4 (a) and (b), the advantage of using QTL with MTQ (compared

to MTQ alone) is that a wider range of MTQ values (at least those less than the QTL value)

can result in a considerable reduction of EPLR. On the other hand, when the acceptable total

queuing delay is 20 [ms] (Fig. 7.6(c)), the effect of setting MTQ is not clear because the

queuing buffer (equivalent to 16 [ms]) is already shorter than the acceptable total queuing

delay. Note that setting QTL to a value larger than n×MT Q, where n is the number of inter-

mediate nodes along the path, is meaningless when setting MTQ and QTL simultaneously.
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Because the maximum waiting time for each packet per node is MTQ, the total queuing de-

lay can not be longer than n×MT Q. Thus, if MTQ and QTL will be used simultaneously to

exploit a combined effect, they should be set within the range: MT Q < QT L < n × MT Q

where n is the number of intermediate nodes.

Before ending this subsection, we present in-depth analysis of the performance of the

proposed scheme, in using four parameter configurations, (a) no parameters set, (b) MTQ

= 5[ms], (c) QTL = 10[ms] and (d) MTQ = 5[ms], QTL = 10[ms] in model 2, where total

acceptable queuing delay is 10[ms].

The Figure 7.7 presents the EPLR of each flow, showing its proportion of (1): the packets

discarded at nodes due to buffer overflow, MTQ, or QTL, and (2): the packets discarded by

the application. By adopting our scheme, the number of packets discarded by the application

is drastically reduced, while the number of packet discarded at nodes is slightly increased.
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Figure 7.7: Proportion of EPLR cased by application-side and network-side

Table 7.3 presents the number of packets discarded at each nodes due to the buffer over-

flow or MTQ(1*), due to the QTL(2*), the sum of packets discarded at all nodes(3*) and

the sum of packets discarded at the receiver-side application due to violating its delay limi-

tation(4*). In case (a) where the no parameters set, the number of packets discarded at each

node(3*) is small, while the number of packets discarded at the application(4*) becomes
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large. In case (b), the number of discarded packet decreases in descendant (downstream)

nodes, while a considerable number of packets are discarded by the application (4*). On the

other hand, in case (c), the number of discarded packets increases especially at descendant

nodes, while no packets are discarded by the application. Finally, in case (d) where adopting

MTQ and QTL simultaneously, the number of discarded packets at each node is relatively

balanced and the total number of discarded packet is minimized.

In addition, average queuing delay at each node is presented in Table 7.4. We found that

MTQ, in case (b), seems to evenly reduce the average queuing delay at all nodes, while QTL,

in case (c), improves that at descendant nodes. Thus, the degree of improvement in the delay

characteristics will be high by adopting both parameters simultaneously.

Table 7.3: No. of packet losses at each node

node1 node2 node3
3* 4*

1*/2* 1*/2* 1*/2*

(a) 10970/- 7527/- 5440/- 23937 687194

(b) 16011/- 11460/- 8731/- 36202 38105

(c) -/13116 -/22520 -/24527 60163 0

(d) 16011/0 11460/0 4671/5645 37787 0

Table 7.4: Average queuing delay at each node

node 1 [ms] node 2 [ms] node 3 [ms]

(a) 4.24 3.92 3.76

(b) 1.52 1.28 1.20

(c) 2.64 1.36 0.88

(d) 1.52 1.28 0.96

For each setting, the distribution of the end-to-end delay (i.e. the total delay along the

path) for packets in flow group 0 is plotted in Fig.7.8. By setting QTL to 10 [ms], the end-

to-end delay would be limited to 150 [ms] (the fixed delay of 140 [ms] plus the maximum

queuing delay of 10 [ms]). By applying our scheme, the proportion of packets experiencing

shorter delays would increase.
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7.3.4 Summary in homogeneous environments

In Fig. 7.9, we will summarize the effectiveness of using MTQ alone, QTL alone, and a

combination of both. Figure 7.9 (a) shows the EPLR for each flow group in model 1 when

the acceptable queuing delay is 10 [ms], while Figs. 7.9 (b) and (c) show cases where the

acceptable total queuing delays are 10 and 20 [ms] in model 2 in congested networks. Obvi-

ously, in all of these scenarios, the EPLR is reduced drastically by setting MTQ and/or QTL

(cases (2) through (5) in the figures) compared with case (1) where neither MTQ nor QTL is

used.

