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Influence of junction resistance on spatiotemporal
dynamics and reservoir computing performance
arising from an SWNT/POM 3D network formed
via a scaffold template technique†

Saman Azhari, *‡a,b Deep Banerjee,a,b Takumi Kotooka,a Yuki Usamia,b and
Hirofumi Tanaka *a,b

For scientists in numerous fields, creating a physical device that can function like the human brain is an

aspiration. It is believed that we may achieve brain-like spatiotemporal information processing by fabricat-

ing an in materio reservoir computing (RC) device because of a complex random network topology with

nonlinear dynamics. One of the significant drawbacks of a two-dimensional physical reservoir system is

the difficulty in controlling the network density. This work reports the use of a 3D porous template as a

scaffold to fabricate a three-dimensional network of a single-walled carbon nanotube polyoxometalate

nanocomposite. Although the three-dimensional system exhibits better nonlinear dynamics and spatio-

temporal dynamics, and higher harmonics generation than a two-dimensional system, the results suggest

a correlation between a higher number of resistive junctions and reservoir performance. We show that by

increasing the spatial dimension of the device, the memory capacity improves, while the scale-free

network exponent (γ) remains nearly unchanged. The three-dimensional device also displays improved

performance in the well-known RC benchmark task of waveform generation. This study demonstrates the

impact of an additional spatial dimension, network distribution and network density on in materio RC

device performance and tries to shed some light on the reason behind such behavior.

Introduction

It is believed that artificial intelligence (AI) is shaping the
future of science and technology.1–3 AI has shown great poten-
tial in prediction,4,5 recognition,6–8 and classification9 tasks,
ultimately making life safer and more convenient. Currently,
AI is a rapidly growing field with unimaginable possibilities.
However, due to the independent processing and memory
units in the von Neumann based computer architecture, the
von Neumann bottleneck is instigated; therefore, attempts to
achieve the full spectrum of AI abilities have faced many
obstacles.10 Scientists are investigating non-von Neumann

architectures such as neuromorphic computing10,11 to over-
come these limitations.

Neuromorphic computing was introduced as a concept in
the 1980s, inspired by the human brain and the functioning of
the nervous system, and it began to get much attention due to
the development of artificial neural networks (ANNs). ANN is
one of the critical constituents of the AI system. Among all
types of available ANNs, the recurrent neural network (RNN)
deals with time-dependent (temporal) information and is
believed to mimic the human brain’s ability to learn and
understand.11 Recently, reservoir computing (RC) as a compu-
tational framework derived from a RNN has emerged,12 which
is known in the fields of machine learning as an echo state
network (ESN) and computational neuroscience as a liquid-
state machine (LSM).13 There are several ways of RC inte-
gration. Even so generally in the RC system, the internal state
consists of high dimensional recurrently connected nonlinear
nodes, treated as black boxes with fixed weights and in the
output layer the data are trained to fit a specific target because
of the discrimination ability of the system. This is done by
updating the output weights usually determined using a
simple linear regression model7,12,14 (Fig. S1†). Thus, an RC

†Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d2nr04619a

‡Present address: Graduate School of Information, Production and Systems
(IPS), Waseda University, 2-7 Hibikino, Wakamatsu, Kitakyushu, Fukuoka
8080135, Japan. E-mail: saman@aoni.waseda.jp

aResearch Center for Neuromorphic AI Hardware, Kyushu Institute of Technology

(Kyutech), 2-4 Hibikino, Wakamatsu, Kitakyushu 8080196, Japan.

E-mail: tanaka@brain.kyutech.ac.jp
bGraduate School of Life Science and Systems Engineering, Kyushu Institute of

Technology (Kyutech), 2-4 Hibikino, Wakamatsu, Kitakyushu 8080196, Japan

This journal is © The Royal Society of Chemistry 2023 Nanoscale, 2023, 15, 8169–8180 | 8169

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Fe

br
ua

ry
 2

02
3.

 D
ow

nl
oa

de
d 

on
 9

/5
/2

02
3 

3:
31

:0
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

http://rsc.li/nanoscale
http://orcid.org/0000-0002-7043-0909
http://orcid.org/0000-0002-4378-5747
https://doi.org/10.1039/d2nr04619a
https://doi.org/10.1039/d2nr04619a
https://doi.org/10.1039/d2nr04619a
http://crossmark.crossref.org/dialog/?doi=10.1039/d2nr04619a&domain=pdf&date_stamp=2023-05-10
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2nr04619a
https://pubs.rsc.org/en/journals/journal/NR
https://pubs.rsc.org/en/journals/journal/NR?issueid=NR015018


system is an ideal alternative15 to overcome the complications
one may face in fabricating an in materio RNN.

