

液滴衝突過程におけるエネルギ収支の実験的検討^{*}

Experimental Study on the Energy Budget in a Drop Impact

大 川 拓	巳**	淵	澤	友	貴 **, *** 員	齌	藤	泰	洋****	城	田	農 **,†
OKAWA Takun	ni	FUCI	HISA	WA Y	uto	SAI	TO Y	asuhi	ro	SHI	ROTA Min	ori

Abstract Prediction of maximum spreading diameters of impacting drops is crucial for determining the quality and efficiency of many industrial applications using drop-on-demand or spray technology. In order to construct an exact theoretical model for predicting the maximum diameter, one needs to determine a time constant being required for the radial pressure gradient in a spreading drop to be disappeared, which is difficult to derive theoretically. We experimentally obtained the time constant by focusing on the energy budget during drop impact, especially on the viscous dissipation. By considering the time delay, we developed a theoretical model for predicting the maximum spreading diameters. The model shows good agreement with experimental results, revealing the importance of the internal velocity field in a drop.

Keywords: Drop impact, Wetting diameter, Viscous dissipation, Internal flow

1. 緒 言

ドロップオンデマンドやスプレー散布などの 技術において、固体に衝突する液滴の広がりを制 御することは、製品の品質やプロセスの効率を向 上させるうえで重要である。そのため、液滴衝突 の代表的な指標である最大広がり径*D*mに関して、 パンケーキ形状の液滴のエネルギ保存に基づく 理論式 [1-7] やスケーリング則 [8,9] が提案さ れた。

パンケーキモデルでは、衝突後の最大広がり時 において、液滴形状は半径方向の厚さが一様な円 盤状であるという仮定がおかれる。パンケーキモ デルの長所は、表面積が液滴直径の関数となるこ と、広がる方向の速度成分のみを考えればよいこ と、さらに最大広がり時において液体が静止する ことから、モデル化が容易なことである。

パンケーキモデルを用いたエネルギ保存式に おいてD_mを求める際に、表面エネルギと運動エ ネルギは最大広がり時のみの物理量から決定さ れるが、接触線のする仕事E_cと粘性散逸エネルギ E_dを求めるためには最大広がり時までの時間積 分が必要となる。これは、動的接触角および液滴 内の速度場が時間の関数であるためである。この 問題に対処するために、これまでに提案されたパ ンケーキモデルでは、時間平均値と補正係数を導 入することでD_mを良く予測できることが示され

^{* 2022.2.22} 受付

^{**} 弘前大学大学院理工学研究科

^{*** (}現) 日本工営株式会社

^{****} 九州工業大学大学院工学研究院物質工学研究系

[†] Corresponding author: mshirota@hirosaki-u.ac.jp

た。しかし、これら時間平均の検証は十分ではな いため、パンケーキモデルの予測精度をさらに向 上できる可能性が残されている。

 $E_c \ge E_d$ の時間積分を求めるためには、各種物 理量の時間依存性を明確にし、パンケーキモデル へ取り込むことが肝要である。例えば、平面上を 広がる実形状液滴内の粘性境界層の外側の半径 方向速度分布に対する解析解は、 $v_r^* \sim r^*/(t^* + \tau_n)$ となる [10-13]。ここで、rは極座標動径方向距 離、tは時間である。*が付与された物理量は無 次元量を表し、無次元化には代表長さとして液滴 の初期直径Do、代表速度として衝突速度Uo、代 表時間としてD₀/U₀を用いた。時間軸の移動パラ メータ τ_p は、衝突圧力(~ ρU_0^2 。 ρ は液滴の密度)が 減衰するまでの時間である。τηは、オイラー方程 式を積分する際に得られる任意定数でもあるた め、解析的に求めるにはある時刻における速度場 を与える必要がある。既往の研究[12,13]から、 τ_n はO(0.1)の大きさであることが推察される。こ の程度の大きさは、最大広がり時tmのときには

無視できるが、 $t^* < 1$ の衝突初期においては速度 場の解析解に有意な差を生じる。 τ_p 以外にも、平 面上の粘性境界層厚さの時間発展 $\sqrt{v(t + \tau_v)}$ (vは液体の動粘度)に関わる時間軸移動パラメータ τ_v が必要となる。パンケーキモデルを用いた E_d の 積分時間は、厳密には0からではなく τ_v からとす べきである。

本研究の目的は、時間積分を必要とする E_c と E_d のモデル化に及ぼす各種物理量の影響を実験 的に検証することで、パンケーキモデルを改良す ることである。ここで、 τ_p と τ_v は厳密には異なる が、いずれもO(0.1)[11]の大きさであるため、本 研究で提案するパンケーキモデルではひとつの 特性時間 τ として扱うこととする。このように、

時間積分はより厳密に扱うものの特性時間はひ とつに簡略化するパンケーキモデルは、従来モデ ルと比較してどの程度の優位性が得られるのか を本論文では検証する。そのために、D_mのみで はなく、各エネルギの寄与やモデル化における問 題点を、実験結果との比較をとおして考察する。