Since the optimal MTQ is not always easily found, case (2) is not always realistic even

though they exhibit the best performance. The case with QTL only (case (4)) can be im-

proved by adding MTQ (case (5)), while the case with MTQ only (case (3)) can also be

improved by adding QTL(case (5)), in terms of reducing the EPLR of the worst flow group

0 and balancing EPLRs of all flow groups. In other words, the worst flows can be improved

at the expense of performance deterioration in the other good flows. It can be concluded that

combining QTL and MTQ leads to a relatively good overall delay performance when QTL

is set exactly to the acceptable total queuing delay limit and MTQ is set to some non-optimal

value smaller than the limit, e.g. 50% of the limit.

Furthermore, we examine other scenarios in which the network is not so congested. We
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can find that proposed scheme is effective to improve the delay characteristics of real time

flows also in those scenarios. Figure 7.9 (d) shows the EPLR for each flow group when

the traffic load is relatively light as shown in Table 7.1(c). We also examine less congested

two scenarios where the number of flows in each flow group is 40 (average link utilization

is 48 %) or 60 (that is 72 %). In both scenarios, EPLR becomes zero for each flow group

regardless of MTQ and/or QTL, i.e., in all five cases. Thus, our proposed scheme is not

harmful (even useless) in lightly congested networks.

(a) Acceptable queuing delay: 10 [ms]  in model 1, average link utilization :96 %
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(c) Acceptable queuing delay: 20[ms]  in model 2, average link utilization :96 %
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(d) Acceptable queuing delay: 10 [ms]  in model 2, average link utilization :84 %

0

0.5

1

1.5

(1) (2) (3) (4) (5)

E
f
f
e
c
t
iv
e
 
p
a
c
k
e
t
 
lo
s
s
 
r
a
t
e
 
[
%
]

Flow0

Flow1

Flow2

Flow3

Flow4

Figure 7.9: Comparison of EPLR (effective packet loss rate) in using none, MTQ alone,

QTL alone, and MTQ plus QTL

7.4 Simulation results in heterogeneous environments

We examine our mechanisms in three heterogeneous environments using model 2. Sub-

section 7.4.1 deals with heterogeneity in terms of traffic volume over different paths/links,
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Table 7.5: Parameter list of Figure 7.9

Parameters [ms]

Case (a), (b), (d) (c)

(1) No parameters set

(2) MTQ : 3.3 MTQ : 6.6

(3) MTQ : 5 MTQ : 10

(4) QTL : 10 QTL : 20

(5) MTQ : 5, QTL : 10 MTQ : 10, QTL : 20

where the number of flows on each different path is not the same. Subsections 7.4.2 and

7.4.3 examine configurations with heterogeneity with respect to the acceptable queuing de-

lay for different flows. In subsection 7.4.2, flows on the same path have different acceptable

queuing delay requirements, while in subsection 7.4..3 flows on different paths have differ-

ent acceptable queuing delays. To ensure the marginal quality of every flow, we try to find

an appropriate setting of MTQ/QTL so as to improve worst flow EPLR even if there will be

different types or conditions of flows.

7.4.1 Different number of flows on different paths

We consider a scenario such that the number of flows for each flow group is different as

listed in Table 7.6. The number of competing flows at each link (240, 220, and 200), and

thus the utilization also, decreases link by link from the flow source to the sink. Case (5) in

Fig. 7.2 shows the EPLR observed for each flow group for an acceptable queuing delay of

10 [ms] when neither MTQ nor QTL is used. This indicates that only node 1 (link 1 → 2)

is so congested that only the flow groups which compete with one another at that node (i.e.

groups 0, 1, and 4) suffer from an equally large EPLR.

