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Abstract
The need for highly energy-efficient information processing has sparked a new age of
material-based computational devices. Among these, random networks (RNWs) of carbon
nanotubes (CNTs) complexed with other materials have been extensively investigated owing to
their extraordinary characteristics. However, the heterogeneity of CNT research has made it quite
challenging to comprehend the necessary features of in-materio computing in a RNW of CNTs.
Herein, we systematically tackle the topic by reviewing the progress of CNT applications, from the
discovery of individual CNT conduction to their recent uses in neuromorphic and unconventional
(reservoir) computing. This review catalogues the extraordinary abilities of random CNT networks
and their complexes used to conduct nonlinear in-materio computing tasks as well as classification
tasks that may replace current energy-inefficient systems.

1. Introduction

With the rapid progress of software-based artificial intelligence (AI), the high energy consumption of contem-
porary complementary metal-oxide-semiconductor (CMOS) systems has becomes a major concern. There-
fore, analog hardware-based AI techniques are required [1]. Notably, innovative analog-based phenomena
derived from the material sciences present exciting new opportunities. For example, material-based composites
have been found to enable signal processing, computation, and memory storage, which if configured properly,
may be from 10 to 100-times more efficient, thus easing energy burdens.

This study contributes to the future development of neuromorphic AI hardware by cataloguing the intelli-
gent capabilities inherent in random networks (RNWs) that combine nonlinearity and other properties [2–8]
to mimic the dynamics of the human brain [9, 10]. This review provides a historic review of carbon nanotube
(CNT) RNWs and their composites to better understand their conductive and neuromorphic properties, as
illustrated in figure 1.

2. Electric nonlinearity of individual CNT and CNT complexed with molecules

At the microscopic scale, the human brain exhibits clearly nonlinear dynamics [9, 11]. To reproduce synap-
tic and neuromorphic properties, a combination of two nonlinear components (i.e., a CNT and molecule) is
essential. For a synapse, the CNT/molecule component should be such that it resembles the nonlinear resistive
switching characteristic. Such dynamics give rise to multiple resistive/conductive states, representative of bio-
logical synaptic weights, from within the network, hence making it more of a memory unit, where the states
can be modified by controlling the charge influx through it via external stimulation. While, for emulating the
biological neuron, energy efficient information generation, such as spike interval or density is required from a
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Figure 1. Lowest to highest levels of abstraction on how intelligence has emerged from CNT RNWs.

Figure 2. (a)–(d) Procedure for measuring nanotube characteristics with the tip of a single scanning tunnelling microscope.
Types of current–voltage characteristics obtained for contact points at different heights of (e) 1600, (f) 1850, (g) 1950, and
(h) 1980 nm along the CNT. Note the near-ideal rectification behavior in (h). (From [12]. Reprinted with permission from AAAS)

molecular functionalized CNT system. As such, the device dynamics should closely exhibit the negative differ-
ential resistance behavior in its current–voltage profile, where, after an initial non-ohmic conductance increase
a rapid decrease, under the window of an increasing external stimuli, is followed. Therefore, we now examine
nonlinear conduction in CNTs.

Many methods have been reported for measuring CNT electrical properties. However, the measurement
of isolated CNTs was not possible until the late 1990s, when the tip of a scanning tunnelling microscope was
found to induce induction and voltage (I–V) characteristics (figure 2). It was found that varying the distance
between the tip and the substrate and changing CNT lengths created a variety of nonlinear I–V results that
are consistent with the localized charge transport mechanism that currently allows the existence of nanoscale
electronic devices [12]. Both metallic and non-metallic behaviors have been observed, along with abrupt jumps
in conductivity via temperature variances [13]. This report is the earliest case of CNTs having been confirmed
to exhibit nonlinear conduction without substrate interference.

Nonlinear conduction in field-effect transistors (FETs) has also been investigated. In 1998, an FET based
on isolated semiconducting CNTs was fabricated and electrically measured using gate bias voltage to alter the
shape of the source-drain I–V curve [14]. Tunnelling thin-film transistors (TFTs) have also emerged as poten-
tial candidates for replacing low-voltage CMOS FETs. A triple-gate CNT TFT FET, fabricated by introducing
a sharp n–i–p doping profile via electrostatic doping, demonstrated a subthreshold swing (SS) of sub-60
mV/decade in a band-to-band tunnelling operation. The operation mechanism was found to overcome the
fundamental SS limit of 60 mV/decade at room temperature. The nonlinear output characteristics observed
in TFET operations indicate that one-dimensional CNTs are the optimal channel material for overcoming
drain-induced barrier thinning by operating within the quantum capacitance limit [15].