The rapid expansion of ANNs has helped with technological
and scientific advancement, but a significant aspect was neg-
lected: the system’s ability to perform a task parallelly and
energy efficiently. This issue arises due to the von Neumann
bottleneck, which is why unconventional computing is getting
attention.16 For instance, tens to hundreds of transistors are
required to replicate a neuron-synapse circuit behaviour using
complementary metal–oxide–semiconductor (CMOS) techno-
logy, which is not as energy efficient17,18 as the human brain.

The human brain is the most complex and sophisticated
organic computer, capable of performing multiple tasks in
parallel quickly and efficiently.19 Unlike the available compu-
tational devices, the human brain is three-dimensional (3D)
with a dense network of neurons and synapses with task-
dependent distribution.20 This network allows infinite poss-
ible outcomes because of its topology and its large number of
neurons.21 Since fabricating a device capable of processing
information like the human brain is the objective, it seems
logical to fabricate a device with a similar structure and
topology.

One approach for fabricating physical devices that can
ideally process spatiotemporal information like the human
brain and function like neurons and synapses22 is the use of in
materio RC. In materio RC is attracting increasing attention
due to the reports of biologically inspired systems such as the
octopus robot,23,24 physical systems such as the water
bucket,25 and the development of atomic switching devices
using nanowires26–28 and nanoparticles29 that behave like
memristors. Ultimately, as a result of utilizing the unique
dynamic properties observed in such systems, which allow
temporal information processing, we would perform compu-
tational tasks much more efficiently.12,30 In the studies
reported thus far, 2D RC devices with the physical structure
and behaviour of RNNs have been fabricated.12,31

Simultaneously 3D RC has been investigated extensively in 3D
memristor arrays22,32–34 and quasi-3D nanowire networks.35,36

For instance, a 3D memristive in materio RC array has been
reported following an approach similar to that of IC
fabrication37,38. However, such devices’ mass production and
utilization are not feasible due to the complicated fabrication
process. At the same time, neither the 3D memristor array nor
the quasi-3D network of nanowires has shown any improve-
ments over their 2D counterparts.36

The other approaches for developing in materio RC devices
use solution processable materials.14,29,31 For instance, a nano-
composite of single-walled carbon nanotubes (SWNTs) and
polyoxometalate (POM)31 is regarded as a good candidate for
such futuristic technologies because it fulfills the primary
requirements for in materio RC, i.e., nonlinearity, higher
dimensionality, echo state properties, and memory.13,34 To
date, devices fabricated using such materials are in 2D, which
begs the question of how such a random network of nano-
materials would behave in a 3D network formation. We believe
that to fabricate a brain like in-materio RC; there is an easier

fabrication path that facilitates the formation larger number
of junctions per unit area between input and output nodes
with a 3D brain-like structure which eliminates the limitations
of 2D devices such as fixed pathlength and uncontrollable
distribution.

The scaffold template method is an approach that enables
the possibility of fabricating a 3D distribution of
nanomaterials.39–44 The scaffold template method has recently
been getting considerable attention mainly due to its ability to
function as a network backbone, allowing the nanomaterials
to embody the template’s structure and topology.44 This
method is underrated due to overwhelmingly rapid expansion
and variation of nanomaterial-based device fabrication
methods. Nonetheless, the scaffold template method is excel-
lent for fabricating a device that requires a porous topology
with multiple interconnected junctions that could overcome
the limitation faced during electrode fabrication in 2D devices.

Herein we report the fabrication of a 3D network of an
SWNT/POM nanocomposite capable of performing benchmark
tasks of in materio RC. Comparison between the 2D and 3D
devices indicates that the fabrication of a 3D reservoir device
via the scaffold template method improves the reservoir
dynamics and performance. Using the scaffold template
approach, we have managed to fabricate a 3D in materio RC
device with a higher number of junctions in a small area with
limited aggregation and stacking of SWNT/POM, which
increased spatiotemporal dynamics and memory capacity.
Furthermore, we have tried to shed some light on the reason
behind these observations.

Experimental procedure
Materials

Chemical vapor deposition (CVD) synthesized SWNTs (Sigma-
Aldrich) with (6, 5) chirality and 0.7–0.9 nm diameter were pur-
ified by annealing at 200 °C for 20 h, followed by refluxing in
concentrated HCl (12 M) at 110 °C for 1 h to remove the amor-
phous carbon and Fe catalysts.31,45 The acid treated SWNTs
were filtered and washed with deionized water to achieve a pH
value of 7 prior to drying at 80 °C to obtain the purified
SWNTs. Phosphomolybdic acid hydrate (H3PMo12O40·12H2O,
PMo12 hereafter) (Sigma-Aldrich), isopropyl alcohol (IPA)
(Wako), acetone (Wako), acetonitrile (Wako), and commercially
available Gekiochi melamine sponge (LEC, Inc.) were used as
purchased.