Figure 7.10 shows the relationship between the parameter settings of MTQ/QTL and the

EPLR of each flow group for an acceptable queuing delay of 10 [ms]. Figures 7.10(a), (b),

and (c) show results for scenarios using MTQ alone, QTL alone, and QTL (set to 10 [ms])

plus MTQ, respectively.
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Table 7.6: No. of flows in model 2

Congested Flow id(fid) No. of Total rate

link 0 1 2 3 4 flows [Mbps]

1→ 2 60 80 100 240 19.2

2→ 3 60 80 80 220 17.6

3→ 4 60 80 60 200 16.0

In Fig.7.10(a), the range of suitable values for MTQ is different to that observed in

Fig. 7.4(b) for the homogeneous case. This can be explained as follows. Consider a packet

in flow group 0 at the first node, which experiences a queuing delay larger than the upper

bound (3.3 [ms]) of the appropriate MTQ value range for the homogeneous case, but much

smaller than the acceptable queuing delay limit (10 [ms]). Even with this delay, additional

delays at the following nodes 2 and 3 are unlikely to make the packet ultimately exceed the

delay limit, because these nodes are less congested than the first node 1. Similar arguments

can be applied to the EPLRs for flow groups 1 and 2. This result implies that MTQ values

should be carefully set depending on various network conditions.

The optimal value for QTL seen in Fig. 7.10(b), on the other hand, is 10 [ms], which is

identical to the optimal value in Fig. 7.5(b). From Fig.7.10(c) we can further conclude that

using QTL together with MTQ can effectively reduce the EPLR for a wide range of MTQ

values, even in this heterogeneous scenario.
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Figure 7.10: EPLR (effective packet loss rate) when the number of flows in each group is

different, acceptable queuing delay: 10 [ms]

7.4.2 Different delay requirements of flows on the same path

Consider a scenario such that the flows in each group in Fig. 7.1(b) are divided into two

subgroups, referred to as subgroups 1 and 2, each of which has 40 flows. As listed in Table

7.7, the flows in subgroup 1 have a stricter delay requirement than those in subgroup 2.

Figures 7.12 show the EPLR for each subgroup. Note that when our scheme was not used,

very high EPLRs were observed in this congested network, e.g. over 50 % for subgroup 1

in flow group 0, over 40 % for subgroup 1 in flow group 1, which can be seen the EPLRs at

MTQ value of 16[ms] in Fig. 7.11
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Table 7.7: Acceptable queuing delay limit for each subgroup flow

Flow group Subgroup Indication
Acceptable

queuing delay [ms]

0 1 f0-1 10

2 f0-2 20

1 1 f1-1 10

2 f1-2 20

2 1 f2-1 10

2 f2-2 20

3 1 f3-1 10

2 f3-2 20

4 1 f4-1 10

2 f4-2 20

In Fig. 7.12, cases (1)–(4) present the EPLR results using MTQ alone, where several

tactics for setting MTQ are examined. First we investigated the case where all flows have

an identical MTQ value, with results shown in Fig. 7.11. We found an optimal value for

MTQ of 3.3 [ms], which is the same as in the homogeneous case illustrated in Fig. 7.4(b).

The EPLR for each flow using this MTQ setting is shown in case (1) of Fig. 7.12, which

performs the best of all.
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Figure 7.11: EPLR (effective packet loss rate), using MTQ alone

In case (2), the MTQ is set differently in each subgroup such that an optimal value for
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Figure 7.12: EPLR (effective loss rate) when coexisting flows on the same path have dif-

ferent queuing delay requirements

Table 7.8: Parameter list of Fig. 7.12

Cases parameters [ms]

(1) f0-1–f4-2 : MTQ=3.3

(2) f0-1,f1-1,f2-1,f3-1,f4-1 : MTQ=3.3

f0-2,f1-2,f2-2,f3-2,f4-2 : MTQ=6.6

(3) f0-1,f1-1,f2-1,f3-1,f4-1 : MTQ=5

f0-2,f1-2,f2-2,f3-2,f4-2 : MTQ=10

(4) f0-1–f4-2 : MTQ=5.0

(5) f0-1–f4-2 : QTL=10

(6) f0-1–f4-2 : QTL=20

(7) f0-1,f1-1,f2-1,f3-1,f4-1 : QTL=10

f0-2,f1-2,f2-2,f3-2,f4-2 : QTL=20

(8) f0-1–f4-2 : MTQ=5, QTL=10

(9) f0-1,f1-1,f2-1,f3-1,f4-1 : MTQ=5, QTL=10

f0-2,f1-2,f2-2,f3-2,f4-2 : MTQ=5, QTL=20
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each individual flow in the homogeneous case is applied. Thus, the MTQ setting is 3.3 [ms]

for the flows having a strict delay limit (in subgroup 1), and 6.6 [ms] for the non-strict flows

(in subgroup 2). It can be clearly seen that the strict flows suffer greatly in competing with

the non-strict flows, because whenever the queue length increases to more than 3.3 [ms],

all packets in the strict flows will be discarded while those in the non-strict flows will not.

