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Multi-View Animal Behaviour Analysis with
Deep Learning∗

Salvador BLANCO NEGRETE

Abstract

Understanding and analyzing animal behaviour is essential in various scientific
disciplines, including neuroscience, psychology, ecology, genetics, and pharmacol-
ogy. Automated detection and analysis of animal behaviours can significantly
enhance research efficiency and accuracy in these areas. However, existing sys-
tems often rely on engineered features and are restricted to single-view analysis.
This dissertation presents a novel approach to multi-view animal behaviour detec-
tion using deep learning that does not require pose estimation or other engineered
features, works with small amounts of data, and is flexible. This dissertation in-
troduces two primary contributions. The first involves adapting state-of-the-art
human pose estimation systems for animal pose estimation. A multiple-monkey
pose estimation system and a multi-view 3D pose estimation for marmosets are
introduced. The objective is to demonstrate the challenges and limitations of us-
ing pose estimation and feature engineering in general for behaviour analysis. The
"In the Wild" dataset, known as MacaquePose, was collected containing monkey
images in various environments to train a deep neural network for 2D multi-
monkey pose estimation. At the same time, the multi-view 3D marmoset dataset
was collected in a laboratory setting. The second core contribution presents a
novel multi-view behaviour detection system. The system captures behaviours
using various perspectives, allowing a comprehensive understanding of the ani-
mal’s movements. The system uses three neural networks; the first neural network
(NN1) extracts Regions of Interest (ROIs) for each view, and NN2 is a classifi-
cation network that creates a heat map that encodes confidence for the desired
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behaviour across views and time within a time window. NN3 is trained to cre-
ate a final prediction from the heat map. This approach allows the use of small
amounts of data; it avoids using pose estimation or other engineered features, and
the three networks can be trained separately or reused, making it easy to adapt to
new behaviours or animals. The developed system was trained to detect rats’ Wet
Dog Shake (WDS) behaviour, making it the first to detect WDS behaviour. The
WDS behaviour is relevant in studying various animal disease models, including
acute seizures, morphine abstinence, and nicotine withdrawal. This behaviour
has a short duration; it occurs spontaneously and infrequently, making it chal-
lenging to detect and analyze accurately. Still, using three views, the developed
system can detect it with a precision of 0.91 and recall of 0.86. Notably, while this
dissertation talks mainly about detecting WDS behaviour in rats, the developed
multi-view deep learning system holds potential for broader applications in an-
alyzing various animal behaviours. Multiple camera views enhance the system’s
ability to generalize across perspectives, add redundancy, and reduce occlusion,
resulting in more accurate and robust behaviour detection. Therefore, it can be
adapted and extended to detect and analyze other animal behaviours in diverse
species. In conclusion, this dissertation presents a novel approach to multi-view
animal behaviour detection using deep learning. The developed system opens
new avenues for research in animal behaviour and welfare, and its potential ap-
plicability across diverse species makes it a valuable tool for studying complex
animal behaviours.

Keywords:

Animal Behaviour, Nonhuman Primates pose estimation, Rat Kainate model,
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1 Introduction

The study of animal behaviour is fundamental to understanding the intricacies
of animal cognition, communication, and social dynamics. It plays a vital role in
various fields, including neuroscience, psychology, ecology, genetics, and pharma-
cology. Traditionally, animal behaviour analysis has relied on manual observation
and annotation, which can be time-consuming, subjective, and prone to human
error [1]. Advances in computer vision and machine learning, particularly deep
learning, have provided researchers with new tools and methods for automating
the analysis of animal behaviour, leading to more accurate and efficient research
outcomes [2].

One challenge in animal behaviour analysis is accurately detecting and recog-
nizing specific behaviours using a single camera perspective. Although multi-view
systems like DeepLabCut’s markerless pose estimation offer multiple perspectives,
their scope is limited to estimating the pose of a single individual [3]. Developing
advanced multi-view techniques that account for complex group dynamics and in-
teractions between multiple animals is crucial for a comprehensive understanding
of animal behaviour across diverse contexts and species [4]. This dissertation’s
main contribution is the development of a novel multi-view deep learning frame-
work tailored for the analysis of animal behaviour, exemplified by its application
to the detection of wet dog shake behaviour in rats. Additionally, this work
also encompasses the adaptation of the OpenPose [5] algorithm for Multiple-
Monkey pose estimation, the curation of an ample dataset featuring macaque
monkey images, and the adaptation of a state-of-the-art human multi-view 3D
pose estimation method for implementation with marmosets; these endeavours
with non-human primates serve to highlight the challenges associated with the
utilization pose and other engineered features in general, for behaviour detection.
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1 Introduction