SWNT/POM preparation

The SWNT/POM nanocomposite was prepared by dispersing
0.5 mg of SWNTs in 10 mL of IPA via sonication (40 kHz) for
1 h. PMo12 (10 mg) was dissolved in 1 mL of acetonitrile via
sonication for 5 min. The PMo12 solution was added to the
SWNT dispersion, followed by sonication for 4 h in a soni-
cation bath maintained at 10 °C to prevent any damage to the
SWNTs. The final dispersion was centrifuged at 2500 rpm, and
after discarding the supernatant, the sediments were re-dis-
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persed in 10 mL of IPA via sonication for 1 h.12,31 Fig. 1a dis-
plays this process.

2D device fabrication

To deposit the SWNT/POM thin-film toward the fabrication of
2D devices a vacuum-assisted wet transfer process was
utilized.12,31 In short, the SWNT/POM dispersion (0.5 mL) was
filtered through 0.1 μm-mesh nitrocellulose filter paper (MCE,
Millipore) prior to cutting into a rectangle (0.6 × 0.5 cm) and
placing on top of copper electrode pads fabricated using an
FR-4 printed circuit board (Fig. S2†). Acetone was drop-cast on
the filter paper to assist the attachment of the SWNT/POM
film to the substrate. The substrate was then placed on top of a
glass vial, filled with acetone and heated to 100 °C to dissolve
the remaining cellulose filter paper via acetone vapour for 1 h.
One electrode was denoted as the input and the remaining
eleven as outputs. Fig. 1b shows the 2D sample preparation
process and electrode design.12

3D device fabrication

The 3D in materio RC devices were fabricated by immersing
the melamine sponge (scaffolding template) with the dimen-
sions of 1.25 × 1.25 × 1.25 cm into the SWNT/POM dis-
persion, followed by sonication for 5 min prior to drying in

an oven at 50 °C for 12 h. A 3D printed box was fabricated
as a sample holder for 3D devices. The dimensions of the
3D printed box were 1.4 cm × 1.4 cm × 1.4 cm to fit the
sample inside. Two holes were placed on each side of the
3D printed box to place the pin headers and adjust the
lengths. The diameter of the holes on the 3D printed box
was 0.85 mm ± 0.1 mm, adequate to keep the pin headers
stationary. Pin headers were used as electrodes. The length
of the pin headers was 1.15 cm, of which 0.2 ± 0.05 cm
penetrated the 3D samples. Like 2D samples, one of the
pins was denoted as the input and the remaining eleven as
outputs. The 3D printed box was used to eradicate the possi-
bility of sample deformation and control the size of the
contact area between the electrodes and the sample, resem-
bling the electrode pads in the 2D device. Fig. 1c displays
the fabrication process.

Characterization and measurements

Ultra-high resolution field emission scanning electron
microscopy (FE-SEM) (Hitachi S-5200) was utilized to deter-
mine the network distribution, density, and topology of 2D
and 3D samples. The ten fabricated samples’ (five 2D and five
3D labeled 2D-X and 3D-X with X representing the sample
number) current–voltage (I–V) characteristics were recorded

Fig. 1 (a) Formation of the SWNT/POM nanocomposite through physical adsorption; (b) 2D sample fabrication via the vacuum-assisted wet transfer
process; (c) 3D sample fabrication via the template method.
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under a DC sweeping bias of ±3 V at a scan rate of 40 mV s−1

with a semiconductor parameter analyser (Agilent 4156B) with
50 Ω output impedance. Similarly, I–V measurements with the
same parameters were performed on 3D samples with
different dimensions and electrode penetration depths to
evaluate the influence of an additional spatial dimension and
network density on the nonlinear dynamics of the 3D
in materio RC device, respectively. Python version 3.10.5 for
impedance and phase angle calculation and LTspice XVII for
electronic circuit simulation were used. For the samples with
different dimensions, the height and length were maintained
the same as those of the previously prepared samples, i.e.,
1.25 cm, and the thickness was varied to 0.2, 0.7, and 1.25 cm.
At the same time, the influence of network density on the non-
linear dynamics of the 3D in materio RC device was investi-
gated by changing the electrode penetration depth to 0
(surface), 0.1, and 0.4 cm ± 0.05 cm in a 3D sample with
similar dimensions to the prepared samples, i.e., 1.25 × 1.25 ×
1.25 cm.

All other tasks such as the I–t measurement, sinusoidal
input–output relations for constructing the Lissajous plots,
sinusoidal input for Higher harmonic generation and the RC
benchmark task of waveform generation, and random pulse
input for memory capacity were completed using National
Instrument data acquisition PXIe 6363 (DAQ), terminal block
SCB-68A and LabVIEW software. For I–t, a constant DC bias
voltage of 1, 3, or 5 V for 60 s was supplied via the input. The
voltage response was converted into current by placing an
additional 2.7 MΩ resistor. The power spectral density (PSD)
was obtained by fast Fourier transformation (FFT) of the
respective output response of the I–t measurement. The logar-
ithmic plots of the PSD were fitted using the power law given
in eqn (1), where ‘P’ is the power, ‘A’ is the population activity,
‘f ’ is the frequency, and ‘γ’ is the scale-free exponent.26,27,46,47

Both the FFT and fitting were conducted using OriginPro 2022
software.

