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Abstract—This study aims to implement a reservoir-based con-
volutional neural network (CNN) on physical reservoir computing
(RC) to develop an efficient image recognition system for edge
AI. Therefore, we propose a novel reservoir-based convolution
circuit system that uses in-material reservoir computing, a type
of physical RC made from a sulfonated polyaniline network. The
experimental results demonstrate that the proposed circuit system
extracts image features in the same way as the original CNN and
that a reservoir-based CNN on the in-material RC achieves an
accuracy rate of 81.7% in an image classification task while an
echo state network-based CNN achieves 87.7%.

Index Terms—reservoir computing, reservoir-based convolu-
tion, in-material reservoir computing, edge AI

I. INTRODUCTION

Most artificial intelligence (AI) technologies currently in
use are based on deep learning (DL) [1] and achieve state-of-
the-art results in many tasks such as image recognition tasks.
A significant amount of training data and high-performance
computers with graphics processing units, both of which are
necessary to improve the DL performances and accelerate DL
computations, have been used to support this DL success.
Conversely, the requirements for edge AI are different from
those for current AI: the amount of training data, computa-
tional resources, and especially consuming power are strictly
limited. This study aims to realize an edge AI with low training
costs that can be trained with little data and only a few
computational costs, resulting in a low-power implementation.

The reservoir computing (RC) [2], [3] based approach is one
of the solutions for the low-training cost AI realization. An RC
is a type of recurrent neural network (NN) consisting of input,
reservoir, and output layers. General NNs optimized using
the backpropagation [4] update all the weight connections in
networks, whereas the RC updates only a portion of weight
connections. Therefore, the RC requires less training data and
has lower computational costs than general NNs. Although
the weight connections in the reservoir layer are fixed, RC
can achieve comparable results to the general NNs in several
tasks [5] because of its nonlinearity and high dimensionality.

RC can be used for image recognition tasks. An echo state
network (ESN) [2], one of the RC implementations, achieved
an accuracy rate of more than 99% on the MNIST dataset
[6] [7]. An NN consisting of convolution layers and an ESN
also achieved an accuracy of more than 99% and 86% on
the MNIST and the Fashion-MNIST datasets [8], respectively
[9], [10]. A deep delayed feedback reservoir achieved an
accuracy of more than 60% on the CIFAR-10 dataset [11],

[12]. A reservoir-based convolutional NN (CNN) that extracts
image features with various spatial frequencies outperformed
conventional RC-based networks in the image recognition
tasks of the Fashion-MNIST and the CIFAR-10 datasets [13].

Several studies have implemented RCs on hardware to de-
velop low-power RC systems, including Honda and Tamukoh’s
implementation of an ESN with 100 reservoir nodes on a field-
programmable gate array (FPGA) [14], and Alomar et al. and
Huang et al.’s implementation of ESNs with 300 nodes on
FPGAs [15] [16]. Several studies have proposed hardware-
oriented RC models for efficient hardware implementation.
For example, Alomar et al. and Loomis et al. implemented
stochastic computing-based RC with 50 nodes on FPGAs [17]
[18], and Kawashima et al. implemented a chaotic Boltzmann
machine (CBM) [19] based RC with 2,048 nodes on an FPGA
[20].

Although these semiconductor-based hardware implemen-
tations are already more efficient than the current software
implementations, this study aims to achieve an even more
efficient implementation using physical RCs [21], which re-
place reservoir layers in RC with physical dynamical systems
such as optical systems [22], spintronics devices [23], and
soft materials [24]. Since physical RCs directly use physical
phenomena as computations, their computations can be much
more efficient than conventional systems.

As a first step toward the high-efficient RC implementation
for image recognition, this study proposes a novel physical
reservoir circuit system of the reservoir-based CNN using
an in-material RC [25], which is made of nanomaterials and
uses chemical dynamics in the materials as computations in
RC. We particularly employ an in-material RC made from
a sulfonated polyaniline network (SPAN). Since research on
RC-based image recognition systems for hardware is still in
its infancy, the contribution of this study must be significant.