1.1 Motivation of the Research
The motivation behind this research lies in the potential benefits of leveraging
multi-view deep learning techniques for animal behaviour analysis. By utiliz-
ing multiple cameras to capture animal movements from different perspectives, a
more complete and detailed representation of animal behaviour can be obtained,
enabling researchers to gain a deeper understanding of complex behaviours and
their underlying mechanisms [3]. This enhanced understanding can lead to new
discoveries and insights into animal cognition, communication, and social dynam-
ics, ultimately contributing to more informed decisions and actions in areas such
as psychology, neuroscience, pharmacology, biology, conservation, animal welfare,
human health and others.

Moreover, the application of deep learning techniques to animal behaviour anal-
ysis opens up new avenues for research in the development of innovative therapies
and interventions for animal and human health [6]. The ability to automatically
detect and analyze specific behaviours, such as the wet dog shaking behaviour
in rats, can significantly impact the study of various animal disease models, in-
cluding acute seizures, morphine abstinence, and nicotine withdrawal [7, 8, 9].
Early detection of behavioural abnormalities can inform targeted interventions
and improve animal welfare outcomes. Another key motivation for this research
is the need for efficient and accurate pose estimation in non-human primates.
Presently, pose estimation techniques predominantly center around human sub-
jects, leaving a gap in the analysis of non-human primate behaviour. By adapting
state-of-the-art human pose estimation systems for non-human primates, curat-
ing a comprehensive dataset of macaque monkey images, and a multi-camera 3D
dataset for marmosets, this research aims to provide resources to scholars working
in the study of animal behaviour.

2



1 Introduction

1.2 Thesis Overview
This dissertation seeks to answer the following research questions:

• How can advances in multi-view classification and multi-view human ac-
tivity recognition be adapted to improve the accuracy and robustness of
animal behaviour analysis?

• What specific challenges unique to animal behaviour analysis arise when
integrating multi-view, and how can deep learning models be adapted to
address these challenges?

This dissertation takes inspiration from the fields of multi-view classification
and multi-view human activity recognition, incorporating and refining techniques
to address the unique challenges inherent in animal behaviour analysis. Specif-
ically, it investigates the unique challenges posed by multi-view integration in
the animal behaviour analysis context, it explores optimal deep learning models
and presents a novel multi-view behaviour detection system designed for animals.
This system is tested on the Wet Dog Shake (WDS) behaviour in rats.

Chapter 1 provides the motivation for this research endeavour. Chapter 2 in-
troduces animal behaviour analysis, multi-view approaches, and deep learning
models in the context of animal behaviour analysis, reviewing the existing liter-
ature on multi-view classification, multi-view human activity recognition and its
potential applicability to animal behaviour analysis. Chapter 3 outlines the multi-
camera configurations. It covers the hardware setup of the Marmoset Multi-view
Capture System and the Rat Multi-view Capture System and includes details of
the animal preparation. Chapter 4 Details the methodology, covering data col-
lection, processing, and deep-learning models used to address the challenges of
animal behaviour analysis. Chapter 5 presents experimental results within the
multi-view animal behaviour analysis context. Finally, Chapter 6 summarizes
research findings and outlines future research directions.
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2 Related Work

This chapter provides a comprehensive overview of the field of animal behaviour,
with an emphasis on multi-view behaviour detection and pose estimation through
computer vision and deep learning methodologies. By presenting the current sci-
entific landscape, it highlights the challenges and limitations of traditional ap-
proaches. It pinpoints the gaps in the existing literature, mainly the limitations
in single-view systems, that this dissertation seeks to fill. The overview of prior
research permits taking inspiration from the advances in multi-view classifica-
tion and multi-view human activity recognition; it also highlights the challenges
associated with pose estimation for behaviour detection.

2.1 Animal Behaviour Analysis
The study of animal behaviour is crucial for understanding the intricacies of
animal cognition, communication, and social dynamics. Animal behaviour re-
search spans various fields, including neuroscience, psychology, ecology, genetics,
and pharmacology [1]. Traditional methods for studying animal behaviour have
relied on manual observation and annotation, but recent advances in computer vi-
sion and machine learning have provided more accurate and efficient alternatives.
These technological advancements have made it possible to automate the analy-
sis of animal behaviour and derive novel insights that were previously difficult to
uncover using traditional techniques.

