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Spintronic devices, such as spin Hall oscillators and spin transfer torque oscillators, have become popular candidates for use as the 
reservoir in the reservoir computing architecture. The memory capacity of a reservoir quantifies the amount of information retained 
at any given time, indicating its significance for different reservoir computing tasks. In this work, we consider a spin Hall oscillator, 
consisting of a bilayer structure of platinum/permalloy, as the reservoir. Using micromagnetic simulations, we evaluate the change in 
memory capacity of the spin Hall oscillator system as the magnetization dynamics varies from transient state oscillations to limit cycle 
oscillations. We also perform a three-bit parity task to study the performance of the oscillator in carrying out a nonlinear task. A time 
series prediction task, namely the NARMA2 task, is also performed. The results of both tasks confirm a correlation between the 
evaluated memory capacity of the reservoir and its efficiency in performing temporal tasks. The best performance in reservoir 
computing tasks is observed when the output magnetization dynamics of the oscillator consists of both transient state and limit cycle 
oscillations. 
 

Index Terms — Memory capacity, nonlinear magnetization dynamics, reservoir computing, spin Hall oscillators.  
 

I. INTRODUCTION 

 
oday, the use of Artificial Neural Networks (ANNs), for 
performing computational tasks, has become common [1]. 

Their inherent complexity in structure, due to multiple hidden 
layers and their associated weights, enables ANNs to perform 
the most difficult computational tasks with great success. 
Reservoir Computing (RC), a computation scheme derived 
from traditional ANNs, has been gaining popularity as it can 
be implemented easily using physical devices [2]-[4]. The RC 
scheme offers a significant reduction in training cost as 
compared to traditional ANNs, since only the weights at the 
readout (Wout) connecting the reservoir and output layers, need 
to be trained [5]. Furthermore, with the weights of the 
intermediate layers not requiring any adaptive update, there is 
an increased freedom in the choice of reservoir [6]. The 
suitability of a possible reservoir in performing a particular 
computation task can be quantified in terms of the memory 
contributed by the reservoir [7]. Memory Capacity (MC) is a 
measure of the short term memory possessed by a reservoir [5]. 
In other words, it signifies how much information about a 
previous input is contained in the present output of the 
reservoir. A finite value of MC may be given by a simple 
linear network too. Therefore, in addition to the linear MC 

evaluation, it becomes necessary to confirm the nonlinear 
nature of the reservoir’s memory by performing a nonlinear 
task, such as a three-bit parity check (PC) [8].   
 

A wide range of physical systems, such as electronic, 
photonic, mechanical and spintronic systems are being 
investigated as possible RC candidates [9]. In particular, the 
small size (orders of nm), energy efficiency (orders of nJ) and 
rich dynamics of spintronic devices make them highly suitable 
for carrying out complex computations [10]. Spintronic 
oscillators such as Spin Torque Oscillators (STOs) and Spin 
Hall Oscillators (SHOs) are being actively investigated in this 
direction. STOs utilize a spin polarized current, generated 
using one ferromagnet, to affect magnetization dynamics in 
another ferromagnet [11]-[12]. Meanwhile, in SHOs, a pure 
spin current is generated in a nonmagnetic layer, which can be 
utilized to affect the magnetization dynamics of the adjoining 
magnetic layer [13]-[14].  STOs based on magnetic tunnel 
junctions, have been used to perform character [15] and audio 
[16] recognition tasks. However, in STO devices, the spin 
polarized current used can lead to significant energy loss in 
the form of heating. Using the SHO which utilizes pure spin 
current, we can perform all computations carried out using an 
STO, in a significantly more energy efficient manner [17]-[18].  