既往研究においてτは、数値解析 [12] あるい はライデンフロスト液滴衝突を対象とした実験

Table 1 Various physical quantity applied to the conventional pancake model.

	u _r	τ	θ_d	δ _ν	t_{m}
Pasandideh-Fard et al. [2]	U ₀	-	$\theta_d(t_{\rm m})$	$\sqrt{1.5\nu t_{\mathrm{m}}}$	$\frac{8D_0}{3U_0}$
Vadillo et al. [3]	U_0	-	$\bar{\theta}_d$	$\sqrt{1.5\nu t_{\rm m}}$	$\frac{8D_0}{3U_0}$
Mao et al. [4]	U_0	-	θ_{st}	$\sqrt{1.5\nu t_{\rm m}}$	$\frac{8D_0}{3U_0}$
Lee et al. [5]	U_0	-	$\theta_d(t_{\rm m})$	$\sqrt{2.0\nu t_{\mathrm{m}}}$	$\frac{bD_m}{U_0}$
Wildeman et al. [6]	U_0	-	180°	$\sqrt{\nu t_{\rm m}}$	$\frac{D_0}{U_0} \left(\frac{D_{\mathrm{m}}}{D_0} - 1 \right)$
Yonemoto et al. [7]	$\frac{3U_0}{8}$	-	$\frac{\theta_{st}+\theta_d(t_{\rm m})}{2}$	$\frac{h_{m}}{3}$	$\frac{D_{m}}{2U_{0}}$
Present study	$\left(\frac{r^*}{t^* + \tau^*}\right)U_0$	0.17	$\bar{\theta}_d$	$\sqrt{\nu(t + \tau)}$	$\frac{D_0}{U_0} \left(\frac{D_m}{D_0} - 0.17 \right)$

 Table 2
 Physical properties of liquids.

Liquid properties			Impact condition			
μ (Pas)	σ (Nm ⁻¹)	ρ (kgm ⁻³)	$D_0(\text{mm})$	We	Re	
2.2×10^{-2}	2.1×10^{-2}	970	2.6	10~420	450~6650	
4.2×10^{-2}	6.6×10^{-2}	1185	2.0	20~220	40~150	
7.0×10^{-2}	6.3×10^{-2}	1264	2.7	11~550	$18 \sim 1800$	
13.3×10^{-2}	2.7×10^{-2}	1009	1.9	40~130	10~20	
1.1×10^{-2}	2.2×10^{-2}	789	1.6	7~290	2637~3100	
0.9×10^{-2}	7.2×10^{-2}	998	3.0	30~170	226~1800	
22.0×10^{-2}	2.1×10^{-2}	970	1.7	38~400	6~20	
	Li μ (Pas) 2.2 × 10 ⁻² 4.2 × 10 ⁻² 1.3 × 10 ⁻² 1.1 × 10 ⁻² 0.9 × 10 ⁻² 22.0 × 10 ⁻²	$\label{eq:response} \begin{array}{c c} \mbox{Liquid propertial} \\ \hline μ (Pas) $ σ (Nm^{-1})$ \\ 2.2×10^{-2} 2.1×10^{-2} \\ 4.2×10^{-2} 6.6×10^{-2} \\ 1.3×10^{-2} 2.7×10^{-2} \\ 1.3×10^{-2} 2.7×10^{-2} \\ 1.1×10^{-2} 7.2×10^{-2} \\ 2.0×10^{-2} 7.2×10^{-2} \\ 2.0×10^{-2} 7.2×10^{-2} \\ 2.1×10^{-2} \\ 2.1×10^{-2} \\ $1.1 \times 10^{$	$\begin{tabular}{ c c c c } \hline Liquid properties \\ \hline μ (Pas) $$ σ (Nm^{-1}) $$ ρ (kgm^{-3})$ \\ 2.2×10^{-2} $$ 2.1×10^{-2} $$ 970 \\ 4.2×10^{-2} $$ 6.3×10^{-2} $$ 1185 \\ 7.0×10^{-2} $$ 6.3×10^{-2} $$ 1264 \\ 13.3×10^{-2} $$ 2.7×10^{-2} $$ 1009 \\ 1.1×10^{-2} $$ 2.2×10^{-2} $$ $$ 789 \\ 0.9×10^{-2} $$ 7.2×10^{-2} $$ $$ 986 \\ 2.2×10^{-2} $$ $$ 2.1×10^{-2} $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	$\label{eq:result} \begin{split} & \mbox{Liquid properties} & \mbox{In} \\ \hline \mu ({\rm Pas}) & \sigma ({\rm Nm}^{-1}) & \rho ({\rm kgm}^{-3}) & \mbox{$D_0({\rm nm})$} \\ \hline 2.2 \times 10^{-2} & 2.1 \times 10^{-2} & 970 & 2.6 \\ 4.2 \times 10^{-2} & 6.3 \times 10^{-2} & 1185 & 2.0 \\ 7.0 \times 10^{-2} & 6.3 \times 10^{-2} & 1264 & 2.7 \\ 13.3 \times 10^{-2} & 2.7 \times 10^{-2} & 1009 & 1.9 \\ 1.1 \times 10^{-2} & 2.2 \times 10^{-2} & 789 & 1.6 \\ 0.9 \times 10^{-2} & 7.2 \times 10^{-2} & 998 & 3.0 \\ 2.2 \times 0.1 \times 10^{-2} & 2.1 \times 10^{-2} & 970 & 1.7 \\ \end{split}$	$\label{eq:results} \begin{tabular}{ c c c c c } & Impact condition \\ \hline μ (Pas) $ σ (Nm^{-1}) $ ρ (kgm^{-3}) $ $D_0(mm) $ We \\ \hline 2.2×10^{-2} $ 2.1×10^{-2} $ $970 $ $2.6 $ $10-420$ \\ 4.2×10^{-2} $ 6.3×10^{-2} $ $1185 $ $2.0 $ $2.0 $ $2.0 $ 2.0 \\ 7.0×10^{-2} $ 6.3×10^{-2} $ $1264 $ $2.7 $ $11-550$ \\ 1.3×10^{-2} $ 2.7×10^{-2} $ 109 $ $1.9 $ $40-130$ \\ 1.1×10^{-2} $ 2.2×10^{-2} $ 789 $ $1.6 $ $7-290$ \\ 0.9×10^{-2} $ 2.1×10^{-2} $ $970 $ $1.7 $ $38-400$ \\ \hline $1.7 $ $38-400$ $ $1.7 $ $38-400$ \\ \hline $1.7 $ $38-400$ $ $1.7 $ $38-100$ $ $1.7 $ $38-1$	