2.1.1 Manual Observation and Annotation
Manual observation and annotation have been the backbone of animal behaviour
analysis for decades. Researchers observe animals either in the field or in con-
trolled environments and manually record their behaviours [10]. While these
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2 Related Work

methods have provided valuable insights, they come with several limitations and
challenges. Manual annotation can be time-consuming, subjective, and prone to
human error [11]. Additionally, observer bias may influence the results, and the
quality of annotations can vary significantly between individuals [12]. The lim-
ited scope of manual observations may also hinder the detection of rare or subtle
behaviours, and the inability to scale to large datasets constrains the potential
for comprehensive analysis [1].

These challenges have motivated the development of more accurate and auto-
mated techniques for animal behaviour analysis. With advancements in technol-
ogy, researchers have started exploring new methods to address the limitations
associated with manual observation and annotation. These innovative approaches
include using computer vision and machine learning techniques, which provide
more efficient and accurate ways to analyze animal behaviour. [13, 4, 3].

2.1.2 Computer Vision and Machine Learning Techniques
With the advent of computer vision and machine learning, researchers have be-
gun to leverage these technologies for animal behaviour analysis. Computer vi-
sion techniques enable the extraction of visual information from images or videos,
while machine learning algorithms can learn patterns in this data, allowing for
the automatic detection and recognition of specific behaviours. This shift to-
wards automated methods has significantly improved the accuracy and efficiency
of animal behaviour analysis, enabling researchers to study larger datasets and
uncover new insights [13].

Machine learning methods, including support vector machines (SVMs), princi-
pal component analysis (PCAs), and various other techniques, have been applied
to animal behaviour analysis [14]. However, the recent rise of deep learning, a sub-
field of machine learning, has revolutionized the field. Deep learning algorithms,
especially convolutional neural networks (CNNs), have achieved remarkable re-
sults in image recognition and classification tasks, making them well-suited for
animal behaviour analysis [15, 16].

Deep learning-based approaches have been applied to various aspects of animal
behaviour analysis, including pose estimation, action recognition, and tracking
[17]. These methods offer the potential to overcome many limitations of man-
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ual observation and annotation, allowing for more accurate and efficient analysis
of animal behaviour. For example, pose estimation techniques can provide de-
tailed information on an animal’s posture and movement, which can be crucial
for understanding specific behaviours [3].

Despite the promising results of deep learning in animal behaviour analysis,
challenges still need to be addressed, such as generalization across different species
and behaviours and the limitations of single-view systems [4]. Furthermore, the
need for large annotated datasets to train deep learning models can be a barrier to
entry for some researchers [18], and the interpretability of these models remains
an open question [19].

To address some of these challenges, some researchers have started exploring
using multi-view systems, which combine data from multiple cameras to provide
a more comprehensive understanding of animal behaviour. By leveraging the
power of multi-view deep learning techniques, it is possible to overcome some
of the limitations of traditional single-view systems and push the boundaries of
animal behaviour analysis even further [3, 4].

2.2 Single-view Pose Estimation
Single-view pose estimation refers to the process of estimating the position and
orientation of an object or subject in a single image or video frame. In the context
of animal behaviour analysis, pose estimation is critical for understanding the
movements and actions of animals, as it allows researchers to track and analyze
specific body parts or landmarks. While single-view pose estimation has been
widely employed in various applications, it has several limitations when applied
to animal behaviour analysis. These limitations include the inability to handle
occlusions, variations in appearance, and changes in scale and perspective [20].

2.2.1 Human Pose Estimation
Human pose estimation is a well-established field within computer vision, focus-
ing on determining the positions and orientations of human body parts in images
or videos. Over the past decade, deep learning-based methods have become the
state-of-the-art in human pose estimation, significantly improving the accuracy
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and efficiency of the process [21]. These methods typically employ convolutional
neural networks (CNNs) to learn and infer the spatial relationships between body
parts. Popular approaches for human pose estimation include OpenPose [5],
which employs a multi-stage CNN architecture and Part Affinity Fields (PAFs)
to detect body part locations and estimate their associations, and DeeperCut
[22], which leverages a deeper architecture and image-conditioned pairwise terms
for improved pose estimation. HRNet [23] stands out as one of the best pose esti-
mators, utilizing a high-resolution network architecture to maintain fine-grained
spatial information throughout the network, resulting in highly accurate pose
estimation across different scales.