 
In this work, we perform micromagnetic simulations of a 

SHO structure, and utilize the magnetization dynamics as the 
reservoir output in performing various RC benchmark tasks. 
Different kinds of dynamics such as transient oscillations and 
limit cycle oscillations are excited in the SHO by varying the 
input parameters, namely the input current amplitude and 
pulse width. It is essential to understand how the performance 
of the reservoir changes with the kind of dynamics that is 
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excited in the oscillator, because in the RC scheme we do not 
have any other control parameters to effect the working of the 
reservoir [4]. We evaluate the MC of the SHO reservoir as a 
function of the input parameters. We also perform a PC task to 
confirm the nonlinearity in the reservoir. Finally, we carry out 
a time series prediction task, namely, the Nonlinear Auto 
Regressive Moving Average (NARMA) task [19], and 
evaluate the performance of the reservoir as a function of the 
input parameters.  
 

 
Figure 1: (a) Schematic diagram showing the use of a spin Hall oscillator as 
the reservoir in performing a computation task. Depending on the input 
current amplitude and pulse width, (b) in plane transient oscillations, (c) in 
plane limit cycle oscillations, or (d) out of plane limit cycle oscillations can be 
excited in the spin Hall oscillator. 

II. SIMULATION PARAMETERS 

 
A general RC scheme with the SHO as the reservoir is 

shown in Fig. 1(a). Simulations were performed using LLG 
micromagnetic simulator [20]-[21]. A bilayer SHO structure 
having dimensions 100 nm × 100 nm × 10 nm, with platinum 
Pt (5 nm) as the bottom layer and permalloy NiFe (5 nm) as 
the upper layer, was considered. A single domain model was 
assumed in all our studies. The time evolution of the 
normalized magnetization m


 is solved by the Landau-

Lifshitz-Gilbert (LLG) equation with inclusion of the Spin 
Transfer Torque (STT) term, 

 
 

 
 
with gyromagnetic ratio  , damping constant  , saturation 

magnetization
SM , reduced Planck constant  , electron 

charge e  and NiFe layer thickness NiFet . The effective field 

effH


 consists of the external magnetic field 
extH  , magneto 

crystalline anisotropy field, exchange field and 
demagnetization field. The spin Hall angle 

SHθ  quantifies the 

conversion efficiency of charge current density cj  to spin 

current density sj  in the Pt layer. The direction of spin 

polarization σ  is given by a cross product of the unit vectors 
of the spin and charge currents ,respectively. Depending on 

the magnitude and direction of cj , the STT term in (1) 

competes with the damping term, leading to oscillation of the 
magnetization. 

The charge current was applied along the x-axis, while an 
external magnetic field  mT 100 =0 extH was applied along the 

y-axis as shown in the Fig. 1(a).  The material parameters 
were chosen in agreement with experimentally obtained values 
[22]-[24], with saturation magnetization T 1.0 =0 SM , 

damping constant 0.02 =α  and resistivities of  

 m Ω 10 × 4.5 = -7
NiFe and  m Ω 10 × 2.0 = -7

Pt for NiFe and Pt, 

respectively.  
 

III. RESULTS AND DISCUSSIONS 

 

A. Magnetization dynamics of Spin Hall Oscillator (SHO)   

 
Depending on the magnitude and pulse width of the input 

current, the magnetization dynamics can exhibit in-plane 
transient state oscillations (Fig. 1(b)), in-plane limit cycle 
oscillations (Fig. 1(c)) or out-of-plane limit cycle oscillations 
(Fig. 1(d)).   We first investigate the magnetization dynamics 
induced by a single input current pulse as shown in Fig. 2(a). 
The pulse parameters trise, tfall and trelax are fixed at 1 ns and the 
pulse width tpw is varied from 1 ns to 5 ns. The pulse period is 
denoted by T. The amplitude of the current pulse is given by I.  
We study the Mx component of magnetization as the output of 
the SHO in all analyses. This is because, experimental 
detection of the SHO oscillations is based on anisotropic 
magnetoresistance (AMR) which depends on the relative 
orientation between current and magnetization AMRθ  [25]. The 