Compared with case (1), EPLR of subgroup 2 is improved, at the expense of degrading

subgroup 1’s EPLR.

In case (4), the MTQ is set to be the same in all flows as some non-optimal but moderate

(i.e. conservative) value, say 50 % of the acceptable queuing delay for the strict flows in

subgroup 1. Similarly to case (2), case (3) set the MTQ differently to each subgroup where

a MTQ value larger than the optimal one for each individual flow is applied. These results

indicate that when MTQ alone is applied, to achieve an overall good EPLR all flows should

have the same MTQ value set based on their strictest queuing delay requirement, that is the

value optimal to the strictest flows in the homogeneous case.

Cases (5)–(7) of Fig. 7.12 display the results for when only QTL is applied. In case (5),

the QTL is set to be the same in all flows as the optimal value for the strict flows, that is the

acceptable queuing delay of 10 [ms] for flow subgroup 1. In case (6) however, the QTL is

set for all flows to be the same as the optimal value for the non-strict flows (subgroup 2). In

case (7), the QTL is set differently for each subgroup such that the subgroup’s acceptable

queuing delay is applied, that is 10 [ms] for the strict subgroup 1 flows, and 20 [ms] for the

non-strict subgroup 2 flows. As in case (2) for MTQ, the strict flow performance is degraded

through competition with the non-strict flows. These results show that when QTL only is

used, all flows should be set to the same QTL value based on their strictest queuing delay

requirement.

Cases (8)–(9) of Fig. 7.12 show the EPLR where both MTQ and QTL parameters are

set. In these cases, we assumed that the optimal value for MTQ was unknown, so instead an

MTQ value of 50% of the strictest acceptable queuing delay requirement was used, i.e. 5.0
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[ms]. The QTL is set to be the same in all flows based on the delay requirement for subgroup

1 in case (8). In case (9) however, the QTL is set differently in each subgroup so that the

subgroup’s own delay requirement is applied.

We investigate the main cause of packet discarding on each flow group at intermediate

nodes in cases (8) and (9). As illustrated in Fig.7.13, the QTL-based packet loss (i.e. more

than 10[ms] cumulative queuing delay experienced by a packet) occurred only on flow group

0 while the MTQ-based packet loss (i.e. more than 5 [ms] local queuing delay experienced

by a packet) appeared on every flow group. This is because only flow group 0 competes with

other flow groups at more than two nodes along its path where the maximum queuing delay

at each node could not exceed 5[ms]. Comparing results in Fig. 7.12 seems to indicate that
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Figure 7.13: Proportion of network-based packet losses by QTL and MTQ

case (8) shows the best performance in terms of ensuring the marginal quality of every flow

and that even when both QTL and MTQ are used, all flows should have the same QTL value

set equal to the strictest acceptable queuing delay, i.e. 10 [ms] in this case.

7.4.3 Different delay requirements of flows on different paths

For another type of heterogeneity, we consider a scenario in which each flow group traversing

each different path has a different delay requirement, as listed in Table 7.9. Here, flow groups

0, 3, and 4 have a strict acceptable queuing delay limit, while flow groups 1 and 2 obey a
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non-strict delay limit. First we investigated the situation in which all flows have an identical

MTQ value, as shown in Fig. 7.14. We found that in terms of averaged EPLR over all flows,

the optimal value for MTQ is 3.3 [ms], which is again the same value as observed in Figs.

7.4 and 7.11.

Table 7.9: Acceptable queuing delay limit for all subgroup flows

Indication Flow group no. Acceptable queuing delay [ms]

f0 0 10

f1 1 20

f2 2 20

f3 3 10

f4 4 10
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Figure 7.14: EPLR (effective packet loss rate), using MTQ alone

Figure 7.15 shows the EPLR in each flow group for four cases: (1) using neither MTQ nor

QTL, (2) MTQ only (optimal value), (3) QTL only (optimal value), and (4) MTQ (moderate

value) plus QTL (optimal value). These results are consistent with those obtained in the

previous scenarios, and it can be seen that (at least in heavily congested networks),

1. MTQ/QTL can significantly improve the EPLR of all flows;

2. setting MTQ to the optimal value achieves the best result in terms of the averaged