2.2.2 Non-human Primate Pose Estimation
Despite the progress made in human pose estimation, the development of pose
estimation methods for non-human primates has been relatively limited. Most ex-
isting methods are adaptations of human pose estimation techniques [24]. More-
over, the availability of annotated datasets for non-human primates is scarce,
making it challenging to train and validate pose estimation models for these ani-
mals. In this thesis, the MacaquePose dataset was developed to address the lack
of available annotated datasets for non-human primates. There is still a need for
further research and development in this area, including expanding the variety
of non-human primate species studied, creating larger and more diverse datasets,
and exploring new model architectures and training strategies. Additionally, cur-
rent pose estimation methods for non-human primates face limitations in han-
dling extreme occlusions and large variations in scale, which should be addressed
in future research.

2.3 Multi-view Behaviour Analysis
Multi-view behaviour analysis aims to capture and analyze the actions and move-
ments of subjects from multiple perspectives simultaneously. This approach ad-
dresses the limitations of single-view analysis, providing a more comprehensive
understanding of the subject’s behaviour and improving the accuracy of pose
estimation and action recognition.
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2 Related Work

2.3.1 Multi-view Image Classification
Multi-view image classification involves the integration of information from dif-
ferent views or modalities to improve the classification of images. This technique
is widely used in various applications, including object recognition, scene un-
derstanding, and biomedical image analysis. Multi-view classification methods
typically rely on feature extraction and fusion techniques, which combine infor-
mation from multiple views to create a more robust and accurate representation
of the subject [25]. Moving from multi-view image classification to more com-
plex scenarios, the analysis of human actions in multi-view settings has gained
considerable attention. In the following subsection, the focus is on how multi-
view systems have been applied to human action recognition, with a particular
emphasis on 3D pose estimation.

2.3.2 Multi-view Human Action Recognition
Multi-view human action recognition has received significant attention due to
its potential applications in surveillance, sports analysis, and human-computer
interaction [26]. By leveraging multiple camera perspectives, this approach can
better handle occlusions and variations in appearance, scale, and viewpoint. In
multi-view human action recognition (MVHAR), two primary approaches have
been explored. The first approach involves training end-to-end neural networks,
as demonstrated by previous works such as [27, 28, 29]. However, the effectiveness
of this approach heavily relies on the availability of large MVHAR datasets, which
are commonly used in human action recognition research [30, 31, 32, 33, 34].
Unfortunately, equivalent datasets for animal behavior analysis are not readily
accessible, and producing them would incur substantial costs and efforts.

The second approach in MVHAR involves feature extraction, with skeleton fea-
tures being widely adopted in existing studies [35, 36]. However, utilizing skeleton
features requires the use of pose estimators, which demand extensive amounts of
labeled data for accurate training [22, 5]. The challenge lies in accurately labeling
animal data, as it requires a deep understanding of the target animal’s anatomy
to produce correct and meaningful labels [18].

In summary, both approaches present unique challenges when applied to an-
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imal behavior analysis. While end-to-end neural networks require large animal
datasets that are currently scarce, using skeleton features necessitates precise pose
estimators and specialized labeling expertise. As part of this research, we have
sought to address these challenges by developing a multi-view behavior classifica-
tion system that overcomes the limitations of both approaches, enabling efficient
and accurate behavior analysis in animals without extensive reliance on large
datasets or complex feature engineering.

Multi-view 3D Pose Estimation

Multi-view 3D pose estimation focuses on estimating the 3D positions and ori-
entations of body parts or landmarks from multiple camera views. By fusing
information from different perspectives, it aims to provide a more accurate and
complete representation of the subject’s movements. Several approaches have
been proposed for multi-view 3D pose estimation in human action recognition.
For instance, the EpipolarPose framework [37] leverages the epipolar geometry
constraints between different camera views to improve 3D pose estimation accu-
racy.

Another notable method is VoxelPose [20], which employs a bottom-up ap-
proach to predict 3D human poses in a voxelized space. VoxelPose uses a two-
stage process that first detects 2D human body confidence maps and then projects
these confidence maps from all views into a 3D space to estimate individual hu-
man poses in 3D. By leveraging volumetric representations and fusing information
from multiple views, VoxelPose can achieve improved performance in 3D human
pose estimation tasks.

