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Computation performance of in-materio reservoir device was evaluated by varying intensity of noise injection. Materials for the reservoir device was
synthesized using a α-Fe2O3/titanium bismuth oxide composite by using the sol–gel method. The prepared samples were characterized by
conducting X-ray diffractmetry, transmission electron microscopy, and energy dispersive X-ray spectroscopy to confirm presence of α-Fe2O3, TiO2,
and Bi4Ti3O12 nanoparticles. The I–V and V–t curves show nonlinearity, and phase differences between input and output signals, and the fast
Fourier transform of the V–t curve showed high harmonics at the input sine wave with 11 Hz of frequency. In the waveform prediction task, the
prediction accuracy was improved only when a small intensity of white noise voltage was superimposed to the input information signal.
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1. Introduction

Research on artificial intelligence (AI) began to attract
attention at the Dartmouth Conference in 1956,1) ushering
in the first AI wave. During this wave, generative grammar,
which was the basis for later natural language analysis,2)

retrieval, and knowledge representation, and a single-layer
perceptron model,3) an early concept of neural networks,
were conceived. The second AI wave saw research on neural
network backpropagation methods4,5) and expert systems,6)

leading to the current third wave. Despite the technological
developments in the first and second AI waves, the advance-
ment ceased due to changes in the economic situation, low
computing performance,7) and lack of established methods
for collecting and processing large amounts of data. In the
21st century, the progress made in neural network research,8)

application of Bayesian statistics to machine learning,9–11)

and the establishment of big data utilization technologies12)

had led to the third AI wave. This wave continues today,13)

and although the development of high-performance super-
computers has made it possible to address the complex issues
with big data and AI,14) the high power consumption remains
a bottleneck in AI research.13) There is a relationship between
computational performance and power consumption in com-
puter calculations, and reducing the power consumption is
important for improving the cost performance.14) In the
future, as the amount and complexity of data required for
learning increase in machine learning, the required power is
expected to increase, which becomes a problem in main-
taining sustainable energy.
Artificial neural network (ANN) is a mathematical model

that mimics the neural network of a living organism by
simplifying its structure and mechanism. Examples include
feedforward15,16) and recurrent neural networks,17) which
differ in terms of the connection mechanism between the
layers and nodes. Among ANNs, reservoir computing (RC),
which is expected to be faster and consume less power, is
drawing attention. RC uses a recurrent neural network

comprising three layers: an input layer, a hidden (reservoir)
layer, and an output layer.18) The unique characteristics of
this network are that the weights between the input and
reservoir layers and between the nodes within the reservoir
layer are fixed, and only the weights between the reservoir
layer and output layers are updated.19) With the weights
fixed, the amount of calculation can be significantly reduced,
thereby reducing the power consumption. An important
feature of RC is that a physical system can replace a reservoir
layer with nonlinear characteristics, called a physical reser-
voir. Various types of physical systems have been used as
reservoirs, including soft arms,20) spintronic oscillators,21)

and optoelectronic neuromorphic devices.22) In recent years,
nanomaterials have attracted considerable attention as in-
materio reservoir layers. For example, atomic switch
nanowires,23,24) polymer,19) and carbon nanotube–polyoxo-
metalate networks25) have been used to solve specific tasks in
the RC framework. In specific tasks, it has also been reported
that applying a certain amount of noise on the software
simulation suppressed overlearning and improved general-
ization performance, thereby increasing prediction
accuracy.26)

In this study, we focused on an α-Fe2O3/titanium bismuth
oxide (Ti–Bi–O) composite material27) as the in-materio
reservoir. α-Fe2O3 has low band gap (∼2.0 eV) and suitable
valence band for water oxidation.28) However, α-Fe2O3 itself
has low electrical conductivity. Its heterostructure with TiO2

has been found to overcome the limitations because of
effective transport of charge carriers. In addition, previous
studies reported that TiO2 with Bi atom doping leads to more
effective charge separation and electrical conductivity.27)

Deionized water was used to increase the conductivity of
the material and ion conductance is focused on as a nonlinear
dynamical system.29) We focused on electrochemical ionic
reactions in α-Fe2O3/Ti–Bi–O composite material, which
have applications in fields such as solar cells. Effective
charge separation and low recombination27) are expected to
be applied to the reservoir layer as nonlinear dynamical
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systems of ion conductance.27,30) Here, we evaluated the
structural and electrical properties of the devices. Waveform
generation tasks were performed to evaluate the RC perfor-
mance controlled by noise injection.