EPLR over all flows, although the optimal value may not always be easy to determine;
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3. applying QTL alone (even when set to the optimal value) is not always effective in

improving the EPLR of the worst case flows (e.g. flow group 0);

4. using MTQ and QTL together can produce very good EPLR performance when the

QTL value is optimal (that is, the strictest acceptable queuing delay), even if the MTQ

value is non-optimal (say, 50% of the strictest acceptable queuing delay).
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No. Parameters [ms]

(1) Set no parameters

(2) f0–f4 : MTQ=3.3

(3) f0–f4 : QTL=10

(4) f0–f4 : MTQ=5, QTL=10

Figure 7.15: EPLR (effective packet loss rate) when coexisting flows on different paths

have different queuing delay requirements

7.5 Concluding Remarks

In this chapter, an adaptive scheme was proposed for earlier discarding of packets in real-

time application flows by using two mechanisms (MTQ and QTL). In the scheme, a packet

experiencing too great a queuing delay is discarded at intermediate nodes based on a limit
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for the total queuing delay the packet is experiencing along the path (QTL) and/or a limit for

the local queuing delay the packet is experiencing at each node (MTQ).

The approach was evaluated through network simulations in both homogeneous and het-

erogeneous environments. In the homogeneous scenarios, the number of flows on each path

was identical and all flows had an identical queuing delay requirement (i.e. limit). Mean-

while in the heterogeneous cases, the number of flows on each different path was not the

same or the flows coexisting on the network had different delay requirements. Using an

appropriate MTQ value effectively improved delay characteristics (i.e. reduced EPLR), but

it was generally not easy to determine such a suitable value for MTQ. Delay characteris-

tics were also improved by using QTL alone, with a value set to the acceptable queuing

delay limit for flows with the strictest requirements; however there may still be room for im-

provement when the delay limit is relatively small compared with the length of the queuing

buffer at intermediate nodes. By using QTL plus MTQ appropriately, i.e. setting QTL to the

strictest acceptable queuing delay limit and MTQ to some value smaller than the delay limit

(e.g. 50% of the delay limit), good overall delay performance was achieved.

Experimental results for the proposed scheme in basic scenarios have been shown, and

these indicate that the scheme has great potential in improving the queuing delay perfor-

mance of real-time flows in a congested network. However, further investigation and en-

hancement are necessary in order to develop practical systems based on the scheme. To

clarify the proper scope and limitations of the scheme and to allow it to be used reliably,

more theoretical analysis may be needed, as well as more extensive simulations or real

world experiments. From such future investigations, a more qualitative relationship could

be established between the delay requirement (the acceptable queuing delay), the achievable

performance (the EPLR), and the network environment (e.g. flow topology, traffic burstiness,

and link utilization).

Real networks generally have a more complex meshed topology, involving a number

of network nodes and with a large heterogeneity in both traffic characteristics and delay
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requirements. When applying the scheme to such networks, more sophisticated tuning of the

MTQ parameter may be required in order to achieve a satisfactory balance in overall delay

performance. To do this, the fairness of the queuing delay performance over all flows in the

network should be addressed quantitatively. The MTQ mechanism presented in this paper

is quite a simple version that just results in limiting the queuing buffer length equally at

every node the packets traverse. Although this is shown to be effective in basic scenarios, a

possible enhancement to fully exploit the potential of hop-by-hop processing for each packet

is to make MTQ values more dynamic, whereby the value can be changed hop-by-hop like

QTL. This could provide more flexibility to cope with greater traffic heterogeneity. This kind

of enhancement, however, would also need to take cost and scalability into consideration.
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Chapter 8

Concluding Remarks

8.1 Summary

In the present thesis, the performance of various congestion controls conducted between end

hosts and at intermediate nodes was evaluated in order to realize various end-to-end com-

munication qualities that meet the diversity requirements observed of the network. Various

evaluations on JGNII and a network simulator revealed that individualized congestion con-

trol are necessary in order to satisfy various application and diversity requirements of the

network. The ultimate goal of the present research is to find a feasible and cost-effective

method for the future Internet comprising shared heterogeneous networks to simultaneously

provide high-throughput data transfer as well as various types of application traffic. Evalua-

tion on JGNII and a network emulator using new management mechanisms for the interme-

diate nodes might be a necessary approach to find the solution.