[13] においてのみ取り扱われている。Eggers et al. [12] は数値解析によりフィッティングパラメー タとして τ_p と τ_v を求めた。数値解析による研究は 液滴内部の速度場を予測するうえでは有用であ るが、液滴の広がりを求める際に必要となる動的 接触角はモデル化せざるを得ない。しかし、液滴 衝突過程のように加速度が大きい場合 (10^4 m/s^2) の動的接触角モデルの検証は十分ではない。その ため、数値解析により決定する液滴の広がりは有 意な誤差を含む。

本論文では、4 章においてまず高速度カメラ撮影から求めた実際の液滴形状を用いて、*E_cとE_d*がエネルギ収支に及ぼす影響を明らかにし、モデル化を行う。続く5章において、既往のパンケーキモデルによる*D*m予測結果と比較することで、本提案モデルの優位性を検証する。

2. 液滴衝突のエネルギ保存式

最大広がり径 D_m を予測するモデルの多くは、 エネルギ保存則に基づき衝突前に保有する運動 エネルギ E_{k1} と表面エネルギ E_{s1} が、衝突によって 広がりに伴う表面エネルギ E_{s2} 、粘性による熱散 逸エネルギ E_d へと変換されると考えられている。 本研究では、接触線の濡れ広がり運動によって生 じる仕事 E_c [14] も含めた以下のエネルギ保存

Fig. 1 (i) Side-view image showing the spreading process of the impacted droplet to its maximum spread. (ii) Change in energy budget with time using glycerin solution 70 mPas. The initial kinetic energy is assumed to be 100%; (iii) Energy budget at maximum spreading for a wide range of *We* and *Re*. (a) Glycerol 22 mPas; (b) Glycerol 42 mPas; (c) Glycerol 70 mPas; (d) Glycerol 133 mPas; (e) Ethanol; (f) Water; (g) Silicone Oil. ΔE_s represents the gain in surface energy due to the impact, $E_{s2} - E_{s1}$.

式を考える。

$$E_{k1} + E_{s1} = E_{k2} + E_{s2} + E_d + E_c \tag{1}$$

ここで、 $E_{k1} = \pi \rho D_0^3 U_0^2 / 12$ および $E_{s1} = \sigma \pi D_0^2$ である。衝突した液滴にパンケーキ形状を仮定すると、 上面と側面の表面積より最大広がり径において $E_{s2} = \sigma \pi (1/4 D_m^2 + 2/3 D_0^3 / D_m)$ となる。ただし、 σ は表面張力である。これまでに提案されたパンケ ーキモデルでは、主に $E_c \ge E_d$ の取り扱いが異なる。 **Table 1**に関連因子を整理するとともに、以 下に詳細を説明する。

まず、接触線のする仕事 E_c は次式のように表せる。

$$E_c = 2\pi\sigma \int_0^{t_{\rm m}} r(t) \cos\theta_d(t) V_{wet}(t) dt \qquad (2)$$

ここで、 $\theta_d(t)$ は動的接触角、 $V_{wet}(t)$ は濡れ速度を 表す。 $\theta_d(t)$ を計測することは困難であるため、こ れまで90°や180°の固定値 [12,13]、あるいは最 大広がり時の角度 $\theta_d(t_m)$ [2] 、衝突後十分に時間が経過したときの静止接触角 θ_{st} [4] 、それらの相加平均値($\theta_{st} + \theta_d(t_m)$)/2 [7] などが用いられてきた。本研究では、3.2節に示す計測手法により液滴衝突過程における動的接触角の時間変化を取得した。