P ¼ A
f γ

ð1Þ

Memory capacity was determined by inputting random
pulses of high and low voltages (1 V and 0 V) generated by
LabVIEW to the device using DAQ while simultaneously
collecting the reservoir states (output voltage) using DAQ for
60 seconds. Three voltages, that is, 1, 3, and 5 V were used as
high voltage values. In addition, memory capacity measure-
ment at 3 V was performed on a sample with different volumes
to investigate the influence of 3D SWNT/POM network size on
memory capacity. For this purpose, a 2.5 × 2.5 × 2.5 cm sample
was prepared, and its height was reduced using a razor blade
with steps of 0.25 cm after each measurement until the sample
reached 2.5 × 2.5 × 1 cm. The memory capacity was determined
using eqn (2), where ‘yk(t )’ is the linearly combined output
signal trained via linear regression to reconstruct the input
signal with k-step delay ‘u(t − k)’, ‘cov’ denotes covariance, and
‘σ2’ means variance. The memory capacity is determined by

integrating values calculated at each k-step delay.14,48–51 The
memory capacity calculation was performed using Python
programming.

MC ¼
Xkmax

k¼1

MCk ¼
Xkmax

k¼1

cov uðt� kÞ; ykðtÞð Þ2
σ2 uðt� kÞð Þσ2 ykðtÞð Þ ð2Þ

The nonlinear spatiotemporal dynamics between the input
and output signals, higher-dimensional information mapping,
which allows feature extraction from linearly inseparable input
information, and the waveform generation task were
examined14,34,52–54 by applying 11 Hz bipolar ±1, ±3, and
±5 V sine waves to the input, and recording the data from
11 outputs simultaneously over a total time of 60 s. The 11
outputs represented the different reservoir states ‘Oi(t )’, with
‘i’ being the number of the output electrode pad during the
waveform generation task.

The output signals were transformed from the time domain
to the frequency domain using the FFT algorithm to explore
the higher dimensional information mapping of the in materio
RC device. The devices’ nonlinear spatiotemporal dynamics
were examined using the Lissajous plot (V–V), drawn using the
input and output signals. The target waves of the square 11
Hz, sawtooth 11 Hz, sine 22 Hz, and sine 33 Hz were produced
using the Scipy library in Python to perform the waveform
generation task. A total epoch of 1 s was used for the data ana-
lysis, with 0.7 s for training and 0.3 s for testing. An offline
multiple linear regression training approach was adopted,
where the output weights ‘Wi’ of each reservoir state were
trained to fit the supervised target waves ‘Y(t )’, using eqn (3) in
the Python program.

W out ¼ ðOTOÞ�1OTY ð3Þ
The bold format indicates that each parameter is in its

matrix form and ‘T’ denotes the transpose of the matrix. The
trained weights ‘Wout’ were used to construct the test reservoir
signal ‘F(t )’ using a weighted linear combination of the reser-
voir states corresponding to the ‘m’ output electrodes (eqn (4)).
The testing performance was evaluated by computing the nor-
malized mean square error (NMSE) using eqn (5) between the
output ‘F(t )’ and the target ‘Y(t )’, and the accuracy in eqn (6)
over an epoch of 1 s.

FðtÞ ¼
Xm
i¼1

Wi
outX

iðtÞ ð4Þ

NMSE ¼
P

YðtÞ � FðtÞð Þ2P
YðtÞ2 ð5Þ

Accuracy ¼ ðð1� NMSEÞ � 100Þ ð6Þ
The performances of the 2D and 3D devices were compared

quantitatively by fabricating five samples of each (2D-X and
3D-X with X representing the sample number). After the
measurement, two steps were taken to plot the scale-free
network exponent (γ) and population activity. First, the average
value of output nodes for each device was calculated, and then
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the average value and standard deviation amongst the five
samples of each group (2D and 3D) were computed. The last
step was sufficient for the memory capacity and waveform
generation task accuracy as these quantities are determined by
summation of all the output nodes (Fig. S3 and S4†).