Some nanoparticle (NP)-based CNT complexes have been found to show specific electrical properties from
the combination of CNTs and adsorbed NP molecules [16]. One approach for obtaining electrical nonlinearity
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Figure 3. (a) Structural formula of synthesized 5,15-bispentylporphyrinato zinc(II) (BPP-Zn) and the SWNT/BPP-Zn complex.
(b) Tapping-mode AFM image of BPP-Zn on an SWNT electrode. The SWNT is almost entirely covered by BPP-Zn aggregates, as
indicated by arrow (i). Some sections of the SWNT are partially exposed, as indicated by the arrow (ii). (c) Topographic image of
BPP-Zn absorbed on an SWNT electrode. I –V measurements are carried out at points A′–G′. (d) I –V curves obtained at each
point. ([17] John Wiley & Sons. Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

is to complement NP materials with CNTs for electrical functionalization. Many types of materials have been
reported to support this. For instance, Tanaka et al reported the adsorption of 5,15-bispentylporphyrinato
zinc(II) (BPP-Zn) NPs on the sidewalls of single-walled nanotubes for electrical functionalization, as shown
in figures 3(a) and (b). Point contact current imaging atomic force microscopy (AFM) was used to measure
the I–V curves, which showed nonlinear electrical properties as a result of the NPs behaving as nanodiodes on
the single-wall nanotube (SWNT) wiring [17]. Another report suggested that a porphyrin single molecule can
operate as a point local gate for individual SWNT FETs owing to the redox of a single molecule [18], which
can be a source of telegraph noise of the system.

Similar studies using a 150mer-porphyrin polymer (150mer-porph) also reported enhanced conductivity
of SWNTs owing to the π electron donation from the 150mer-porph [19]. Conductivity measurements with
metallic nanotubes isolated from pristine SWNTs showed that SWNTs become semiconducting in the pres-
ence of metal NPs [20]. This was further expanded to SWNT-adsorbed phosphomolybdic acid (PMo12O−40;
POM), which results in an SWNT/POM junction in which rectification direction inversion arises from SWNT
particle size or chirality. Kelvin probe force microscopy measurements showed that the charge distribution of
POM/semiconducting SWNTs was opposite to that of POM/metallic SWNTs [21].

Other CNT-based CMOS approaches exist. For example, a CMOS-like inverter was integrated using
ambipolar CNT transistors. The ambipolarity of Schottky-barrier CNT FETs is a well-known phenomenon
that occurs in a vacuum environment or with a top-gate oxide and electrode. A new approach that consid-
ers beneficial ambipolarity in a CNT-based CMOS circuit was proposed in which CMOS-like logic circuits
(e.g., inverters and NOR/NAND gates) lacking an unreliable doping process were integrated using ambipolar
CNT transistors (figure 4) that automatically configured themselves to act as n- or p-type logic gates, depending
on the exchange of supply voltage (VDD) and ground [22].

Figure 5 also shows SWNT-based CMOS logic circuits with sub-nanowatt static power consumption
through the threshold voltage tuning of constituent p- and n-type SWNT transistors [23]. This behavior
is enabled by a local metal gate structure that achieves enhancement-mode p- and n-type SWNT TFTs
with widely separated and symmetric threshold voltages. These complementary SWNT TFTs are reported to
demonstrate a CMOS inverter and NAND and NOR logic gates at supply voltages as low as 0.8 V with an ideal
rail-to-rail operation, sub-nanowatt static power consumption, high gain, and excellent noise immunity. This
is accomplished by precisely tuning the p- and n-type TFT threshold voltages to match the ideal conditions for
an integrated CMOS device. The resulting logic gates exhibit symmetric rail-to-rail operation and excellent
noise immunity, allowing the use of cascaded multiple logic gates in highly integrated circuits.
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Figure 4. (a) Three-dimensional schematic of a network CNT TFT with an Al2O3 top gate (50 nm thickness) and a Ti/Au
electrode. (b) Optical micrograph image of an array of 200 TFTs (only portions are shown) and the magnified view of an
individual TFT (inset). (c) Scanning electron microscopy (SEM) image of the source and drain electrode pairs with the network
SWNT channel and a magnified view of the SWNT channel (inset). The typical CNT length is <1 μm. (d) Characteristics of NOR
gate when V1 = V DD and V2 = GND, and (e) NAND gate when V1 = GND and V2 = V DD. (Reprinted with permission from
[22]. Copyright © 2009, American Chemical Society)