II. RELATED WORKS

A. Reservoir-based convolution

In the reservoir-based convolution, reservoirs are used as
filters receiving a region of interest (ROI) from an image, as
shown in Fig. 1. The ROI is fed into the reservoir line by line,
and the reservoir updates its internal state as follows:

x(t) = (1− δ)x(t− 1) + δf(Wiu(t) +Wrx(t− 1)), (1)

where x(t) ∈ RNr and u(t) ∈ RNi are the reservoir’s
internal state and an input vector (the one line from the ROI),



respectively, and t indicates a discrete time step. Wi ∈ RNr×Ni

and Wr ∈ RNr×Nr denote a weight connection matrix between
the input and the reservoir and a recurrent connection matrix
in the reservoir, respectively, (Ni and Nr represent the number
of input and reservoir nodes). f indicates a nonlinear function
and the hyperbolic tangent function is used for this. δ denotes
the leak rate of the reservoir (0 < δ < 1) that controls the
updating speed of the reservoir. The second term in Eq. 1
has a relatively larger effect and causes the updating speed to
increase if the leak rate is close to 1. Conversely, the updating
speed slows down if the leak rate is close to 0.

The reservoir receiving ROIs can function as a feature
extractor for specific spatial frequencies using that reservoir
characteristic. The reservoir is insensitive to features with high
spatial frequencies if the ROI is fed into a reservoir with a low
leak rate because the reservoir update cannot keep up with the
input change. Otherwise, a reservoir with a high leak rate is
sensitive to features with high spatial frequencies.

The reservoir-based convolution consists of multiple reser-
voirs with multiple leak rates to extract features with various
spatial frequencies, as shown in Fig. 2. An input image is
divided into ROIs in the same manner as CNNs, each ROI is
fed into all reservoirs, and the reservoirs update their states
as Eq. (1). If the input u(t) is T steps (T = 1, 2, . . . , T ),
all reservoir states that occur immediately after data feeding,
x(T ) are concatenated and used as outputs. Output feature
maps are generated by independently feeding all ROIs into
the reservoirs.

Figure 3 shows an example structure of a reservoir-based
CNN consisting of two reservoir-based convolution layers, two
max-pooling layers, and a linear layer. In this network, an in-
put image is fed into the first reservoir-based convolution layer,
and its output feature maps are down-sampled by the first max-

Fig. 1. Feeding image into the reservoir.

Fig. 2. Reservoir-based convolution.

Fig. 3. Reservoir-based CNN.

pooling layer. The second reservoir-based convolution and the
max-pooling layers process the outputs from the first max-
pooling layer. Finally, the feature maps are flattened and fed
into the linear layer and its outputs represent classification
results.

The most significant feature of the reservoir-based CNN is
that the weight connections in the reservoir-based convolution
layers are fixed, and only the weight connection in the linear
layer, indicated in the figure by a red arrow, has plasticity.
Therefore, this network requires lower training costs than
conventional CNNs.

B. In-material reservoir computing

A nanomaterial network system is a promising option
among the various strategies for physical RC implementation
because of the simple fabrication process. An electric carrier
is a driving force that flows through the nanomaterial network.
In the nanomaterial network, a complex carrier transport
path is generated along with a network that includes non-
linear electrical behavior at junctions in nanosize and µs-ms
timescale, which is interpreted as chemical dynamics. Thus,
the chemical dynamics in the nanomaterial network have rich
kinetics and spatio-temporal dynamics, which can produce
high-dimensional nonlinear mapping in RC.