oscillating term in AMR is directly proportional to AMRθ , 

which in turn, is directly proportional to Mx. For a fixed tpw, as 
current amplitude I increases, the amplitude of the oscillating 
Mx component is found to increase, as expected (Fig. 2(b)-(d)) 
[26]. A similar trend is observed as tpw increases, for a fixed I 
(Fig. 2(b), 2(e) and 2(f)). We observe that for a fixed tpw, as I 
increases, the magnetization dynamics changes from a low 
amplitude transient state to a higher amplitude transient state. 
Eventually, at a high enough I, the oscillation amplitude 
saturates and reaches the limit cycle. As I is increased further, 
the limit cycle oscillations become out of plane. Similarly, for 
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a fixed I, as tpw increases, the dynamics similarly shifts from a 
transient state to in plane limit cycle oscillations and then to 
out of plane limit cycle oscillations. We observe that with the 
increase in either amplitude or pulse width, the magnetization 
dynamics of the oscillator moves from a state of transient 
dynamics at increasing amplitudes to in plane and then finally 
to out of plane limit cycle oscillations. 
 

 
Figure 2: (a) Current pulses of different amplitude I and pulse width tpw are 
given as input to the spin Hall oscillator. Single current pulses with (b) I = 4.0 
mA; tpw = 1 ns, (c) I = 5.0 mA; tpw = 1 ns, (d) I = 6.0 mA; tpw = 1 ns, (e) I = 4.0 
mA; tpw = 3 ns, and (f) I = 4.0mA; tpw = 5ns, given as input to the spin Hall 
oscillator and the corresponding Mx oscillations induced by them. 

 

B. Time series input for Reservoir Computing (RC) tasks 

 
We proceed to investigate the magnetization dynamics 

when a stream of 1270 bits are fed as input current pulses to 
the SHO. Bit 0 is defined as the input current pulse with I=0. 
Bit 1 is the input current pulse having a finite amplitude I. The 
upper envelope of the oscillating Mx component (named S(t) 
henceforth) is used as the output corresponding to a particular 
input in all subsequent analyses. We define a quantity called 
delay d, and the S(t) corresponding to the kth input bit is 
related to the (k-d)th input bit (Fig. 3(a)). The input current 
pulses and the corresponding output Mx oscillation and its 
upper S(t) are shown for different sets of I and tpw in Figs. 
3(b)-(f). From Figs. 3(b)-(d), we find that for a particular value 
of tpw, as I increases, the value of the corresponding S(t) also 
increases for the same input bit. For a particular value of I, a 
similar increase in S(t) is seen with the increase in tpw, as 
shown in Figs. 3(b), 3(e) and 3(f). At lower values of I and tpw, 
even when multiple finite pulses are consecutively given as 
input, the output S(t) remains in the transient state with 
increasing amplitude with each input pulse. As I or tpw is 
increased, limit cycle oscillations are observed after multiple 

consecutive input pulses. This results in a combination of 
transient and limit cycle oscillations in the output S(t). When I 
or tpw is sufficiently high, all oscillations are in the limit cycle.  
Having seen the variation in the output dynamics of the SHO 
with change in amplitude and pulse width of the multiple input 
current pulses, we proceed to utilize the output S(t) of the 
SHO for performing various reservoir computing benchmark 
tasks. 
 

 
Figure 3: (a) Five bits (10110), from a total number of 1270 bits, given as 
input to the spin Hall oscillator. The Mx oscillations and their upper envelope 
S(t) for I = 5.5 mA, tpw = 1 ns. In memory capacity calculations, nodes of S(t) 
are trained to reproduce a particular input bit depending on the delay. Multiple 
current pulses with (b) I = 4.0 mA; tpw = 1 ns, (c) I = 5.0 mA; tpw = 1 ns, (d) I = 
6.0 mA; tpw = 1 ns, (e) I = 4.0 mA; tpw = 3 ns, and (f) I = 4.0mA; tpw = 5ns, 
given as input to the spin Hall oscillator and the corresponding upper 
envelopes S(t) induced by them. 