Reports suggest that the adsorption of molecules on CNTs can control their electrical properties. Similarly,
CNT electrical properties can be controlled by exposing them to chemical analytes (e.g., ethanol, benzene,
acetone, and toluene) for functionalization. As shown in figure 6, reversible nonlinear I–V characteristics
with higher-than-usual resistance and suppressed zero-bias conductance depend on the chemical analyte. For
example, when the chemical analytes interact with the CNT surface, conductivity decreases. These results
confirm the chemical selectivity of CNTs and their electrical interactions with different chemical analytes [24].

Another way to generate nonlinearity may be to selectively dope the channels of SWNT networks with
triethyl oxonium hexachloroantimonate and polyethylenimine to form p–i–n junctions with strong built-
in electric fields. Using this method, high-performance diodes with a high rectification ratio, large forward
current, and low reverse saturation current have been realized [25], and the I–V characteristics show clear
nonlinear rectifying properties. An asymmetric contact was found to effectively improve p–i–n diode perfor-
mance [26]. A three-dimensional electrolyte-accessible electrode structure was developed to achieve a high-
performance rate in an organic electrolyte. Additionally, Ti3C2Tx-based specially synthesized knotted CNTs,
as shown in figure 7, were used to support a Ti3C2 network. The electrode structure was modified to simulta-
neously maximize ion accessibility and minimize the tortuosity of the ion transport pathways. MXene-knotted
CNT composite electrodes have been reported to exhibit high capacitance with a scan rate of more than three
orders of magnitude [27].

Another interesting report suggested the direct production of a CNT composite via the fermentation of
yeast extract in the presence of CNT aqueous dispersion. Electrical and optical analyses demonstrated that
the fermentation of beer yeast in the presence of CNTs enhanced nonlinearity, electrical conductivity, and
photoconductive activity of the composite film [28].
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Figure 5. SWNT CMOS device structure. (a) SWNT CMOS inverter, including the unencapsulated p-type TFT and benzyl
viologen-doped n-type TFT. (b) Cross-section of an individual SWNT TFT consisting of SiO2 on a Si substrate, a local Ni gate,
deposited Al2O3 layer, >99% pure deposited semiconducting SWNTs, and Cr/Au source/drain contacts. (c) AFM image of the
SWNT film morphology within the TFT channel region. (d) SWCNT CMOS inverter electrical characteristics. Voltage transfer
curves for V DD = 0.8, 1, and 1.25 V (inset shows the circuit diagram of the inverter). (Reprinted with permission from [23].
Copyright © 2013, American Chemical Society)

In summary, the nonlinearity of CNT RNWs and their performance characteristics provide all the nec-
essary properties for in-materio computing. In the following sections, we explain how this can be used for
neuromorphic computing.

3. Neuromorphic devices and hardware on a random network of CNTs

Independent of AI, neuromorphic hardware has emerged as its own research field that focuses on neuroscience,
wherein the construction of spiking neurons and their dense, complex networks is the first step of in-materio
and in-memory computing. However, the integration density of current neuromorphic devices is much lower
than that of the human brain.

A molecular neuromorphic device comprising a dynamic and extremely dense RNW of SWNTs complexed
with POM [29] was experimentally shown to generate spontaneous spikes and noise. The authors proposed an
electron-cascading model consisting of heterogeneous molecular junctions that yielded results in good agree-
ment with theory, indicating the possibility that complex functional networks could be constructed using
molecular devices (figure 8).