The SPAN network is a candidate for in-material RC.
Figure 4 shows the structural formula of SPAN. SPAN is a
derivative of polyaniline, which is one of the most famous
conductive polymers [26]. SPAN forms polymer-aggregated
string structures of approximately 5 nm width; therefore, a
highly dense and complex network structure can be fabricated.
SPAN has a protonated sulfonic functional group that performs
a dopant function. In addition to other conductive polymers,
polaron is the intrinsic carrier of SPAN. Furthermore, protons
from the atmosphere are injected into the SPAN molecular
chain. Polaron and ion in the SPAN network have different
carrier mobilities (polaron: 0.25 cm2 V−1 s−1, ion: 3.6×10−3

cm2 V−1 s−1). Therefore, SPAN has rich and complex chem-
ical dynamics owing to the combination of dual carriers.

A SPAN network RC device can be fabricated using the
following process. A microscale metal 16 electrode pattern is
fabricated on a SiO2/Si substrate using the optical lithography
method for creating input and output to the SPAN network.
SPAN in an aqueous solution is drop-casted on metal elec-
trodes to immobilize a network structure.



Fig. 4. Structural formula of sulfonated polyaniline.
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Fig. 5. Reservoir-based convolution circuit system using the in-material RC.

The waveform generation task, a typical benchmark task, is
used to evaluate the RC performance of the SPAN network
device. A sinusoidal wave input is applied to the RC device,
and the 15 outputs are superimposed to target waves such as
the cosine, triangle, sawtooth, and square. The accuracy of the
predictions are more than 88%. These high accuracy levels
imply that the SPAN network has a significant nonlinearity
and high dimensionality as an RC device. Moreover, this in-
material RC device achieves 60% accuracy of spoken-digit
classification from the free-spoken-digit-dataset [27] with only
12 outputs, indicating that the SPAN network has a rich
dynamic and nonlinear resource for RC.

III. PROPOSED METHOD

This study proposes a reservoir-based convolution circuit
system using an in-material RC, as shown in Fig. 5. The in-
material RC device in the system has 16 input/output ports
connected to the SPAN network and we use three of them
for input ports and the remaining 13 ports for outputs. The
device receives a 3×3-pixel ROI as a three-step time series of
a three-dimensional vector, and the state of the output ports
immediately after the feeding is used for the layer outputs.
Each output port corresponds to a channel of the output feature
map so that the number of output feature maps is 13 in the
case of the device.

This study assumes that the input image value range is [0,
1], and we apply the image value to the device as a voltage,
resulting in an input port range of [0V, 1V]. We discovered
through an experiment that the range of output ports was
approximately [-0.20 V, 0.20V]; therefore, we multiplied the
output voltage by 5.0 to determine the value of the output
feature maps.

We construct a reservoir-based CNN with one reservoir-
based convolution layer and 13 feature map outputs, allowing
us to implement the network using single in-material RC
devices with 16 input/output ports, as shown in Fig. 6. The
max-pooling and the linear layer computations are executed
using the software.
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Fig. 6. Reservoir-based CNN using the in-material RC device.

IV. EXPERIMENTS

A. Data feeding

Since the in-material RC device has a proper time constant
where the signal is processed appropriately, an input signal
frequency to the device affects the RC state changes. The
reservoir state does not represent the entire feature of the time-
series data if the input frequency is too low for the device
because each input effect on the reservoir disappears at the
following time step. Conversely, if the input frequency is too
high for the device, the reservoir does not process the time-
series data because the reservoir state change cannot keep up
with the input change.

For the above reason, we investigated an appropriate input
frequency for the in-material RC device in the reservoir-based
convolution application. In this investigation, we changed the
input frequency from 1,000 Hz to 50,000 Hz while verifying
the RC device response, and we fed an image from the MNIST
dataset to the RC device, as shown in Fig. 5.

Figure 7 shows the generated feature maps from the in-
material RC devices, with the input frequency set to 1,000
Hz, 5,000 Hz, 10,000 Hz, and 50,000 Hz. Figures 7 (a) and
(b) show the results when the input frequencies were set to
1,000 Hz and 5,000 Hz. In both cases, the reservoir-based
convolution extracted the line’s edges, and the feature maps
varied. Conversely, in the case of 50,000 Hz, the generated
feature maps were consistent and only slightly different from
the input image. Although the generated feature maps in the
case of 10,000 Hz varied, the edges of the lines could not
be extracted accurately. Therefore, we concluded that 1,000
to 5,000 Hz was the appropriate input frequency for the in-
material RC device.