First, in Chapter 4, I investigated the throughput characteristics of a variety of high-

speed transport protocols (HSTCP, Scalable TCP, FAST, and SABUL) recently proposed

for transmitting a huge amount of data on fast long-distance networks, through experiments

on the Japan Gigabit Network. All protocols treated in the present experiments exhibited

good throughput performance compared to Standard TCP. These throughput performances
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are listed in from best to worst as follows: SABUL > FAST > Scalable TCP > HSTCP,

whereas the likelihood of packet loss are as follows: SABUL > Scalable TCP > FAST >

HSTCP. The sending rates of SABUL and FAST could be adjusted rapidly and appropriately

in response to dynamic changes in competitive UDP traffic. For TCP-based protocols, the

performance was affected considerably by the type of receiver-side OS due to the difference

in strategy of sending back ACK packets and the ability of the SACK option. The fact that

SABUL and FAST outperform implies that the conventional congestion avoidance mech-

anism of TCP based on receiving ACK packets may not be suitable for fast long-distance

networks. For high-speed transport protocols, it seems desirable to separate the congestion

control from the error control, and furthermore to make the rate control smooth and rapid.

However, all protocols treated herein suffered from the problem of unfairness or undesirable

interference when multiple connections of different protocols shared a common link. Further

progress in high-speed transport protocols is needed to solve this problem.

In Chapter 5, the performance of multiple high-speed transport protocol connections was

investigated through experiments in various network environments, including an open 10-

Gbps-class network testbed between US and Japan. In addition, the use of high-speed trans-

port protocols on the global Internet is currently being investigated. The obtained results

(with 1-Gbps end-hosts) indicated that, when long-lived data transfer flows of high-speed

transport protocols run in conjunction with even small amounts of Internet application traf-

fic, such as short-term web browsing flows and long-term video streaming flows, the per-

formance of not only web access and video streaming but also of the high-speed transfer

flows is degraded. In other words, such circumstances are neither effective nor efficient in

terms of bandwidth sharing. The ultimate goal is to find a feasible and cost-effective method

of bandwidth sharing on the future Internet comprising shared heterogeneous networks to

simultaneously provide high-throughput data transfer as well as various types of application

traffic. At present, there is no silver bullet with which to solve this problem. However, sev-

eral interesting characteristics of this problem, i.e., the pros and cons of each high-speed
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transport protocol in each typical realistic situation, are being investigated. By sharing the

insights obtained from a variety of experimental results for a variety of realistic network

conditions, it is hoped that improved high-speed data transport protocols and/or new man-

agement mechanisms will be developed for the intermediate nodes.

The preliminary results seem to indicate that the slow-start is relevant to high-throughput

transfer in fast long-distance networks. When no other TCP flows coexist, the original slow-

start leading to exponential cwnd growth is effective for promptly obtaining the maximum

throughput. However, when multiple TCP flows compete with each other, the collision of

multiple slow-start results in extremely unstable conditions. To manage both the prompt

acquisition of high throughput and the stable competition with other flows, the slow-start

mechanisms should be investigated in greater detail and should be modified for use on fast

long-distance networks.

In Chapter 6, the throughput behavior of TCP flows over multiple AF DiffServ do-

mains was investigated. In particular, we focused on the influence of packets re-marked

at the domain boundary on the throughput characteristics and were able to clarify the fol-

lowing. (1) Re-marked packets at a DiffServ domain boundary can degrade the end-to-end

throughput, i.e., the quality of service. (2) Applying an appropriate marking policy, (e.g.,

the original mark policy presented in Section 3.1, which is based on a contracted rate) at the

ingress node in each DiffServ domain can reduce the number of re-marked packets. (3) The

network configuration of an intra-domain has less effect on throughput degradation.