Another approach to fabricating synaptic tendencies involves optically gated (OG) CNT FET-based
synapses (figure 9) [30]. The device is controlled by light irradiation, and conductance is programmed by
applying electrical pulses. A neuromorphic computing architecture was proposed using the principal advan-
tage of the gate protection effect based on a crossbar geometry in which the gate electrodes are shared in the
same row. The crossbar architecture is believed to learn several functions in a massively parallel manner while
promising high reliability, high density, and fast learning.

CNT synaptic transistors have also been fabricated from a hydrogen-doped PEG electrolyte sandwiched
between the CNT channel and a Ti/Al top-gate electrode (figure 10) [31]. The CNT synapse was operated
based on the dynamic interactions between the CNTs and hydrogen ions in an electrochemical cell (key to
synaptic mechanisms). Under spike stimulation, the device emulates the dynamic logic, learning, and memory
functions of a biological synapse with low energy consumption.

Although the CNT synapse has an FET structure, an oxide dielectric layer was later implanted with indium
ions as the gate instead of integrating the hydrogen-doped PEG electrolyte [32]. To imitate the dynamic func-
tions of a neuron and an axon, a CNT-based FET and a Si-based integrate-and-fire (I & F) circuit were used.
By applying input spikes and using the I & F circuit to trigger output spikes, dynamic analogue post-synaptic
currents and an excitatory post-synaptic current (EPSC) and inhibitory post-synaptic current (IPSC) were
successfully emulated (figure 11).

In another report, an FET structure was developed to improve the capability of CNT synapses. Half of the
CNT channel was converted using aluminium oxide (Al2O3) film, changing the CNTs from p- to n-types. As
a result, a p–n junction was formed in the CNT channel, and the Schottky barrier increased between the n-
type CNTs and their metal contacts. Thus, the baseline current through the CNT channel in an idle state was
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Figure 6. (a) Scanning electron microscopy image of CNT dispersed gold electrodes used for sensing organic analytes. The inset
shows the microstructure of a CNT mat between electrodes. (b) Experimental setup used for the CNT sensor. (c)–(f) Cyclic
response shown for the CNT samples with different analytes: (c) toluene, (d) benzene, (e) ethanol, and (f) acetone. (Reproduced
from [24]. © IOP Publishing Ltd. All rights reserved.)

significantly reduced, thus improving power efficiency. Excitatory and inhibitory synapses were emulated using
multiple CNT synapses integrated with a Si-based soma circuit [33]. Additionally, a light-stimulated neuro-
morphic device made of printed photogate SWNT TFT-based synapses was reported. In such devices, the
synaptic mechanism is induced by photogenerated carriers and trapping states in the interfaces. Under pulsed
light stimulation, synaptic functions (e.g., learning, memory, and signal filtering) are successfully emulated.
Multimodal optoelectronic SWNTs mixed with lead-free perovskite (CsBi3I10) TFTs have also been proposed.
In this case, both electrical and optical pulse signals can be used together to modulate the drain currents; key
synaptic functions were demonstrated. Notably, multiple artificial synapses, flash memory, and logic opera-
tions can be integrated into a single transistor. The SWNT/CsBi3I10 TFT successfully implemented cognitive
behaviors using Pavlov’s conditioning experiment and applied the recognition of handwritten digits [34].
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Figure 7. Design of MXene-knotted CNT composite electrodes for efficient ion transportation. (a) Synthesis process of knotted
CNTs, where thin CNTs are intertwined with thicker ones. (b) MXene-knotted CNT composite electrode with reduced horizontal
orientation and lower ion transport tortuosity through the electrode bulk (Reproduced from [27] CC BY 4.0.)

A novel photoneuromorphic device based on printed photogating SWNT-TFTs using lightly n-doped Si as
the gate electrode was reported as similar system to the learning and memory functions of brain-inspired
neuromorphic systems [35].

Poly(vinyl alcohol) (PVA) was used as the dielectric layer in a biocompatible synaptic transistor [36]. A flex-
ible (F) transparent CNT synaptic transistor (ST)—based synapse was proposed. The behaviors of biological
synapses, including spike-dependent plasticity, paired-pulse facilitation, and short- and long-term plasticity,
were emulated. The F-CNT-STs exhibited high flexibility and their synaptic functions remained functional
after 1000 bending cycles (figure 12).