 

C. Memory Capacity (MC) 

 
First, S(t) is discretized into N nodes for each input bit. The 

thi node for the envelope S(t) corresponding to the thk  input 
bit is given by, 

 
 
where index  N   i ,.....,1,0  and index 1270,.....,1,0     k  . The 

weight 
idw ,
 is defined as satisfying the relation, 

 

 
 
where )( dkb  is the (k-d)th input bit. The (N+1)th term in the 

discretized output S  corresponds to a constant bias term, and 
is fixed to be unity. For a finite value of d in (2), 

ikS ,
 is related 

to the input bit )( dkb  , which is d steps in the past. Equation 

(3) can be written in matrix form as given below, 
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Solving for W  using the Moore-Penrose pseudo inverse 
method [27], we get,  

 
 

 
where   is the regularization constant (fixed at 1 × 10-5). 

After optimization of W using the training set of input bits B  

and output envelope S , the weight matrix W and the testing 

output envelope 'S  are used to predict the testing set of input 
bits denoted by 'B . 

 
 

The quality of prediction is quantified by the correlation 
coefficient )(dC defined as, 

 
 

 
with the functions cov  and var indicating the covariance and 
variance of the associated quantities. Memory capacity MC is 
defined as the sum of )(2 dC over all range of delays d , given 

by, 
  

 
 
 
where 

maxd  is fixed as 10. 

 
Figure 4: (a) Target and predicted inputs of the memory capacity task, for the 
first 25 bits out of the 420 bits of training data (N=10, regularisation constant 
λ=1e-5, I = 5.5 mA, tpw=1 ns). Note that with increasing delay, the difference 
between the target and predicted values increases (b) Color map showing the 
memory capacity as a function of input amplitude I and and pulse width tpw. 

 
Fig. 4(a) shows the target and predicted data for the first 

few testing input bits. We see that, as the delay d increases, the 
difference between the target and predicted data also increases. 
This indicates that, as we move further back in the past, the 
SHO output retains lesser information regarding the input. We 
calculate MC for different values of tpw and I. The MC values 
obtained for the various combinations of tpw and I are depicted 
as a color map in Fig. 4(b). As shown in Fig. 4(b), when tpw is 
fixed and I is increased, we observe a difference in the 
magnetization dynamics that contributes to the MC. For lower 
values of I, all output oscillations remain in the transient state 
and hence corresponding MC values are also low. As I is 
increased, limit cycle oscillations too start to contribute for 
inputs of continuous input bit 1 pulses. At sufficiently high I, 

all output oscillations are limit cycle oscillations and hence the 
maximum possible value of MC is obtained. A similar trend is 
seen for a fixed I and increase in tpw. MC is found to saturate 
in the range of 4.5 to 5.0. Any further increase in I or tpw does 
not increase MC. The reason for the saturation of MC in this 
range is due to the dynamics approaching the limit cycle of 
oscillations for all pulses. The input parameters at which limit 
cycle oscillations are reached are determined by the inherent 
time scales of the oscillations and their relaxation for the SHO, 
which is of the order of few ns. 

The highest value of MC = 5.0 is found for I = 5.5 mA and 
tpw = 4 ns. For higher values of I or tpw, the MC is found to be 
lower. We can infer that when more out of plane limit cycle 
oscillations contribute to the output of the SHO reservoir, 
there is a decrease in the memory of the reservoir. This 
decrease in MC can be attributed to the magnetization 
precessing about an axis different from the in plane easy axis 
of the ferromagnet. Higher values of MC are seen when the 
oscillation dynamics includes transient state oscillations and in 
plane limit cycle oscillations. 

 

D. Three-bit Parity Check (PC) 

 
When performing PC, the target function changes from 

)( dkb  , modifying (3) as given below, 

 
 
 
All other calculations remain same as that for MC. We 
compare the predicted output '

repB with the theoretical output 
'B , in terms of the Normalized Mean Square Error (NMSE), 

given by, 
 
 
 

 
 

The color map in Fig. 5(a) gives the NMSE of the three-bit 
parity task for various combinations of tpw and I. We observe 
similar trends as observed for MC. When fixing tpw and 
increasing I, and vice-versa, the NMSE is found to decrease.  
From Fig. 4(b) and Fig.5(a), we see that the least NMSE in 
three-bit PC is found in the same region which corresponds to 
highest MC. Thus, the high MC possessed by the reservoir is 
found to improve its performance in the three-bit parity task. 