2. Experimental procedure

α-Fe2O3 and Ti–Bi–O were synthesized using the sol–gel
method as described in a previous report.27) A α-Fe2O3

precursor solution was prepared with 0.2 M iron acetylace-
tonate (Sigma Aldrich, <=100%) added to a mixture of
isopropanol (1.8 ml), ethylene glycol (0.1 ml), and hydro-
chloric acid (0.1 ml), and completely dissolved with stirring.
A Ti–Bi–O precursor solution was prepared with 0.2 mol of
titanium butoxide (Sigma Aldrich, ⩾90 ⩽ 100), added to a
mixture of ethanol (20 ml) and sifiminodiethanol (3 ml), and
dissolved completely with stirring. Subsequently, 0.01 mol of
bismuth nitrate pentahydrate (Sigma Aldrich, ⩾98.0%) and
titanium butoxide were added to the mixture and stirred for
10 min. After preparing these precursor solutions, the pre-
cursors were annealed at 500 °C for 2 h, and powdered
samples were obtained. A SiO2/Si wafer was used as the
substrate for fabricating the composite devices. Au was
deposited on a SiO2/Si substrate using optical lithography
to create spider-like patterns of 16 electrodes. To fabricate the
α-Fe2O3/Ti–Bi–O composite device, α-Fe2O3 and Ti–Bi–O
powders were dispersed in isopropanol and ethanol and drop-
casted onto a substrate on which Au electrodes were formed.
After the drop-cast substrate was heated and dried at a
temperature of 80 °C, Ti–Bi–O dispersion was drop-casted in
the same manner, heated, and dried to obtain the final
product: the α-Fe2O3/Ti–Bi–O composite device (Fig. 1).
The fabricated materials were characterized using X-ray
diffraction (XRD, SmartLab, Rigaku), transmission electron
microscopy (TEM) (JEM-F200), and EDS mapping (JEM-
F200). The XRD measurement conditions were as follows:
scan rate of 0.01°/step, applied voltage of 45 kV, angular
range of 10°–90°, and scan speed of 10° min−1.
The I–V and V–t characteristics were measured to confirm

the electrical properties of the α-Fe2O3/Ti–Bi–O composite
device. In this experiment, all the measurements were
performed with a drop of deionized water covering the
material of the composite device. This is because the
composite requires charge separation and transfer during
water splitting to exhibit a conductive performance. The I–V
characteristics were measured using a semiconductor ana-
lyzer (Keysight Agilent 4156 A) at voltages ranging from −5
to 5 V and a measurement interval of 0.25 V/step. The V–t

characteristics were measured using a data acquisition system
(National Instruments Model 9234) with software coded in
LabVIEW with a sinusoidal input (11 Hz, 6 Vpp, and a
sampling rate of 1000 s−1). One of the 16 electrodes was
used as the input, and the other 15 electrodes were used as the
outputs. The Lissajous plots of the input and output signals
were produced to confirm phase shifts. A fast Fourier
transform (FFT) analysis was performed on the V–t measure-
ment data to confirm the higher harmonics [integer multiples
of the input sinusoidal wave frequency (11 Hz)].
A waveform generation task was performed using the same

data acquisition system as that used for the V–t measurement, to
evaluate the RC performance, as shown in Fig. 4(a). 6 Vpp

amplitude and 11Hz sinusoidal waves were inputted to one
electrode of the device, and the 15 outputs were used for learning
by linear regression31) to approach the shape of the target waves.
The sum-of-products operation of the output signals can be
expressed as å W x ,i

i i15
31) where W , x, and i are the weights

between the reservoir and output layer, reservoir state that
represents the output signal, and the number of output electrodes,
respectively. The output signals were optimized by updating all
W ;i ( )a= + -W Y X XX I ,T T

out target
2 1 where W ,out Y ,target X, a,

and I represent the Wi matrix, target matrix, xi matrix,
regularization factor, and identify matrix, respectively. A wave-
form generation task was then performed using the optimized
weight values, and the accuracy was calculated. A total of
10 000 data points were used for the waveform generation task:
8000 for training and 2000 for testing.