In another fabrication approach, flexible printed SWNT TFTs using solid-state electrolyte dielectrics com-
posed of a mixture of ion liquids and cross-linked poly(4-vinylphenol) were used as dielectric layers [37].
These devices can simulate basic synaptic plasticity such as EPSC and paired-pulse facilitation, as well as their
inhibitory characteristics. It exhibits good stability and mechanical flexibility, and the change in the EPSC curve
is almost negligible before, during, and after bending (figure 13).

A CNT transistor was used to demonstrate an artificial tactile sensor system [38], exhibiting a semi-volatile
characteristic that can switch the operation mode (volatile or nonvolatile) according to the bias condition. As a
semi-volatile device, both sensory neurons and the perceptual synaptic network were implemented as a single
device. The tactile sensor system distinguishes temporally correlated pressure stimuli and extracts features of
the tactile patterns for pattern recognition (figure 14).

A unique study on neuromorphic devices was later conducted through which more attention was paid
toward utilizing biocompatible and biodegradable materials [39]. A degradable chlorophyll-a/SWNT synaptic
transistor was developed on a PVA substrate to provide a naturally biodegradable and water-soluble device to
demonstrate zero e-waste (figure 15). Key synaptic functions, including EPSC, paired-pulse facilitation, tran-
sition from short- to long-term memory, and learning and forgetting experiences, were successfully realized
with this device. The device dissolved with rainfall and completely decomposed after 5 min.

4. In-materio physical reservoir computing (RC) devices on CNT random network

Hereafter, we describe reservoir computing (RC) devices based on material engineering. Several approaches
have been developed to complement current AI hardware with material devices. An artificial neural network
(ANN) inspired by the biological neuromorphic behavior of the brain is shown in figure 16(a). Most current AI
systems comprise feedforward-propagating neural networks (NNs). Each node computes a nonlinear transfor-
mation of the sum of the products between the incoming signals and their synaptic weights, plus an additional
bias term (red circles in figure 16(a)). When this kind of system contains more than three hidden (middle)
layers, it qualifies as deep learning [40]. Unlike feed-forward propagation NNs, recurrent NNs (RNNs) can

7
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Figure 8. Experimental setup and noise generation of a SWNT phosphomolybdic acid (POM) network. (a) SWNT/POM
complex network. Yellow cuboids, black tubes, and purple spheres represent terminal electrodes, SWNTs, and POM particles,
respectively. (b) Substrate covered with the SWNT/POM complex that includes six electrodes. (c) Sampled current density over
time, representing current magnitude distributions with the bias voltage increasing stepwise across electrodes from 0 to 125 V for
the network. (Inset) Current becomes unstable at 150 V. (d) Time dependence of the current under humidity. (Inset)
Magnification of periodic base current modulation. (Reproduced from [29] CC BY 4.0.)

use their internal state (memory) to process any sequence of inputs, meaning that some information from a
given node can be fed back into the original, as shown by the blue circle arrows in figure 16(a). This allows
them to exhibit temporal dynamics [41] suitable for tasks such as non-segmented, connected handwriting [42]
and speech recognition [43, 44]. RC is a special RNN case, as shown in figure 16(b); it was developed from
echo-state networks (ESNs) [45, 46] and liquid-state machines [47] as its information-processing framework
[48, 49]. The ESN provides an architecture and a supervised learning principle for RNNs for the RC system,
in which the hidden layer is treated as a black box, indicating that the internal weight of the network is fixed.
Strong nonlinearity, high dimensionality, and higher memory are necessary properties of an RC system. Learn-
ing is conducted only in the output layer through simple linear regression. The in-materio and physical RC is
reported to be in good agreement with RC theory. Hence, there have been many interesting reports about the
materials needed to develop RC devices.

The high-dimensional nonlinear transformation of the input signals obtained as a function of the output
signals can be treated equivalently to the information generated when a software-designed NN architecture
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Figure 9. Crossbar architecture comprising four neurons (CMOS-based) and 16 synapses (OG CNT FETs). Each neuron is
associated with four synapses within a row that share the same electrical gate (Vgi) and source terminal. The drain terminals
(vertical pre-synapse) connect the synapses from different neurons and apply programming pulses during learning and input
signals during computing. All synapses in the array share a common P3OT film OG terminal. The output of the functions (Yi)
and the feedback signals to the gate (Vgi) are produced through simple CMOS based neurons. (Reproduced from [30], with
permission from Springer Nature.)