次に、粘性散逸エネルギ E_d は、散逸関数を支配 項のみ残して $\phi \approx \mu (\partial v_r / \partial z)^2$ と近似すると、以下 のように表せられる。

$$E_d = \int_0^{t_c} \int_0^{r(t)} \int_0^{z(t)} \mu(\partial v_r / \partial z)^2 \ 2\pi r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}t \quad (3)$$

ここで速度勾配 $\partial v_r/\partial z$ は、一般的に $v_r(r, z, t)$ の 空間時間平均値 u_r と粘性境界層厚さ δ_v を用いて、

$$\frac{v_r}{\partial z} \approx \frac{u_r}{\delta_v} \tag{4}$$

と近似される。Table 1に示すように、モデルに よって $u_r \ge \delta_v$ が異なる。さらに積分時間 t_c には、 $D_{\rm m}$ に到達する時間 $t_{\rm m}$ が用いられることが多い。

本研究では、 $v_r(r, z, t)$ にはRoisman et al. [10] に よって導出された以下の式を用いた:

$$v_r^* = \frac{r^*}{t^* + \tau^*} g'[\xi] \quad \left(\xi = \frac{h^*}{\sqrt{\nu^*(t^* + \tau^*)}}\right) \quad (5)$$

ここで、 $g[\xi]$ は粘性境界層による速度欠損の寄与 を表す関数である。式(3)と式(5)を用いて散 逸量を算出する際に $g''[\xi]^2$ が必要となるが、厚さ 方向の積分は、 $\int_0^{\xi} g''[\xi]^2 d\xi \cong 0.75$ の定数となる。 これは、どの液体でも粘性境界層厚さの0.75倍の 範囲で散逸が生じることを表す。

3. 液滴衝突実験

3.1 実験条件

本実験では、Table 2に示すように液滴の落下 高さおよび粘度と表面張力を変化させることで、 広範なWe数とRe数の領域のエネルギ収支を検討 した。液体試料には、(a) グリセロール 22 mPas、 (b) グリセロール 42 mPas、(c) グリセロール 70 mPas、(d) グリセロール 133 mPas、(e) エタノー ル、(f) 水、(g) シリコンオイルを用いた。シリン ジポンプに接続した注射針から試料を滴下し、固 体平面へ垂直に液滴を衝突させた。この際、衝突 基板にはパラフィルム ($R_a = 0.45 \pm 0.06(\mu m)$ [5]) を用いた。その様子をハスピードカメラ (Photron、 FASTCAM SA-Z) で真横から撮影し、液滴の広が りを観察した。撮影速度を20,000 fpsとし、この ときの解像度は1024 × 1024 pixelsであった。

3.2 解析手法

Matlab Image Processing Toolbox を用いて、撮影 した画像から液滴径、衝突速度、動的接触角を抽 出した。液滴の広がり径を算出する際、固体表面 と接触している領域を表す濡れ径を用いること が物理的に適している。そこで、スプライン関数 により鏡像との境界線を検出し、広がる液滴との 境界点から濡れ径を算出した。

また、第4章にて実際の液滴形状を用いた各種 エネルギ量を検証するため、軸対称液滴衝突を仮 定した表面積の算出を行った。液滴厚さ方向に1 ピクセルずつ円周を求め、それらを積算すること で値を得た。さらに、動的接触角の計測には既往

Fig. 3 Energy budget at maximum spreading for varying contact angle. When the contact angle is below 90°, E_c shows a negative value because the force acts in the direction of spreading the droplet.

の研究 [15] よりフィッティングした多項式の 次数が重要であると指摘されたことから、本研究 でも左右に三次の区分多項式を用いた。これによ り、広がり過程における動的接触角の変化の計測 を可能とした。

4. 結果

本章では実際の液滴形状(すなわちパンケーキ 形状ではない)を用いて、 $E_c \ge E_a$ のモデル化に必 要となる物理量を求める。ただし液滴内の速度場 については式(5)に示す半径方向速度のみを考 慮する。

4.1 エネルギ収支の実験的検討

Fig. 1 (i),(ii)に試料液体としてグリセロール70

mPasを用いた、最大広がり時までの側面画像と 特性時間 $\tau^* = 0.2$ (0.3 ms) とした場合のエネルギ 収支の時間変化を示す。ただし、衝突前の運動エ ネルギを100%としており、 τ 以降のみエネルギを 算出している。この図から、t > 1.5 msにおいて エネルギ収支が満たされていることがわかる。こ のことは、 $\tau_p > \tau_v$ が同程度の大きさを持ち、ひと つに集約できることを実験的にも支持すること を意味する。なお、同図において1.5 msまではエ ネルギの総和が100%を満たしていない。これは、 衝突後の運動エネルギ E_{k2} の算出に半径方向速度 v_r しか用いなかったためである。