Results and discussion
Network topology

Fig. 2a displays the dense distribution of the SWNT/POM
network on the 2D substrate in the 2D in materio RC device.
Based on the FESEM images there is clearly large SWNT/POM
network connectivity in the 2D in materio RC device with a
high density of SWNT junctions in the 2D plane. On the other
hand, Fig. 2b reveals that in the 3D network, the SWNT/POM
network forms on the melamine sponge porous structure
(Fig. S5†) that behaves as the network’s backbone, forming a
unique 3D SWNT/POM network topology which is essentially a
2D SWNT/POM network on a 3D scaffold. The main distinc-
tions between the two networks are the well-established
porous structure of the melamine sponge with 99% porosity55

and pore sizes in the range of 100–150 µm56 in addition to the
ununiform attachment of the SWT/POM network to the mela-
mine sponge resulting in lower SWNT/POM network density.
The presence of blank areas both in 2D and 3D in materio RC

devices is clear, although the 3D sample exhibits larger blank
surface areas indicating the lower density of conductive paths.
Nonetheless the number of junctions (red dots) where a SWNT
makes a junction with one or more SWNTs is significantly
higher in the 3D network. The number of junctions (neglecting
blank regions) in the 2D sample is approximately 2.35 µm−2

while in the 3D sample considering the volume and porosity
the number of junctions increases to 174.88 µm−2. The
increase in the number of junctions reveals the advantage of a
porous scaffold template in fabricating a larger network in a
small area.

Nonlinearity

It is evident from the I–V measurements shown in Fig. 2a and
b insets that in the 3D sample, the current increases non-
monotonically with a simultaneous decrease with increasing
bias (blue dotted circles). Such random fluctuations are attrib-
uted to the charge–discharge redox arising from POM mole-
cules as supported by Tanaka et al.31 with the cellular auto-
mata model and are thus the source of non-linear dynamics.
Since, the POM distribution is inhomogeneous, the magnitude
of such charge–discharge varies within the network and thus
an I–V curve with varying degrees of random fluctuations at
different voltage biases is observed in Fig. 2b inset. Although
random, they are not insignificant to the performance of the
fabricated device. With SWNT/POM being further investigated,

Fig. 2 FE-SEM image and I–V characterization (inset) of the (a) 2D and (b) 3D networks of SWNT/POM (the blue dotted circle shows the region with
a non-monotonic change in current).
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it has become clear that such random noise like behaviour is
essential for the success of a physical reservoir system.
Moreover, current in the 3D device is three orders of magni-
tude lower than that in the 2D device. Since the POM
molecules as the redox-active species are the nonlinear com-
ponents, the improved nonlinearity is correlated with the
interaction of the current with POM molecules.30 On the other
hand, since SWNTs are the conductive elements in the SWNT/
POM network, the lower current flow in the 3D device indicates
a higher junction resistance due to the presence of a higher
number of SWNT junctions in the 3D device. These obser-
vations are due to the higher surface area of the porous mela-
mine sponge, which results in a complex network topology as
confirmed by the FE-SEM images, suggesting the influence of
network density and connectivity on the nonlinearity of the
SWNT/POM network. To understand how the network density
influences the nonlinear dynamics, the thickness of the 3D
sample and the electrode penetration length were varied.
Although the electrode penetration lengths shown in Fig. 3a–c
are closer to the penetration lengths shown in Fig. 3e, it is

evident from Fig. 3a and d that the I–V performance of the 3D
device on the surface and at low thickness resembles the
behaviour of the 2D device (Fig. 2a, inset). In contrast, the
increase in the thickness of the device or the electrode pene-
tration length increases the nonlinearity of the 3D devices. The
increased nonlinearity due to the additional spatial dimension
(Fig. 3b and c) of the SWNT/POM network in the 3D device
results from the increase in complexity and network density.
However, due to a larger number of conductive paths (low re-
sistance) between the input and output electrodes, the behav-
iour resembles the result from the sample with a similar elec-
trode penetration length (Fig. 3e). On the other hand, the
sample with a high penetration length (Fig. 3f) exhibits strong
nonlinearity due to a smaller number of conductive paths
(high resistance) between input and output, which increases
the probability of larger current interaction with POM mole-
cules, resulting in stronger nonlinearity. The drastic decrease
in current and increase in nonlinearity are clearly observed in
Fig. 3f. The SWNT/POM 3D network on the porous scaffold
template could be modelled as a network of parallel resistors,

Fig. 3 I–V measurement for samples with thicknesses of (a) 0.2 cm, (b) 0.7 cm and (c) 1.25 cm; I–V measurement for samples with electrode pene-
tration lengths of (d) 0 cm (surface), (e) 0.1 cm and (f ) 0.4 cm (the symbols ↑ and ↓ indicate the increase and decrease, respectively; the different
colours in the I–V graphs represent repetitions in the measurement).
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note that the SWNT/POM network is typically modelled as RC
circuits, but here a purely resistive model is utilized due to the
DC input and for simple explanation of the mechanism; for a
more detailed explanation, please refer to “Higher dimension-
ality and spatiotemporal dynamics” section. To elucidate the
observed behaviour, let us assume a network of parallel resis-
tors, with “RL” signifying the resistance of each conductive
path without POM (low resistance), “RH” the resistance of the
paths with POM (high resistance) and “RT” the total resistance