Figure 10. Structure of a CNT synapse and a post-synaptic current triggered by a pre-synaptic spike. (a) The transistor-like
structure of a CNT synapse is shown with an electrochemical cell containing hydrogen ions in a polymer electrolyte integrated
into its gate. The inset shows an AFM image of a random CNT network and the average density of the single-wall CNT.
(b) Biological synapse between pre- and post-synaptic neurons. (c) A symbol representing the CNT synapse within a scheme
showing that a pre-synaptic potential spike applied on its top gate triggers an excitatory post-synaptic current on its drain. ([31]
John Wiley & Sons. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)

operates with a nonlinear activation function. Therefore, hardware can be implemented by simply learning
these output signals without the need for a separate information processor. Although many such hardware NN
models [50] have been studied, RC is novel and has only recently attracted significant attention (figure 16(b))
[51–54] owing to its straightforward framework for processing time-series data. The execution of RC learn-
ing for time-series prediction tasks has been applied to atomic switch networks (ASNs) [55–57], memris-
tor networks [58], CNT/polymer composites [59, 60], NP aggregation [57], polymer network systems [61],

9
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Figure 11. (a) Scheme showing a neuron (yellow) connected to two other neurons (blue) through synapses. (b) Structure of the
neuromorphic module composed of an I & F axon circuit and synapses. Input spikes induce an EPSC through an excitatory CNT
synapse (blue ‘+’ triangle) and an IPSC through an inhibitory CNT synapse (green ‘–’ triangle). Dynamic PSCs flow jointly
toward the I & F circuit and trigger output spikes. (c) CNT synapse with a channel composed of a random CNT network
connected with source (S) and drain (D) electrodes. Indium ions are implanted into an aluminum oxide dielectric layer in the
transistor gate. A potential of V ds =−0.2 V is applied to an inhibitory CNT synapse. An input spike applied to the transistor gate
induces a dynamic current through the transistor channel as a PSC flows from the transistor source toward the I & F circuit.
(d) AFM image of a random CNT network in the transistor channel. (Reprinted with permission from [32]. Copyright © 2013,
American Chemical Society.)

Figure 12. Characterization studies of flexible carbon nanotube synaptic transistors (F-CNT-STs). (a) F-CNT-ST illustration.
(b) Scanning electron microscopy image of the electrode and channel of a representative F-CNT-ST. (c) Optical transmittance of a
bare polyethylene naphthalate substrate and fabricated F-CNT-STs. (Inset) F-CNT-ST photograph. (Reproduced from [36] with
permission from the Royal Society of Chemistry.)

optoelectronic systems [62, 63], soft bodies [64, 65], spintronics [4, 66], and water-tank systems [67]. The
efficacy of each RC material is derived from the intrinsic reservoir property [53, 54] of recurrent nonlinear
high-dimensional dynamics analogous to the human brain [10]. Irrespective of their material and fabrication
diversity, their inherent dynamical complexity enables an easy input-driven computation of RC tasks with only
readout trainability. Among the many physical systems, RCs with ASNs and CNTs have a promising future as
large-scale bioinspired computers owing to their brain-like physicality and solution-processable RNW integra-
tion. Therefore, materials with such dynamics and physical architectures are being explored, including random
SWNT networks with porphyrin POM [29].

As shown in figure 8, SWNTs are a source of noise and when functionalized with redox-active POM,
they can undergo changes in their conductive states, generating brain-like random fluctuations and neuronal
spike-like signals [29]. Utilizing intrinsic dynamics, an RNW structure was simulated and rudimentary learn-
ing ability through external feedback was illustrated with a theoretical RC model (figure 17(a)). Complex
nonlinear dynamics were chosen from randomly selected POM molecules within the network, specifically
from the source/drain side and FORCE (algorithm) learning was applied to optimize output weights to carry
out the RC benchmark task of nonlinear autoregressive moving average (NARMA)-10 time-series predic-
tion (figures 17(b)–(d)). Task learning was inferred by evaluating the normalized root mean-square deviation
(NRMSD), where the lowest NRMSD implies the best optimization [30].

