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Abstract— This study proposes a reservoir computing
model with multiple readouts and an associated training
method to enhance the training capability of reservoir com-
puting. This study conducts a speaker classification task
and a word classification task using an audio dataset con-
sisting of digits pronounced by six persons. The experi-
mental results reveal that the proposed model with multiple
readouts outperforms a conventional model with a single
readout.

1. Introduction

Reservoir computing (RC) [1, 2] is a kind of recurrent
neural network that has attracted attention in recent years
because of its low training cost and potential for hardware
implementation via dedicated circuits [3, 4] and physical
RC [5, 6]. RC consists of a reservoir part that receives
time-series inputs and non-linearly converts them to high-
dimensional spaces to represent spatio-temporal patterns of
the inputs and a readout part that picks up some of the pat-
terns from the reservoir part to analyze inputs and gener-
ates outputs. The main advantage of RC is that its weight
connections except in the readout are fixed. As a result, its
training requires a smaller amount of data and a lower com-
putational cost compared to deep neural networks. There-
fore, RC is suitable for edge AI systems that have lim-
ited computational resources and execute training without
cloud computing.

The readout of RC is mostly implemented by a linear
model (single-layer perceptron) and, therefore, the capa-
bility to adapt the training data of the readout is limited. To
enhance the training capability of RC, we propose an RC
model with multiple readouts that distributes the training
of one readout so that each readout can focus on specific
kinds of training data. This method can be regarded as a
kind of ensemble learning to enhance the RC generaliza-
tion performance. Simply increasing the number of read-
outs is inefficient for edge AI systems because it consumes
memory resources limited in the systems. This study in-
troduces a self-organizing function that enables the use of
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the same readout for similar data and different readouts for
dissimilar data.

2. Echo state network

To implement the proposed RC with multiple readouts,
this study utilizes echo state networks (ESNs) as RC im-
plementations. This section describes the structure and the
information processing of ESNs.

An ESN has input, reservoir, and readout layers with Nin,
Nres, and Nout nodes, respectively. The reservoir layer con-
tains connections from the input layer and recurrent con-
nections in its layer. The readout layer linearly converts the
states of the reservoir layer and generates output signals.

When an input signal u(t) ∈ RNin at time t is given, a state
of the reservoir layer x ∈ RNres is updated as follows:

x(t) = f (Winu(t) +Wresx(t − 1)), (1)

where Win ∈ R
Nres×Nin and Wres ∈ R

Nres×Nres are a weight con-
nection between the input and reservoir layers and a recur-
rent weight connection in the reservoir layer, respectively.
f indicates a nonlinear function and a hyperbolic tangent
function is often used for this function.

An output of the network y(t) ∈ RNout is generated by the
readout layer as follows:

y(t) = Woutx(t), (2)

where Wout ∈ R
Nout×Nres is a weight connection between

the reservoir and readout layers. If a target signal z(t) ∈
RNout (1 ≤ t ≤ T ) is given, the weight connection Wout can
be computed by the ridge regression as follows:

Wout = ZX⊤(XX⊤ + λI)−1, (3)

X = [x(1), x(2), ..., x(T )] ∈ RNres×T (4)

Z = [z(1), z(2), ..., z(T )] ∈ RNout×T (5)

where λ is a coefficient of the regularization term of the
ridge regression, and I ∈ RNres×Nres is an identity matrix.

As mentioned above, only the weight connection be-
tween the reservoir and readout layers Wout is optimized
in the training, whereas other weight connections are fixed.
Therefore, the capability of the ESN to adapt training data
only depends on the readout layer, which is a single linear
model, and adapting complex datasets is difficult.
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3. Proposed method

This study proposes an RC model with multiple readouts
that distribute readout training to enhance the RC training
capability. Figure 1 shows the structure of the RC model,
which consists of an input layer, a reservoir layer, multiple
readouts, and an input similarity map that is implemented
by a self-organizing map (SOM) [7]. The SOM consists of
nodes aligned on a two-dimensional grid. The number of
SOM nodes corresponds to the number of multiple read-
outs, and each SOM node is associated with each readout.

The input similarity map is used for input data classifi-
cation to distribute the readout training. For the classifica-
tion, an unsupervised learning method is desired to avoid
additional data labeling for the similarity map, which re-
quires huge man-hours. As one of the unsupervised learn-
ing methods, this study adopts the SOM for the input simi-
larity map.

The SOM receives an input signal and classifies it to de-
cide a winner node c as follows:

c = arg min
i
∥uconcat − mi∥ (6)

uconcat = [u(1)⊤,u(2)⊤, ...,u(T )⊤]⊤ ∈ RNinT (7)

where i is an index of the SOM node, and mi ∈ R
NinT is

a reference vector of i-th SOM node. uconcat is generated
by concatenating the input vectors of all time steps, and
the winner node of the SOM that has the nearest reference
vector to uconcat is selected in this process.

The reference vectors of the SOM are optimized by the
unsupervised competitive learning method as follows:

mnew
i = mi + αhi(uconcat − mi) (8)

hi = exp(−d2
i /2σ

2) (9)

where mnew
i is the updated reference vector generated after

this process. α is a learning rate and hi,c is a neighborhood
coefficient depending on the distance di between the i-th
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Figure 1: Reservoir computing model with multiple read-
outs.

node and the winner node on the SOM grid. σ indicates
the width of the neighborhood coefficient affection.

The reservoir layer of the model is the same as the reser-
voir of ESNs, and therefore, the layer receives input signals
and updates its state using Eq. (1). Each of the multiple
readouts with a weight connection from the reservoir layer
Wout,i generates an output as follows:

yi(t) = Wout,ix(t) (10)

where yi(t) is the i-th readout output at time t. Finally, an
output of the readout associated with the winner node (win-
ner readout) yc(t) is adopted as the network output.