1
RT

¼ 1
R1

þ 1
R2

þ 1
R3

þ . . .þ 1
Rn

� �
. Let us assume that there are

equal numbers of RL and RH pathways (nRL = nRH) due to a
homogeneous distribution, and the low and high resistance
pathways, RL and RH, respectively, each have constant resist-
ances with RH being 1000 times higher than RL (RH = 1000 ×
RL). From the results, it is evident that the samples with low
penetration depths have low total resistance, and hence a
higher number of conductive paths without POM (lowRT =
high_nRL), while a sample with a high penetration depth has
higher total resistance, and hence a lower number of conduc-
tive paths without POM (highRT = low_nRL) (the influence of
the increase and decrease in RH is negligible in comparison
with that of RL). So, since lowRT < highRT (Fig. 3d–f ), based on
the Kirchhoff’s current law, the decrease in nRL results in a
higher amount of current passing through RH resulting in
stronger nonlinearity in the sample with a higher penetration
depth. This is one of the advantages of an in materio 3D device
which allows the change in nonlinear dynamics by reposition-
ing the electrodes, which is not possible in 2D devices.

Information processing

An in materio RC device able to process spatiotemporal infor-
mation follows a scale-free network topology.26,47 A scale-free
network is a network in which the degree distribution (prob-
ability distribution of links at nodes in the network) follows a
power-law distribution, as shown in eqn (1)26,27,46,47 (Fig. S6
and S7†). γ in eqn (1) is related to the underlying physics of
the system and the mechanism of charge carrier transport. In
a percolated network, the value of γ can depend on several col-
lective properties of the system, such as the distribution of
carrier mobilities, the concentration of carriers, and the
dimensionality of the network. In a homogeneous system with
a single carrier type and single mobility, the value of γ is
related to the dimensionality of the system. In a heterogeneous
system with multiple carrier types and mobilities, the value of
γ can be affected by the distribution of carrier mobilities. In
percolated networks, the value of γ can also depend on the
concentration of carriers and the degree of percolation.57–59 In
addition, the variable γ reflects the frequency dependence of
the power spectral density (PSD) of a signal, and it can provide
information about the dynamic properties of the system being
studied.60,61 Specifically, γ can provide insight into the tem-
poral correlations of the fluctuations in the system.62,63 For a
scale-free network, ‘γ’ must be greater than 1.64 Reports
suggest that the ‘γ’ value in the network of SWNT/POM is

greater than 1.65 Furthermore, ‘A’ signifies the number of
neurons firing simultaneously, and an increase or decrease in
this value indicates an overall increase or decrease in the
population activity, respectively.

The charge transfer in the SWNT/POM model has been
associated with the cellular automata model, in which the
noise generation because of the redox reaction resulting in
charge accumulation and distribution amongst neighbouring
POM molecules is correlated with potential difference.31,65 In
this model, the number of charges (proportional to the poten-
tial) of a POM particle at time t and the threshold number of
electrons for discharge operation are defined by ai,j(t ), and
aTH, respectively. When ai,j < aTH, a small number of charges
are transferred to one of the neighbours, whereas when ai,j >
aTH, all charges should be released and transferred to their
neighbours.31,65 To determine how the spatial dimension
influences this property, DC voltage was applied to the device,
and the output current was recorded and used to determine
the PSD. The γ value was determined by fitting the PSD using
eqn (1). The results indicate that the ‘γ’ value is nearly
unchanged (Fig. 4a and S8†).

The value of ‘γ’ in the SWNT/POM in materio RC devices is
used to characterize the noise colour; particularly it is a
measure of noise type.65–67 The ‘γ’ value obtained from the
samples corresponds to flicker noise or pink noise, signifying
the same amount of energy at each octave, meaning that the
low-frequency noises have higher intensities than the high-fre-
quency noises, but the collective intensity of noise at lower
and higher frequency ranges (octaves) remains the same,
which can be modelled as a bouncing ball model.68 The scale-
free network model implies numerous nodes with a low degree
(few links) and very few with a high degree (many links). So,
the constructive and destructive interferences due to the
charge accumulation and distribution between the neighbour-
ing POM molecules behave as if the interaction happens
slowly (low frequency) at the spots where POM molecules inter-
act with another POM molecule. In contrast, the interaction is
much faster (high frequency) at the spots where POM mole-
cules interact with thousands of other POM molecules. At the
same time, the energy dissipation is not high enough for the
information to disappear and not low enough to interfere with
the lower frequency noises.