B. Image classification task

To verify the performance of the reservoir-based CNN with
the in-material RC, we conducted an image classification task
using the MNIST dataset. Although the dataset consists of
60,000 training images and 10,000 test images of gray-scale
handwritten digits, we used 1,000 training and 1,000 test
images to simplify the device measurement.

We fed the training images into the reservoir-based CNN
and computed an optimized synaptic weight connection of
the linear layer by ridge regression using both the outputs
of the max-pooling layer and the supervised signals that were
one-hot vectors corresponding to the class labels. We then



(a) 1,000 Hz

(b) 5,000 Hz
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Fig. 7. Generated feature maps from the in-material RC devices with respect
to the input frequencies.

TABLE I
ACCURACY RATES OF THE MNIST DATASET CLASSIFICATION TASKS.

Test accuracy rate
Linear model 0.744
Reservoir-based CNN by the ESN 0.877 ± 0.00957
Reservoir-based CNN by the in-material RC 0.817

fed the test images into the reservoir-based CNN and verified
their accuracy rate. The parameter of the ridge regression λ
was set to 1.0, and the input frequency to the in-material RC
was set to 1,000 Hz. Table I compares the accuracy rate of
the MNIST dataset classification task for a linear model, an
ESN-implemented reservoir-based CNN, and a reservoir-based
CNN with an in-material RC. Since the weight connections
in the ESN were randomly initialized, the accuracy of the
reservoir-based CNN by the ESN in the table represents the
mean of ten trials.

V. DISCUSSION

Table I demonstrates that the reservoir-based CNN by the
in-material RC performed better than the linear model but less
than the reservoir-based CNN by the ESN. We concluded that
the cause was noise in the outputs produced by the circuit
system, as shown in Fig. 7.

In the experiment of the image classification task, the input
frequency was set to 1,000 Hz, causing the computation for
a 3×3 ROI to take 3 ms. Therefore, it is estimated that
using one in-material RC device, the computation time for

all ROIs (676 ROIs in this case) will be at least 2.03 s. To
accelerate this computation, we can implement the reservoir-
based convolution in parallel processing using multiple in-
material RC devices, resulting in a computation time of 3 ms
maximum. Additionally, a higher input frequency can accel-
erate the computation, but accuracy verification is required.

The in-material RC is suitable for reservoir-based convolu-
tion from the viewpoint of the device characteristics. Although
the in-material RC has a small memory capacity, the reservoir
does not require a large memory capacity because the reservoir
only receives a 3×3 ROI that is converted into a three-step time
series of a three-dimensional vector.

VI. CONCLUSION

This study proposes a reservoir-based convolution circuit
system using in-material RC devices made from the SPAN to
develop an efficient image recognition system for edge AI. The
experimental results showed that the proposed circuit system
extracted features from images as the original convolutional
operation, and the reservoir-based CNN on the in-material RC
achieved an accuracy rate of 81.7% in the image classification
task, while the ESN-based CNN and the linear model achieved
87.7% and 74.4%, respectively.

In this study, we used a single in-material RC device and a
single input frequency to simplify the device measurement,
which prevented the reservoir-based CNN from being able
to extract features with various spatial frequencies as in the
original method. In the future, we will investigate methods
for extracting various features using in-material RC devices.
Additionally, the max-pooling and linear layers were software-
based rather than being implemented on the circuit. For a low-
power implementation, we must implement these layers into an
integrated circuit (IC) and measure its power consumption to
show the effectiveness of the proposed method. Because of the
limitation of the device measurement, we only conducted the
experiment with 2,000 images. The IC implementation of the
proposed network will overcome the limitation and we will be
able to conduct an experiment using full of the MNIST dataset
or other datasets to compare with the previous studies.
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