Weight connections of the winner readout and its neigh-
boring readouts are updated in the training phase. The
training is designed to strengthen the adaptation of the win-
ning readout to the data that triggers the associated SOM
node to win and to provide a rough adaptation of the neigh-
boring readouts to the same data. This training approach
enables the winning readout to specialize in data from a
specific domain, while the neighboring readouts generalize
to data from multiple domains.

To control the readouts’ adaptation, this study proposes
adjusting the amount of training data based on the neigh-
borhood coefficient of the SOM as shown in Fig. 2. This
method prepares memories associated with readouts and
stocks the training data in the memories. When T steps in-
put signals and T steps target signals are given to the model,
T steps reservoir states [x(1), x(2), ..., x(T )] are obtained.
Here, all reservoir states [x(1), x(2), ..., x(T )] and target
signals [z(1), z(2), ..., z(T )] are stocked in the memory for
the winner readout, whereas ⌊hiT ⌋ steps reservoir states
[x(1), ..., x(⌊hiT ⌋)] and the target signals [z(1), ..., z(⌊hiT ⌋)]
are stocked in the memories for the remaining readouts.
After feeding all of the training data to the model, each
weight connection is computed by the ridge regression
shown in Eq. (3) using each stocked data.

4. Experiment

4.1. Data

This study conducted an experiment to evaluate the per-
formance of the proposed RC model using the free spoken
digit dataset (FSDD) [8]. This dataset comprises 3,000 au-
dio data of digits (“zero” to “nine”) pronounced by six per-
sons and recorded at 8kHz (50 audio data of each digit per
person is included). We divided the dataset into training
and validation data, with 90% of the data being used for
training and 10% for validation.

Before feeding audio data from the FSDD to the model,
we used Lyon’s auditory model [9] to convert the audio
data to a cochleagram, which is a time series of intensities
of quantized frequency channels. In this experiment, each
cochleagram had 64 frequency channels and 100-time steps
so that Nin = 64, T = 100.
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Figure 2: Training of multiple readouts (in the case of the number of readouts is three).

Figure 3: Reference vectors of the SOM after the training.

4.2. Similarity map

This study constructed a SOM whose grid size was 8× 8
and fed training data from the FSDD to the SOM. The in-
put signals from the FSDD were concatenated using Eq. (7)
so that the concatenated vector dimension NinT was 6,400.
The learning rate of the SOM α and the width of the neigh-
borhood coefficient of the SOM σ varied with time dur-
ing the SOM training: the learning rate α started from 0.1
and decreased monotonously until 0.001, and the width σ
started from 3.0 and decreased monotonously until 0.1.

Figure 3 shows the reference vectors of the SOM after
the training, which are aligned on the 8 × 8 grid. The hor-
izontal axis of each reference vector indicates time steps,
the vertical axis indicates intensities, and each line corre-
sponds to the intensity of each frequency channel of the
cochleagram.

Table 1: Accuracies of the ESN with a single readout and
ESN with multiple readouts in the speaker classification
task.

ESN with ESN with
single readout multiple readout

Nres = 100 86.6% 94.7%
Nres = 250 93.5% 96.4%
Nres = 500 94.5% 97.8%

4.3. Classification tasks

This study conducted two types of sound classification
tasks using the FSDD: a speaker classification task and
a digit classification task. We fed training data from the
FSDD to the reservoir layer and stocked the reservoir states
with the target signals based on the neighborhood coeffi-
cient hi in the memories. Here, we used the trained SOM
shown in Fig. 3 to determine hi and set the parameter σ
as 1.0. After feeding all of the training data, we computed
weight connections of the multiple readouts by the ridge
regression setting λ as 0.1. In this experiment, we investi-
gated the test accuracy when the number of the reservoir
nodes Nres was set to 100, 250, and 500 and compared
the accuracy between an ESN with a single readout and
an ESN with multiple readouts.

Tables 1 and 2 show the accuracies achieved by the ESN
with a single readout and the ESN with multiple readouts
in the speaker classification task and the digit classification
task, respectively. The ESN with multiple readouts outper-
formed the ESN with a single readout. We also investi-
gated the performance of a support vector machine (SVM)
[10] for both tasks. The SVM achieved an accuracy rate of
95.3% for the speaker classification task and an accuracy
rate of 64.7% for the digit classification task.
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Table 2: Accuracies of the ESN with a single readout and
ESN with multiple readouts in the digit classification task.

ESN with ESN with
single readout multiple readout

Nres = 100 78.7% 83.0%
Nres = 250 85.3% 90.1%
Nres = 500 89.8% 92.5%

5. Conclusion

This study proposes an RC model with multiple readouts
that distribute readout training to enhance the training ca-
pability of RC. This study conducted a sound classification
task using the FSDD to evaluate the proposed RC model,
and the experimental result revealed that the proposed RC
model outperformed the conventional ESN.

Because the proposed RC model has multiple readouts,
the model is expected to be effective in avoiding catas-
trophic forgetting [11] in the context of continual learning
[12]. If some additional training data is given, an optimized
readout of the RC model obtained from the previous train-
ing is overwritten and the RC model may not perform the
previously trained task well. Conversely, the proposed RC
model distributes the training of readouts so that the same
readout is used for similar data and different readouts are
used for dissimilar data. In this way, the overwriting pa-
rameters from the previous training can be avoided.

The proposed method is expected to be utilized not only
in sound recognition tasks but also in other tasks such as
reinforcement learning [13]. The introduction of the pro-
posed structure in a reservoir-based reinforcement learning
model [14] is expected to enhance the performance of the
model because catastrophic forgetting can be avoided and
transfer learning from knowledge obtained from previously
trained episodes may be possible.
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