Fig. 1 (iii)にWe数およびRe数を広範に変化させ たときの最大広がり時のエネルギ収支を示す。ほ とんどの液体で、Fig. 1 (ii)に示した場合と同様に、 粘性散逸量 E_d が6~8割を占めていることがわか る。 E_d は τ の影響を大きく受けるため、 τ がエネル ギ収支に与える影響が大きいことがわかる。なお、 液体(e)と(f)のエネルギの総和が20~30%不足し ている点については次節にて考察する。

4.2 動的接触角 $\theta_d(t)$

まず、動的接触角モデルから E_c を算出すること を考える。動的接触角を予測するモデル[16–18] は、キャピラリ数 C_a (= $\mu V_{wet}/\sigma$)の関数で表され る。Fig. 2に代表的なモデル予測値と実験結果の 比較を示す。どのモデルも、衝突初期(0< t <0.2) においては過大に予測してしており、液滴衝突の ような加速度が大きい系($\cong 10^4$ m/s²)において は、これら一定速度を仮定したモデルを用いるこ とは適切ではないと考える。また、同グラフにて、 実験値の時間平均値 $\bar{\theta}_{d_exp}$ と既往研究[7]で用 いられた($\theta_{st} + \theta_d(t_m)$)/2を示す。図より、 $\bar{\theta}_{d_exp}$ は $\theta_d(t_m)$ と同程度であり、($\theta_{st} + \theta_d(t_m)$)/2は最 小値程度を見積もることがわかる。

Fig. 3にて、各動的接触角のモデルを用いた最 大広がり時のエネルギ収支を比較する。ここで E_c の計算において、 $\bar{\theta}_{d_exp}$ は時間に依らないため、 式 (2) は以下のようになる。

$$E_c = \frac{\pi}{4} D_{\rm m}^2 \sigma cos \bar{\theta}_d \tag{6}$$

ただし、 $V_{wet}dt = dr$ の関係式を用いた。 図より、実験値の時間変化 $\theta_{d exp}$ を用いた結果

Fig. 4 Dynamic contact angle with different measurement methods (We = 30, Re = 3000).

が、最もエネルギ保存を満たしており、各種平均 値を用いた結果は 15~30%程度下回っている。特 に、この例では $(\theta_{st} + \theta_m)$ /2 は 90°を下回るた め、 E_c の符号が逆転し接触線は液滴を広げる方向 に作用している。

エネルギ収支に関し、(a)-(c)の液体は比較的広 範なWe数に対して過不足が生じていないが、(e) および(f)の場合は20~30%エネルギが不足して いる。この主たる原因は、ラメラ先端の動的接触 角の計測不良にある。低粘度の液体の場合、接触 線の速度が大きくかつラメラが薄いため、計測誤 差が大きくなってしまう。また、低粘度液体では 粘性散逸量が小さいため、接触線による仕事E_cが 相対的に大きくなる。

計測精度の違いが $\theta_d(t)$ に与える影響をFig. 4 に示す。この図の Δ は、3章で示した撮影条件で 取得した $\theta_d(t)$ であり、Fig. 1 (f)のエネルギの算出 に用いたものである。また〇は、同じ条件の液滴 を、撮影倍率と撮影速度を共にあげて(30,000 fps、 1024×512 pixels)再計測した $\theta_d(t)$ である。この 図から、 Δ の計測条件では、水液滴の広がり過程 に伴う動的接触角を過小評価してしまうことが わかる。参考までに〇の $\theta_d(t)$ を用いて算出した E_c をFig. 1 (iii–f)に示す。(f)よりもエネルギ収支 をよく満たしていることから、低粘度液体は接触 角に大きく依存するため、 $\theta_d(t)$ の計測には高い 精度が求められる。

また、We < 30の領域では、表面張力の影響が 大きくはたらくため、最大広がり時であってもパ ンケーキ形状を仮定できない。これは既往の研究

[6] によっても示されている。これ以降、本研究 ではWe > 30に限定して議論を進める。

4.3 特性時間 τ

4.1節では適切なτを用いれば、エネルギは広が り過程において保存されることを示した。そこで 本節では、全試料液体における最適なτを求める。

Fig. 5に、代表的な試料液体の最大広がり時の エネルギ残差を示す。ここで、残差には、各液滴 で衝突高さが異なる全ての条件で得られた結果 の平均値を用いた。Fig. 5(g)より、0.1のτの変化 がエネルギ収支に最大で30%程度の差を生じる ことがわかる。全広がり時間から見ると微小であ るrが、図に示すようにエネルギ収支を大きく左 右することからも重要なパラメータであること が明らかである。

一方で、多くの液体は、(a)や(g)のように極値 を持つのに対し、(f)は持たない。このことは、前 節で述べたように、低粘度液体が動的接触角の影 響でエネルギを保存していないことを意味して いる。(e)も同様であった。そのため、での検討に は(e)と(f)を除外し、最適なでを決定する。