As an extension work of reference [29], reservoir performance of SWNT/POM was experimentally evalu-
ated [68]. SWNT/POM with a polybutylmethacrylate (PBMA) composite was used to experimentally verify
the RC task using NARMA-10. Thin composite films were prepared by ultrasonically mixing SWNTs, POM,
and PBMA and drop-casting them onto a 10 × 10 grid microelectrode array. A laboratory-built experimen-
tal computing platform was designed to benchmark the supervised NARMA-10 time-series prediction. By
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Figure 13. Stability of the flexible fully solution processed SWNT synaptic device stored under a relative humidity of 20%.
(a) Flexible SWNT TFT arrays on polyimide substrate bent over a bottle with a radius of 9 mm. (b) and (c) Transfer
characteristics and EPSC, respectively, of flexible device before, during, and after bending. The frequency and voltage of the
stimulus sequence consisting of 50 continuous electrical pulses is 12.5 Hz and varies from 1 to 0 V, respectively. (d) Transfer
curves of SWNT TFTs across 30 days. (Reproduced from [37]. © IOP Publishing Ltd. All rights reserved.)

Figure 14. Conceptual design of a tactile sensor system compared with a biological sensor system. In biological systems, pressure
stimuli applied to mechanoreceptors change the receptor potential of each mechanoreceptor. The receptor potentials then initiate
action potentials. Action potentials from multiple nerve fibers are combined via neurons and contribute to information
processing. Finally, the synaptic network in the brain recognizes the input pressure pattern. The artificial tactile sensory system
comprises a tactile sensor device, voltage-controlled oscillator, neuronal device, and synaptic network. (Reproduced from [38]
CC BY 4.0.)

utilizing the nonlinear current dynamics of SWNT/POM, NARMA-10 was successfully implemented with a
normalized root mean-square error of 0.08, compared with the 0.19 score of the SWNT reservoir alone [69].
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Figure 15. Demonstration of the degradable process of chlorophyll-a SWNT composite transistor array. ([39] John Wiley &
Sons. © 2021 Wiley-VCH GmbH.)

Figure 16. (a) An ANN. A recurrent take NN allows for the feedback of information (blue circle arrow) at the nodes (red circles).
When signal has feedback at the nodes, the system is called as RNN. (Inset) The sum of products for all incoming signals are
calculated at all nodes. (b) Reservoir network which is a kind of RNN. All nodes having non-linearity are connected randomly.
Calculations in the middle layer are not required by treated as a black box. Learning is achieved only at the output layer.

In another report, a composite SWNT polymethyl methacrylate (PMMA) was used to construct an RC
device using a micro-electrode array architecture (figure 18(a)) integrated into a Mecobo hardware platform
consisting of field-programmable gate array-driven input/output controllers used to evolve the voltage outputs
(figure 18(b)). Mecobo hardware was also interfaced with an evolutionary algorithm (EA), a genotype-based
biological model that optimizes the output electrode response for a tone discriminator RC benchmark task.
Generally, in a tone discriminator, two inputs of different frequencies are classified by two output classes labeled
‘1’ for low-frequency input and ‘2’ for high-frequency input. The RC operation was performed in real-time,
and apart from the inputs and outputs, specific voltages were applied to the rest of the electrode pads used to
configure the device behavior. The configuration voltages affect the electrical behavior of the CNT-polymer
material, and the interaction induces certain voltages on the output electrode. The output was optimized with
EA through a fitness score, where the highest score implies valid output class optimization for discriminating
the input frequency tone [59].
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Figure 17. Demonstration of RC on the phosphomolybdic acid (POM) SWNT network (a) Illustration of a standard reservoir
system with external feedback, consisting of a recurrent generator network (blue spheres and directed arrows) with firing rates r, a
linear readout unit, Σ, with output z through weights w (red); output z is fed back to the reservoir. (b) Reservoir system
consisting of a two-dimensional RNW of POM particles (blue spheres) sandwiched between two electrodes (yellow bars). The
charge of a POM particle positioned at (i, j) is represented by ai,j . The weight, w, is modified by the output, z(t), and supervisor,
s(t), during the learning phase to attain z(t) ≈ s(t). (c) Time courses of NARMA-10 benchmark sequence, s(t) (supervisor), used
during FORCE learning and the output of the readout unit, z(t), after learning. (d) NRMSD vs R2 (50, purple; 100, green) and
the signal length from 160 to 400 steps. (Reproduced from [29] CC BY 4.0.)