This similarity of the ‘γ’ value signifies a similar probability
of the scale-free network distribution, suggesting that even by
increasing the spatial dimension of the device, the distribution
of charge in the SWNT/POM network is an intrinsic property
and may be affected by the morphology of the constituent
materials, i.e., the length and diameter of SWNTs and physical
attachment of POM molecules to SWNTs. Nonetheless, a slight
increase in the value of ‘γ’ in the 3D sample signifies the
decline in the number of links between the nodes (faster
energy dissipation). In addition, the population activity corre-
lated with noise amplitude in the SWNT/POM network,65 as
shown in Fig. 4b and Fig. S7,† and decreased by one order of
magnitude in the 3D devices. Since the population activity
corresponds to noise amplitude, its decline is due to an
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increased spatial dimension and the transformation of
network topology (porous structure). The porous structure of
the scaffold template affects the connectivity, so due to such
complexities resulting in lower connectivity, the input signal
travels through a lower number of nodes, which indicates the
lack of connectivity in the 3D in materio RC devices due to the
ununiform attachment of SWNT/POM to the scaffold template.
This argument was further visualized via Python programming
which exhibits the same number of nodes while the number of
links increases (Fig. 4c). As it is evident from Fig. 4c, the
increase in the number of links increases the connectivity and
network activity depicted using coloured circles at the junc-
tions (the bigger circles correspond to nodes with multiple
numbers of links and activity). The results indicate that the 3D
device may enable the powerful information processing ability
of the in materio RC devices by controlling the attachment of

SWNT/POM to the scaffold template and tuning the network
connectivity to process information similar to biological
neuronal networks, such as the human brain.69

Memory capacity

The recurrent connections present in an RC system result in
the recollection of the input signal for successive time steps.
The memory capacity quantifies the ability of the RC system to
reconstruct its past input signal using its current state.14,48–51

In the case of an in materio RC system, unlike software-
based RC systems, such properties could not be tuned by chan-
ging the program algorithm or the variable. Furthermore,
there would always be a physical limitation in in materio RC
devices. For instance, considering Fig. 2 and 3, it is evident
that the network density and connectivity can ultimately influ-
ence the network complexity. This effect is because the SWNT/

Fig. 4 (a) The scale-free network exponent and (b) population activity of the 2D and 3D devices, obtained by applying DC voltage as the input while
collecting current output and calculating the γ and A values, respectively, by fitting the PSD curve using eqn (1); (c) 3D network graph visualized
using Python for a network of 100 nodes with an increasing number of links; memory capacity of (d) 2D and 3D devices and (e) 3D network of
SWNT/POM with different volumes, obtained by applying random pulses and calculation using eqn (2).
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POM concentration per unit area has an upper and lower limit
corresponding to the saturation and lack of conductive paths,
respectively, to form a stable nonlinear network.

The results suggest that by increasing the spatial dimension
of the device from 2D to 3D, we could resolve such compli-
cations. As shown in Fig. 4d and Fig. S9,† the 3D devices exhibit
higher memory capacity, indicating that the 3D in materio RC
device could reconstruct information from a higher number of
time steps in the past than the 2D device. This observation
suggests the dependency of the in materio RC device performance
and parameters on its physical structure, and network connec-
tivity and topology.70–72 This observation was further
examined by finding a correlation between network size
(template volume) and memory capacity, as shown in Fig. 4e.
The data suggest an exponential growth in memory capacity
corresponding to template volume (network size)

MC ¼ offset þ amplitude� e
volume

time constant

� �
with a growth rate of

0.6. The data suggest a significant (α = 0.1) positive correlation
between memory capacity and volume, r(5) = 0.701, P = 0.079.
Although these values may differ depending on the distribution
of SWNT/POM on the scaffold template, it does not change the
fact that by manipulating the template size (network size) and
network topology, we can tune the in materio RC device para-
meters and ultimately design a device suitable for a specific task.

Higher dimensionality and spatiotemporal dynamics

As reported, the network of SWNT/POM can generate non-
linear dynamics resulting from the redox reaction occurring
in POM molecules and their capacitive tendencies.31 The oscil-
lations of charged particles due to these redox reactions gene-
rate higher-dimensional information mapping.

The Lissajous plot of the 3D devices (Fig. S10c and S11†)
exhibits a range of nearly linear and nonlinear dynamics
between the input and output signals (<20%), depending on the
position of the output electrode with respect to the input elec-
trode. Although similar tendencies were observed in the 2D
devices (Fig. S10a and S11†), the variation tended to be more
linear with little to no spatiotemporal dynamics (>60%). These
results indicate the dominance of the nonlinear spatiotemporal
dynamics in the 3D device, making it ideal for in materio RC
tasks compared to the 2D devices. The 3D devices exhibit more
robust higher dimensionality (Fig. S10d and S12†) than the 2D
devices (Fig. S10b and S12†). The higher harmonic generation
tendencies are stronger and more prominent in the 3D devices
than in the 2D devices due to the complex distribution of the
SWNT/POM nanocomposite on the scaffold template, which
decreases the conduction path and increases the redox prob-
ability of POM molecules (nonlinear spatiotemporal dynamics).
Although electrons follow all paths during conduction, they are
inclined to take the path of least resistance. At the same time,
the lower resistance in the 2D device was shown to disrupt the
interactions of electrons with POM molecules, resulting in a lack
of charge accumulation necessary for a strong redox reaction,
and hence the weaker higher harmonics generation.