(a)-(d),(g)に限定して、 τ を見ると、残差が最小 となる値は液体によらず0(0.1)であることがわ かる。これは既存研究 [14] にて指摘されている τ が流体特性に依存しないことを本研究により裏 付けたといえる。そのため、 τ は定数とみなすこ とができ、液体および τ の平均残差の総和が最小 となる値を求めると、 $\tau^* = 0.17$ を得た。これは既 往の研究 [12] で得られた値 (0.17^{\ddagger})と一致し、 本研究により得られた τ が妥当であると考える。 以上より得られた τ を用いて、次節では、粘性 散逸量*E*_dをパンケーキモデルへ適用するための 準備を行う。

4.4 E_dの算出に関わる時間積分

Table 1に示すように、一部を除いた多くの最 大広がり径を予測するモデルにおいて、液滴内速 度には衝突速度 U_0 が用いられ、粘性散逸 E_d には 補正係数が付加されている。前節で示したように、 τ は粘性散逸を決定する重要パラメータであるた め、本研究では τ を考慮した速度場(式(5))を 用いた粘性散逸モデルを導出する。

まず、粘性散逸量を算出するうえで必要となる 積分時間 t_c について考える。これまでは広く $t_c \sim D_0/U_0$ の代表時間が用いられてきた。しかし、 前節で示したエネルギ収支のr依存性より、散逸 時間の簡易化は望ましくない。過去の研究におい てもこの積分時間が重要であるとし、いくつかの 改善されたモデルが導出されている。Lee et al. [5] は代表径として最大広がり径を用いて $t_c = bD_m/U_0$ とし、さらに比例係数bが表面張力に依存 するモデルを提案した。

本研究でも最大広がり時間 t_m が t_c として適切 であると考え、 $t_m \sim D_m/U_0$ を用いた。Fig. 6 (i)に示 す各We数の最大広がり径と対応する最大広がり 時間より、互いには線形関係がある。さらにFig. 6 (ii)に示す無次元広がり時間 t_m^* と無次元広がり径 D_m/D_0 (以降 β_m)の関係より

$$t_{\rm m} \frac{U_0}{D_0} \cong \frac{D_{\rm m}}{D_0}$$
$$t_{\rm m} \cong \frac{D_{\rm m}}{U_0} \tag{7}$$

となり、 $t_m \sim D_m/U_0$ という直感的なスケーリング 則が正しいことがわかる。よって、無次元散逸時 間 t_c^* としては、式(5)の速度場が成り立ち、平面 上の粘性境界層が発達してからの時間が適切で あると考え、 t_m^* から特性時間($\tau^* = 0.17$)を差し 引いた次式を本研究での散逸時間とする。

$$t_{\rm m}^* \sim \beta_{\rm m} - 0.17 \tag{8}$$

ここで、**Fig. 6 (ii)**の近似式も $t_{\rm m}^* = \beta_{\rm m} - 0.16$ となることは興味深い実験的事実である。

次に、E_dをモデル化するためにさらに必要と

^{*}既往研究 [12] では代表長さを $D_0/2$ としているため $\tau = 0.34$ となっている

なる液滴半径の時間積分 $\int_{r^*}^{t^m_m} (r(t^*)/$

 D_0)⁴ $t^{*-5/2}dt^*$ について考える。この項は液滴半径の時間変化を含むため、解析解を得るのが困難である。そこで、 β_m の関数として表せないか検討するため、上記積分値と次元解析的に得られる β_m ⁴ t^*_m ^{-3/2}との比較を行った。両者の関係性を実験的に調べたところ、Fig. 7に示すように線形関係があることを明らかにした。すなわち、 $\alpha = 0.27\beta_m$ ⁴ t^*_m ^{-3/2}となる。興味深いのは両者が線形関係にあることである。既往研究 [6] のように粘性散逸モデルが一つの補正係数で整理できていたのはこのためであると推察する。

以上のことから、導出した粘性散逸のモデルは 次式のようになる。

$$E_d \simeq \frac{\pi G}{2} \frac{0.27 \beta_{\rm m}^{-4}}{\sqrt{Re} (\beta_{\rm m} - 0.17)^{2/3}} \tag{9}$$

ここで、式(9)のGは前述した粘性境界層による 速度欠損に起因する係数($G \approx 0.75$)である。以 上のことから、本研究では、実験的事実に基づき、 より物理現象に則した粘性散逸モデルを導出し た。

5. パンケーキモデルによる最大広がり径の予測

4章で得られた知見に基づきパンケーキモデル を構築し、従来のモデルとの比較を行う。

式(6)の*E*_cと、式(9)の*E*_dを用いると、エネ ルギ保存式は以下のように表される。

$$\frac{1}{12} + \frac{1}{We} = \frac{1}{4We} \beta_{\rm m}^{2} (1 - \cos \bar{\theta}_{d}) + \frac{2}{3We\beta_{\rm m}} + G \frac{0.14\beta_{\rm m}^{4}}{\sqrt{Re} (\beta_{\rm m} - 0.17)^{3/2}}$$
(10)

ここで、動的接触角には、4.2節で示したように広 がり過程の大部分の角度を表す $\bar{\theta}_d$ が適切である と考え、モデルへ適用した。

Fig. 8に、本モデルと従来モデルにより得られ たβmと実験値を共にプロットした結果を示す。 この時の実験値は、固体表面と接触している領域 を表す濡れ径 Exp.(wet)と、両サイドの液滴表面 間の距離 Exp.(spread)の2つの値を示している

Fig. 6 (i) Time variation of the spread diameter up to $D_{\rm m}$ at each We number, and the dashed line shows the approximate equation at $t_{\rm m}$. (ii) The relationship between $\beta_{\rm m}$ and $t_{\rm m}$.