Figure 18. Demonstration of a RNW model SWNT poly(methyl methacrylate) for a tone discriminator using an EA [58] with a
single 12-electrode array (circular) and one material sample. (a) Mecobo hardware interface implementation overview. (b) Tone
discriminator results for 114 pairs of frequencies. (Reproduced from [59], with permission from Springer Nature.)
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Figure 19. Stepwise object binary classification with a SWNT porphyrin polyoxometalate (Por-POM) reservoir. (a) The Toyota
human support robot (left) with a schematic of the arm (middle) connected to the gripper via a force–torque sensor gathers
tactile data from the change in gripper angle (θ) and grasping force applied to objects (right; e.g., bus, block, dog, and hedgehog
(HH) toys) presented in a red box. (b) Raw sensory data (left) obtained from each object are converted to time-series voltage data
using LabVIEW by sampling at 5 bits/s (left) in the range [0, −5] V, as depicted on the right. (c) Time series inputs Vm

in from
different objects, m (i.e., HH, dog, bus and block), are separately input into the SWNT (black line)/Por-POM (green circles)
reservoir with recurrent connections (red arrow), left figure. (d) One-hot vector encoding is used for binary classification. Each
square box with lines inside represents the target signal for each of HH, dog, bus and block. (Reproduced from [74] CC BY 4.0.)

To demonstrate performance, the same device was used to apply the RC tasks of NARMA-10, waveform
generation, and memory capacity. The results highlight the versatility of the device for RC benchmark perfor-
mance by controlling and optimizing the voltage outputs with varying degrees of SWNT/PBMA concentration
[60]. OR and AND Boolean logic gates and a half-adder operation were also accommodated by varying SWNT
concentrations. The upper limit of the linear increase in viscosity and conductivity against the concentration of
SWNTs of approximately 1% showed the best operational performance [70]. A simulation attempt was made
to solve the traveling salesman problem [71, 72], where Pi-swarm robots were tasked with moving along a
maze to reach an end goal without colliding [73].
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In another report, it was shown that a physical RC platform consisting of a recurrent SWNT-porphyrin
polyoxometalate complex network successfully executed fundamental reservoir properties of nonlinearity,
higher harmonic generation, and 1/fγ power-law information processing [9, 74, 75], where 1/fγ implies a
scale-free network distribution with self-organized criticality analogues to the human brain. A one-hot vector
target-based supervised object classification task using tactile input [74], performed by a Toyota human sup-
port robot [76], was executed by following a known Robo Cup worldwide [77] task. This was the first report
of an RC device consisting of a CNT RNW reservoir device directly induced in a robot for a recognition task
(figure 19).

A room-temperature demonstration of an in-materio RC with the same material was performed [78] in
which Boolean OR, AND, NOR, NAND, XOR, and XNOR functions were reconstructed with an >90% accu-
racy via the supervised training of linear voltage readouts. The RC prerequisite of an echo-state property and
a recurrent connection enabled consistent performance over multiple test datasets and time-shifted target
sequences.

We expect that an in-materio AI system fabricated using material hardware will be realized in the next
generation of computing devices.

5. Conclusion

In this article, we surveyed the historic results of initial CNT electrical measurement, the electrical nonlinearity
of individual CNTs, and those complexed with molecules, neuromorphic devices, and hardware used for RNWs
of CNTs and RC devices. We recounted the processes by which CNT RNWs obtain intelligence so that they
can be used for in-materio computing. The surveyed studies demonstrate the potential of CNTs and their
complexes as candidates for future AI computing and robotics. Of course, much work is still needed before
such devices can become commercialized, but the path is clearing daily. Moreover, in-materio computing is not
necessarily bound to CNTs; many other media are being investigated. We leave the review of other in-materio
compounds for RC capabilities to others. In the meantime, this review clearly demonstrates how material
engineering can play a role in the development of low-energy AI systems.
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[47] Maass W, Natschläger T and Markram H 2002 Real-time computing without stable states: a new framework for neural
computation based on perturbations Neural Comput. 14 2531–60
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