 

E. NARMA Tasks 

 
Modelling a dynamical system is the most elegant way to 

evaluate the computational capability of any system [5]. For 
our SHO as reservoir, we carry out a time series prediction 
task, the Nonlinear Auto Regressive Moving Average 
(NARMA) task. In a NARMA task of order 2, we assume a 

nonlinear dynamical system that generates an output ky  based 
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on a second order nonlinear function defined as, 
 

 

where ku  is the corresponding input in the range [0, 0.5]. 

Thus the output at any particular time depends on the 
corresponding input as well as the two previous outputs. For a 
reservoir to successfully replicate the second order nonlinear 
dynamical output given above in (11), it needs to have 
sufficient memory to retain information at least up to the two 
previous outputs [26]. The same 1270 bits used in the MC and 
PC tasks are fed as input to the SHO. We train our SHO 
reservoir to map the above function in (10), and evaluate the 

accuracy of the predicted output kp  with respect to the 

theoretical output ky , again in terms of the NMSE, given by, 

 
 
 

 
 

 
Figure 5: Color map showing the NMSE of (a) the three-bit parity task and 
(b) the NARMA2 task as a function of input amplitude I and pulse width tpw. 
Theoretical and predicted outputs of the NARMA2 task for (c) I = 3.5 mA, tpw 

= 1 ns and (d) I = 5.5 mA, tpw = 1 ns.   

 
  With increasing I, there is better agreement between 
theoretical and predicted outputs seen by the decrease in 
NMSE value. NMSE for the NARMA2 task as a function of I 
and tpw are shown in a color map in Fig. 5(b). The theoretical 
and predicted outputs for the NARMA2 task, with tpw=1 ns, I 
= 3.5mA and tpw=1 ns, I = 5.5mA are shown in Fig. 5(c) and 
Fig. 5(d) respectively. For a fixed value of I, as tpw increases, 
the NMSE decreases. When tpw is fixed, and I increased, again 
a decrease in NMSE is seen. Correlating the different color 
maps from Figs. 4(b), 5(a) and 5(b), we can infer that the 
decrease in NMSE of the NARMA2 task is due to the increase 
in the memory capacity of the SHO reservoir. As discussed 
previously, this increased MC corresponds to magnetization 
dynamics which includes both transient and in plane limit 
cycle oscillations, but not to out of plane limit cycle 
oscillations which decreases MC value. Thus, we are able to 
confirm that by enhancing its memory capacity, our SHO 

reservoir is able to improve its performance in the time series 
prediction task. 

IV. CONCLUSION 

 
We studied numerically, the effect of the magnetization 

dynamics of the spin Hall oscillator on its MC, when used in a 
reservoir computing scheme. The MC was found to improve 
with increase in input current pulse amplitude and pulse width, 
and eventually saturated in the range of 4.5 to 5.0 (Fig. 5(b)). 
This saturation can be correlated with the magnetic 
oscillations moving from a state of transient dynamics to in-
plane limit cycle oscillations. Any further increase in 
amplitude or pulse width of the current pulse, corresponding 
to out-of-plane limit cycle oscillations, was found to decrease 
the memory capacity. The observed trend in MC was further 
confirmed to be due to the magnetization dynamics of the 
oscillator through the three-bit PC task, which showed 
minimum error for input parameters that correspond to the 
highest MC. Further, the SHO was used as a reservoir in 
performing NARMA2 time series prediction. The NMSE of 
the NARMA2 task was found to decrease with increase in the 
MC of the SHO, confirming a correlation between the 
calculated MC and the performance of the SHO reservoir in 
the NARMA2 task. 
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