Fig. 7 The Relationship between time integration of droplet radius and dimensionless $D_{\rm m}$.

(それぞれFig. 1 (i)の $D_{wet} \ge D_{spread}$ に相当する)。 この図から、エネルギ保存をよく満たす(a)-(d), (g)の液滴に対しては、本モデルは実験値との良 好な一致を示していることがわかる。すなわち、 実験的に求めた $\tau = 0.17$ が、エネルギ保存式(10) においても妥当であることがわかる。また、他の 補正係数を含まないことから、最大径を予測する 理論モデルにおいて τ が重要であることが明らか である。

続いて既往モデルとの比較を行う。Fig. 8に示 すように、Wildeman et al. [6] とYonemoto and Kunugi [7] のモデルは比較的全液体で実験値と 良好な一致を示している。これは、どちらも滑り なし平面の衝突において支配的となる粘性散逸 量の取り扱いが適切であることに起因すると考

Fig. 8 Comparison in maximum diameter among existing models [1–6], the current model (Eq. (9)), and experimental data for liquids shown in the bottom-right corner of each panel. Both D_{wet} (\bigcirc) and D_{spread} (\times), defined in Fig. 1 (i), are shown for experimental data except for case (iv).

える。ただし、ReivO(1)の領域を含む高粘度液体 (g)に対しては、Wildeman et al. [6]のモデルは過 大に見積もることがわかる。この既往モデルと本 モデルとの大きな違いは u_r であることから、粘性 散逸に関わる液滴内の速度場の取り扱いが重要 であることが示された。また、 $u_r = U_0$ ではある ものの散逸時間を適切に扱ったLee et al.のモデ ルは、本実験範囲においては、比較的良い一致を 示す。ただし、 t_m は水の表面張力を代表値とした 補正係数bを付加した単純な表面張力に依存する 物理量となっているため、高粘度・低表面張力の ような液体(g)では逸脱が大きい。 このように、*E*_aを構成する物理量を正確に扱うことがパンケーキモデルの精度に直結していることが明らかである。さらに、どのモデルも広範囲な液体において実験値から10%程度の乖離が生じていることから、本モデルでは、そのすべての物理量に関係するτを実験的に明らかにし、広範囲な液体に対して検討することで、*D*mをより高精度に予測するモデルを構築した。

最後に低粘度液体(水、エタノール)について 考える。Fig.8(e),(f)に見られるように、接触角に 広がり過程の全時間で得られた値の平均値を用 いた本モデルと、180°の一定値を用いた Wildeman et al.のモデル [6] では、実験値からの 逸脱は逆の傾向(本モデル:過大評価、既往モデ ル:過小評価)を示している。原因は、4.3節の考 察と同様に接触角の不適切な取扱いにあると考 える。図のように、モデルに与える接触角の違い により、異なる結果が得られることからも低粘度 液体においては接触角の取り扱いが重要である ことがわかる。

6. 結 言

本研究では、液滴衝突過程における接触開始か ら最大広がりに至るまでのエネルギ収支に着目 し、速度場および粘性境界層の発達に関わる特性 時間τについて実験的に検討し、τを考慮した最大 広がり径を予測する理論モデルを構築した。その 結果から、τはエネルギ収支を大きく左右する重 要因子であり、流体特性によらず一定(0.17)と なることを実験的に明らかにした。τの変化によ るエネルギ収支の差は最大で25%になり、広範 な液体に対して検討することで最適な値を導出 した。

また、τを考慮した粘性散逸エネルギのモデル を構築し、その他の補正係数を必要としない、よ り物理現象に則した理論モデルを構築した。この 実験的事実に基づくモデルにより、従来のモデル よりも最大広がり径の高精度な予測を可能とし た。

Nomenclature

v	: droplet internal velocity field	[m/s]
и	: spatial time-averaged droplet	internal
	velocity field	[m/s]
U_0	: impact velocity	[m/s]
D	: droplet diameter	[m]
Ε	: energy	[W]
θ_d	: dynamic contact angle	[-]
V _{wet}	: contact line velocity	[m/s]
Ε	: energy	[W]
ϕ	: dissipation function	[kg/m · s ²]
$\partial v_r / \partial z$:velocity gradient in the vertic	al direction
		[1/s]
h	: height	[m]
G	: coefficient representing the c	ontribution of
	velocity loss	[-]

Re	: Reynolds number	[-]
We	: Weber number	[-]