3. Results and discussion

3.1. Structural properties of synthesized α-Fe2O3 and
Ti–Bi–O
The synthesized α-Fe2O3 and Ti–Bi–O structures were
characterized using XRD, TEM, and EDS mapping. The
XRD results of α-Fe2O3 showed the presence of a peak
corresponding to α-Fe2O3, as shown in Fig. 2(a). The
Scherrer formula was used to approximate the crystallite
size (CS) of the materials, as follows:32,33)

( )l
b q

=
K

CS
cos

, 1

where CS, K, λ, β, and θ denote the crystal size, Scherrer
constant (0.891), X-ray wavelength, FWHM, and Bragg
angle, respectively.
The CS was calculated to be 16.4 nm. The electron

diffraction image shows that the lattice plane appears to be
ring-shaped in Fig. S1(a). The XRD results show the peak

Fig. 1. (Color online) Schematics of device fabrication process.

SG1042-2 © 2023 The Japan Society of Applied Physics

Jpn. J. Appl. Phys. 62, SG1042 (2023) M. Hakoshima et al.



near the (104) plane of the hematite phase is measured, and
its FWHM suggesting that the material is single-crystalline.
The FWHM is 0.14, close to the previous single crystal
study.34) EDS mapping confirmed the presence of Fe and O
atoms in the same region, suggesting the presence of iron
oxide, as shown in Figs. 2(c)–2(e). The bright-field (BF)
image from the TEM image confirmed particle agglomeration
[Fig. S1(b)]. A histogram was created from the BF
image to calculate the average particle size, as shown in
Fig. S1(c). The average particle size was 158.4 nm. The
particle size was larger than the CS. The XRD and TEM
results suggest the successful fabrication of α-Fe2O3 pure
nanoparticles.
In the case of Ti–Bi–O, the XRD results show TiO2 and

Bi4Ti3O12 peaks in Fig. 2(b). The CS values were calculated
to be 5.65 nm and 20.3 nm, respectively. The electron
diffraction image suggested that the crystal ring patterns
were polycrystalline, consistent with the XRD peak analysis
results shown in Fig. S1(d). EDS mapping showed the
presence of Ti and O atoms in the same region, suggesting
the presence of titanium oxide. The Bi region was included in
the Ti and O regions, suggesting the presence of Ti–Bi–O
compounds, as shown in Figs. 2(f)–2(i). The BF image from
the TEM image confirmed particle agglomeration [Fig. S1
(e)]. The histogram shows that the average particle size is
13.75 nm in Fig. S1(f). The histogram results show different
particle sizes of TiO2 and Bi4Ti3O12. In the TEM image,
TiO2 and Bi4Ti3O12 crystals are observed to be mixed.
Therefore, the average particle size was 13 nm. The above
XRD and TEM results demonstrate the successful synthesis
of TiO2 and Bi4Ti3O12.

3.2. Electrical characterization of α-Fe2O3/Ti–Bi–O
composite devices
The electrical properties of the fabricated composite devices
were evaluated based on the I–V and V–t characteristics. The
I–V curve in Fig. 3(a) shows that the composite device
exhibits nonlinear electrical characteristics. Figures S2(a), S2
(b) show the I–V curves for the α-Fe2O3 and Ti–Bi–O
devices. The results show that using each material as a
composite improves carrier transport and increases the
current, consistent with previous results.27) Figure S2(c)
shows the electrical properties of the composite device
without distilled water. The result suggests that ionic
conduction is dominant in the composite devices because
the current is dramatically reduced in the absence of water.
Electrical properties of Ti–Bi–O nanoparticles depend on
nanoparticle density. The smaller the grain size, the larger the
relative crystal density, which leads to an increased resistance
due to an increase in grain boundaries.35) The Lissajous plot
and FFT analysis were performed on the output data obtained
from the V–t measurements, as shown in Fig. 3(b). A
Lissajous plot can be created by combining two oscillations.
A Lissajous plot36) is expressed as follows:

⎧
⎨⎩

( )
( ) ( )q
q d

=
= +
x A a

y B b
sin

sin
, 2

where A and B, aθ and bθ, and d are the amplitude, angular
frequency, and phase shift, respectively. Here, the Lissajous
curve was created using two signals: one is input signal to the
material device and other is output signal obtained from the
material device. The Lissajous curve in Fig. 3(c) shows a
phase shift with an angle of 5.07° between the input and

Fig. 2. (Color online) Material identification. XRD peak analyses of (a) α-Fe2O3 and (b) Ti–Bi–O. (c-e) TEM images of hematite. (c) Secondary electron
image, EDS mapping of (d) iron atoms and (e) oxygen atoms. (f)–(i) TEM images of Ti–Bi–O. (f) Secondary electron image and EDS mapping of (g) titanium
atoms, (h) oxygen atoms, and (i) bismuth atoms.
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output signals because the curve shape is elliptical. The FFT
analysis can be used to confirm the frequency characteristics
of the V–t curves. The FFT analysis results showed higher
harmonic generation from integer multiples of the 11 Hz
input frequency, as shown in Fig. 3(d). The I–V and V–t
curves confirm that the composite device has the following
three properties: nonlinear current–voltage characteristics,
phase shift, and higher harmonics. These properties are
necessary for a reservoir material to exhibit high
performance.19,24,25) From these results, we can conclude
that the composite device has the potential to be used as a
high-performance reservoir material.
3.3. Performance evaluation of the device as a
reservoir material
The waveform generation task, which is a typical benchmark,
was performed to verify the RC performance of the compo-
site device. Figures 4(b)–4(e) show the learning results with a
triangle, sin2ωt, square, and sawtooth waves as the target,
respectively. The prediction accuracy of the waveform
generation was calculated using the following equation:

( )
( )
( ¯)

( )= -
å -

å -
x y

x y

x x
Accuracy , 1 , 3i i i

i i

2

2

where x ,i x̄, and yi are the output data, the mean of the
outputs, and the target data, respectively. The prediction
accuracy exceeded 87% indicating that the composite device
had a high RC performance. Figure 4(f) shows the relation-
ship between the prediction accuracy and voltage white noise
in the waveform generation task. With the change in the ratio
of the voltage white noise in the input, the prediction
accuracy of square and sawtooth were improved when a
small amount (<3%) of voltage white noise was added to the

input signal. The result indicates that direct noise injection
into the input signals contributed to improving the waveform
prediction accuracy. The software simulation results showed
that the normalized root-mean-square error (NRMSE) of the
prediction reduced significantly when a small amount of
noise (0.25%) was injected into the input signal. Our
experimental results showed a trend similar to the results of
a software experiment26) Since prediction accuracy in this
work represents the generalization ability, we demonstrated
that adding a small noise in RC system prevents overlearning
and improves generalization ability as well as software
simulation. The phenomenon was demonstrated for the first
time in an experimental system in which noise injection
prevented overlearning and improved the waveform predic-
tion accuracy.

4. Conclusions

We successfully synthesized α-Fe2O3 and Ti–Bi–O powders
using the sol–gel method. Material identification was per-
formed by XRD, TEM, and EDS mapping. The I–V and V–t
characteristics showed that the composite devices exhibited
electrical nonlinearity, phase shift, and higher harmonics.
From these results, the composite material devices satisfied
the properties required to serve as high-performance reservoir
materials. A waveform generation task was performed to
evaluate the RC performance of our device; the results
showed a high prediction accuracy of over 87%. Although
machine learning also empirically showed an improvement in
accuracy when noise was applied to the signal,26) the results
of this study experimentally demonstrated that the RC
performance could be improved by injecting a small amount
of noise. This is analogous to the phenomenon observed in

(a) (b)

(c) (d)

Fig. 3. (Color online) Evaluation of electrical characteristics. (a) I–V curves. (b) V–t curves with input, output 1, and output 2 signals. (c) Lissajous plot
between the input and output voltages. (d) FFT analysis of the V–t curve with a 11 Hz sinusoidal input.
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the biological brain, which is subjected to potential fluctua-
tions due to stimuli from the external world. The successful
incorporation of noise injection into the existing information
process can serve as a basis for developing new information
processing systems.
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