In Chapter 7, an adaptive scheme was proposed for earlier discarding of packets in real-

time application flows by using two mechanisms (MTQ and QTL). In this scheme, a packet

that is experiencing too large a queuing delay is discarded at an intermediate node based on

a limit for the total queuing delay experienced by the packet along the path (QTL) and/or

a limit for the local queuing delay experienced by the packet at each node (MTQ). The ap-

proach was evaluated through network simulations in both homogeneous and heterogeneous

environments. In the homogeneous scenarios, the number of flows on each path was iden-
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tical, and all flows had an identical queuing delay requirement (i.e., limit). Meanwhile, in

heterogeneous cases, the number of flows on each path was not the same, or the flows co-

existing on the network had different delay requirements. Using an appropriate MTQ value

effectively improved the delay characteristics (i.e. reduced EPLR), but it was generally not

easy to determine such a suitable value for MTQ. The delay characteristics were also im-

proved by using QTL alone, with a value set to the acceptable queuing delay limit for flows

with the strictest requirements. However, there may still be room for improvement when the

delay limit is relatively small compared with the length of the queuing buffer at intermediate

nodes. By using QTL plus MTQ appropriately, i.e., by setting QTL to the strictest acceptable

queuing delay limit and MTQ to some value smaller than the delay limit (e.g., 50% of the

delay limit), good overall delay performance was achieved. Experimental results in basic

scenarios indicate that the proposed scheme has great potential for improving the queuing

delay performance of real-time flows in a congested network. However, further investigation

and enhancement are necessary in order to develop practical systems based on the proposed

scheme. To clarify the proper scope and limitations of the proposed scheme and to allow the

proposed scheme to be used reliably, more theoretical analysis may be necessary, as well as

more extensive simulations and real-world experiments.

8.2 Future research

In this thesis, a number of issues regarding congestion control in high-speed networks were

examined. In the future, the following areas will be investigated.

The performance of high-speed transport protocols that work between end hosts was in-

vestigated in the preset research. These results indicate that it is difficult to realize efficiency

and fairness via existing high-speed transport protocols. The key to realizing these properties

is the inference of the internal state of the network. HSTCP and Scalable TCP use packet

loss information as a trigger for controlling cwnd. Therefore, they update cwnd after the

detection of packet loss. FAST uses delay information as a trigger for controlling cwnd. On
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the other hand, CUBIC and the HTCP protocol use the elapse time from the last packet loss

as a trigger for controlling cwnd. To infer the internal status of a network, it may be useful to

use information both on the delay and the packet loss, as in Compound TCP, proposed most

recently and was not targeted in the research because there were no implementation avail-

able. In addition, observing historical trends of packet losses and delay might also be useful

for inferring the network status, for example, the minimum value for RTT and the elapse

time from the last packet loss event might be stored. Observing the performance of high-

speed transport protocols through experiments over JGNII, the requirements and limitations

of congestion control will be investigated further by conducting these controls between end

hosts.

The preliminary experimental results on the JGN2 seem to indicate that the slow-start is

relevant to high-throughput transfer in fast long-distance networks. When no other TCP

flows coexist, the original slow-start leading to exponential cwnd growth is effective to

promptly obtain the maximum throughput. However, when multiple TCP flows compete

with each other, the collision of multiple slow-starts results in extremely unstable conditions.

This will be considered further in order to improve the behavior of the slow-start phase.

Experimental results presented for the proposed scheme, MTQ and QTL, in basic sce-

narios indicate that the proposed scheme has great potential for improving the queuing delay

performance of real-time flows in a congested network. However, further investigation and

improvements are necessary in order to develop practical systems based on the proposed

scheme. In order to clarify the proper scope and limitations of the proposed scheme and to

allow the proposed scheme to be used reliably, further theoretical analysis may be needed, as

well as more extensive simulations or real-world experiments. Based on such future investi-

gations, a more qualitative relationship could be established between the delay requirement

(acceptable queuing delay), the achievable performance (EPLR), and the network environ-

ment (e.g., flow topology, traffic burstiness, and link utilization). Real networks generally

have a more complex meshed topology, involving a number of network nodes and having
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a large heterogeneity in both traffic characteristics and delay requirements. When applying

the proposed scheme to such networks, more sophisticated tuning of the MTQ parameter

may be required in order to achieve a satisfactory balance in overall delay performance. To

do this, the fairness of the queuing delay performance over all flows in the network should

be addressed quantitatively. The MTQ mechanism presented herein is a simple version that

limits the queuing buffer length equally at each node traversed by a packet. Although this is

shown to be effective in basic scenarios, a possible enhancement to fully exploit the potential

of hop-by-hop processing for each packet is to make MTQ values more dynamic, whereby

the value can be changed hop-by-hop, as in QTL. This could provide more flexibility to cope

with greater traffic heterogeneity. However, the greater cost and scalability that would be

incurred by this type of enhancement should be taken into consideration.
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