This could be explained by considering that the SWNT/
POM network is modelled as a parallel RC circuit,73–75 in
which the resistor (R) represents the SWNT junction resistance
and capacitor (C) represents the interface between SWNTs and
POM molecules. To understand the observed behaviour, first
we should realize that the impedance (Z) and phase angle (Φ)

in the parallel RC circuit are Zj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R

� �2

þð2πfCÞ2
s and Φ =

arctan(−R2πfC), respectively, where f is the alternating current
(AC) frequency (11 Hz), and R and C are the SWNT junction re-
sistance and the SWNT–POM interface, respectively. As shown
in Fig. S13a and b,† as the junction resistance increases, the
impedance and phase angle increase, and based on the impe-

dance relationship with voltage and current I ¼ V
Z

� �
, the

increase in impedance decreases the current (I). The increase
in impedance results in a smaller current flow between input
and output electrodes. Considering that capacitance (interface
between SWNTs and POM) is the same in the samples (similar

SWNT to POM ratio) and IC ¼ C
dVin
dt

, we could conclude that

IC ¼ dVin
dt

and the current drop results in a slower rate of

voltage change, resulting in the presence of relatively more dis-
tinct spatiotemporal dynamics (greater phase angle) as shown
in Fig. S13d and f.†

As shown in Fig. S13† the change in the junction resistance
and capacitance has a significant impact on the spatiotem-
poral dynamics of the in materio RC device. From these results
and the observation of 2D and 3D device performances, we
can conclude that the presence of higher junction resistance
in the 3D sample is due to scaffold template’s specific surface
area and topology, resulting in less conductive junctions as
observed in the FESEM images (Fig. 2), I–V measurements
(Fig. 2 and 3) and lower population activity (Fig. 4b).

RC waveform generation benchmark tasks

The waveform generation benchmark task is a well-established
RC task, in which a sinusoidal waveform is applied to the RC
system as the input, and the output signals are linearly combined
via linear regression to fit a specific target waveform as shown in
Fig. S4† and eqn (3) and (4). The error and accuracy of the fit are
then determined via eqn (5) and (6). The RC system’s nonlinear
spatiotemporal dynamics and higher dimensional information
mapping allow the output signals to fit the target waveform accu-
rately (refer to the ESI, “Waveform generation”†).

As shown in Fig. 5, the 3D device increases the waveform
generation task accuracy (eqn (5) and (6)), with an average of
20% for the 22 Hz sinusoidal target wave and 30% for the 33
Hz sinusoidal target wave. The additional spatial dimension of
the device creates more complexity, enabling more robust
spatiotemporal nonlinear dynamics and higher-dimensional
mapping, which differ from sample to sample (Fig. S14–S17†)
due to the variation in CNT–POM distribution, resulting in the
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alteration of electron interactions with POM molecules, and
the SWNT/POM network as discussed in the previous sections.
From Fig. 5, we see that the mean accuracy for all the target
waves increases with bias through the same amount of train-
ing. This observation confirms the improved performance of
the 3D network topology of the SWNT/POM network over the
2D one.

Conclusions

The 2D and 3D in materio RC devices were fabricated, and
their reservoir performances were evaluated. The I–V, FFT, and
Lissajous results signify a higher degree of nonlinearity, more
robust higher harmonic generation, and nonlinear spatiotem-
poral dynamics in the 3D device. The results suggest that these
tendencies may result from the scaffold template’s porous
structure, which influences the conductive path formation and
adds complexity to the network structure. The scale-free
network exponent shows similar values in the 2D and 3D
devices, implying that the distribution of the SWNT/POM
network is an intrinsic property. Nonetheless, the decline in
the population activity of the 3D devices implies that the
addition of a spatial dimension in the network topology
necessitates a better control of network formation and connec-
tivity. The memory capacity in 3D devices is more significant
than that of 2D devices, and exponential growth in memory

capacity correlated to network size is confirmed. Finally, the
performance of the 3D in materio RC device in the waveform
generation benchmark task is more significant than that of its
2D counterpart. These results signify the impact of an
additional spatial dimension, network density, network distri-
bution, and device topology on the in materio RC device per-
formance. The complex network topology in 3D devices opens
up the possibility of superior nonlinear spatiotemporal
dynamics and memory.
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Fig. 5 (a) Testing accuracy of the 2D and 3D devices for the 22 Hz sinusoidal target with 11 Hz sinusoidal input; (b) 22 Hz sinusoidal target wave-
form generation of the 2D device (5 V input); (c) 22 Hz sinusoidal target waveform generation of the 3D device (5 V input); (d–) testing accuracy of
the 2D and 3D devices for 33 Hz sinusoidal, 11 Hz sawtooth and 11 Hz square wave targets, respectively, with 11 Hz sinusoidal input.
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