Greek letters

μ	: viscosity	[Pa⋅s]
ρ	: density	$[kg/m^3]$
σ	: surface tension	[N/m]
α	: time integration of droplet radius	[-]
β	: spread diameter	[-]
ν	: kinematic viscosity	[m ² /s]
$ au_p$: impact pressure decay time	[-]
$ au_{ u}$: viscous boundary layer developm	nent time
		[-]
ξ	: ratio of droplet center height to	viscous
	boundary layer thickness	[-]
Subscrip	ots	
*	: dimensionless quantity	
0	: initial value	
r	: radial component	
Ζ	: vertical component	
m	: maximum value	
wet	: contact area	
spread	: droplet rim	
k	: kinetic	
S	: surface	
1	: before impact	
2	: during spreading	

- *d* : viscous dissipation
- *c* : contact line

参考文献

- Chandra, S. and Avedisian, C. T., On the Collision of a Droplet with a Solid Surface, Proc. R. Soc. A Math. Phys. Eng. Sci., Vol. 432, 13-41 (1991).
- [2] Pasandideh-Fard, M., Bhola, R., Chandra, S. and Mostaghimi, J., Deposition of Tin Droplets on a Steel Plate, Simulations and Experiments, Int. J. Heat Mass Transf., Vol. 41(19), 2929-2945 (1998).
- [3] Vadillo, D. C., Soucemarianadin, A., Delattre, C. and Roux, D. C. D., Dynamic Contact Angle Effects onto the Maximum Drop Impact Spreading on Solid Surfaces, Phys. Fluids, Vol. 21(12), 122002 (2009).
- [4] Mao, T., Kuhn, D. C. S. and Tran, H., Spread and Rebound of Liquid Droplets upon Impact on Flat Surfaces, AIChE J., Vol. 43(9), 2169-2179 (1997).
- [5] Lee, J. B., Derome, D., Guyer, R. and Carmeliet, J., Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces, Langmuir, Vol. 32(5), 1299-1308 (2016).
- [6] Wildeman, S., Visser, C. W., Sun, C. and Lohse,

D., On the Spreading of Impacting Drops, J. Fluid Mech., Vol. 805, 636-655 (2016).

- [7] Yonemoto, Y. and Kunugi, T., Analytical Consideration of Liquid Droplet Impingement on Solid Surfaces, Sci. Rep., Vol. 7(1), 2362 (2017).
- [8] Laan, N., De Bruin, K. G., Bartolo, D., Josserand, C. and Bonn, D., Maximum Diameter of Impacting Liquid Droplets, Phys. Rev. Appl., Vol. 2(4), 044018 (2014).
- [9] Lee, J. B., Laan, N., DeBruin, K.G., Skantzaris, G., Shahidzadeh, N., Derome, D., Carmeliet, J. and Bonn, D., Universal Rescaling of Drop Impact on Smooth and Rough Surfaces, J. Fluid Mech., Vol. 786, R4 (2016).
- [10] Roisman, I. V., Berberović, E. and Tropea, C., Inertia Dominated Drop Collisions. I. On the Universal Flow in the Lamella, Phys. Fluids, Vol. 21(5), 052103 (2009).
- [11] Roisman, I. V., Inertia Dominated Drop Collisions. II. An Analytical Solution of the Navier-Stokes Equations for a Spreading Viscous Film, Phys. Fluids, Vol. 21(5), 052104 (2009).
- [12] Eggers, J., Fontelos, M. A., Josserand, C. and Zaleski, S., Drop Dynamics after Impact on a Solid Wall, Theory and Simulations, Phys. Fluids,

Vol. 22(6), 062101 (2010).

- [13] Lastakowski, H., Boyer, F., Biance, A. L., Pirat, C. and Ybert, C., Bridging Local to Global Dynamics of Drop Impact onto Solid Substrates, J. Fluid Mech., Vol. 747(4), 103-118 (2014).
- [14] Roisman, I. V., Rioboo, R. and Tropea, C., Normal Impact of a Liquid Drop on a Dry Surface: Model for Spreading and Receding, Proc. R. Soc. A Math. Phys. Eng. Sci., Vol. 458 (2022), 1411-1430 (2002).
- [15] Quetzeri-Santiago, M. A., Castrejón-Pita, J. R. and Castrejón-Pita, A. A., On the Analysis of the Contact Angle for Impacting Droplets Using a Polynomial Fitting Approach, Exp. Fluids, Vol. 61(6), 143 (2020).
- [16] Kistler, S. F., Hydrodynamics of Wetting, Wettability (ed. Berg, J. C.), Marcel Dekker, New York, 311 (1993).
- [17] Jiang, T., Oh, S. and Slattery, J. C., Correlation for Dynamic Contact Angle, J. Colloid Interface Sci., Vol. 69(1), 74-77 (1979).
- [18] Hoffman, R. L., A Study of the Advancing Interface. I. Interface Shape in Liquid-Gas Systems, J. Colloid Interface Sci., Vol. 50(2), 228-241 (1975).