Despite the advancements in multi-view 3D pose estimation for human action
recognition, there is still limited research on applying these techniques to animal
behaviour analysis. The following section will discuss the current state of multi-
view systems in animal behaviour analysis and the potential for further research
in this area.
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2.3.3 Multi-view Systems in Animal Behaviour Analysis
Despite the advancements in multi-view human action recognition, the applica-
tion of multi-view systems in animal behaviour analysis remains relatively lim-
ited [3]. Challenges include the need for accurate pose estimation in non-human
primates and the detection of specific behaviours, such as the wet dog shaking
behaviour in rats. Some recent studies have begun to explore the potential of
multi-view systems for animal behaviour analysis, demonstrating the benefits of
this approach in terms of improved accuracy, robustness, and ability to handle
occlusions [4, 38]. However, further research is needed to develop and validate
multi-view systems for various animal species and behaviours, ultimately en-
hancing our understanding of complex animal behaviours and their underlying
mechanisms.

2.4 Wet Dog Shaking Behaviour
Wet dog shaking (WDS) is a distinctive type of behaviour exhibited by a diverse
range of animals, such as rodents, African lions, and giant pandas, characterized
by rapid whole-body shaking motions. These movements involve the rapid oscilla-
tion of the animal’s body, generating forces that propel water droplets away from
its fur or skin, similar to a wet dog’s actions to remove water from its fur [39].
This behaviour has been observed across different species and environments, sug-
gesting an adaptive and functional significance. The shaking motions may serve
various purposes depending on the species and context. Studying WDS in depth
could reveal valuable insights into the complex interactions between animals and
their environments.

2.4.1 Wet Dog Shaking Behaviour in Rats
In the context of rats, WDS behaviour holds particular significance for studying
animal disease models, including acute seizures, morphine abstinence, and nico-
tine withdrawal, as it provides valuable insights into their underlying mechanisms
[7, 8, 9]. Triggered by factors such as drug administration, cold water exposure,
or tactile stimulation around the ears, this behaviour manifests as an abrupt,
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convulsive shudder of the head, neck, and trunk, which mirrors the movements
seen in dogs. The neuropharmacology of WDS is still uncertain, but evidence
points to the possible involvement of central serotonin (5-HT) pathways [40].

Similar to how other behaviours, such as self-grooming, have been employed as
a tool for understanding neurological and psychiatric disorders in neuroscience[41,
42], WDS also holds the potential for advancing our knowledge of various ani-
mal disease models. Naturally occurring WDS is rare and nearly absent when
observed over short periods [43]. However, it becomes more prevalent under spe-
cific experimental conditions, such as the Rat Kainate (KA) model, as described
below.

Rat Kainate Model

The Rat Kainate (KA) model is an animal model of temporal lobe epilepsy in-
duced by the administration of kainic acid, a potent neurotoxin. This model is
characterized by an overexpression of WDS behaviour, making it an ideal subject
for the study of WDS detection methods. Soon after the administration of KA,
rats experience an unusually high amount of WDS for approximately one hour
until class IV and/or class V seizures appear [44, 45]. In the three experiments
used for this study, the animals experienced an average of 139 WDS events during
the hour of high WDS activity after KA administration. The average duration
was 0.33s with a standard deviation of 0.11s.

Figure 2 presents a time-lapse of WDS behaviour recorded in this study (t=0s
previous to the start WDS behaviour, t=0.1s-0.4s WDS behaviour, t=0.5s ending
of WDS behaviour). This behaviour is evocative of the movement seen in dogs.

The Rat KA model is the foundation for developing and testing a multi-view
system to detect WDS automatically in this dissertation. This novel approach
could provide valuable insights by analysing WDS behaviour and its implications
in various animal disease models.

2.4.2 Traditional Detection Methods
Traditional detection methods for WDS behaviour in rats predominantly depend
on manual observation and annotation by researchers [46, 47]. While these meth-
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Figure 2.1: A time-lapse of WDS behaviour recorded in this study (t=0s previ-
ous to the start WDS behaviour, t=0.1s-0.4s WDS behaviour, t=0.5s
ending of WDS behaviour).

ods can yield effective results, they come with several drawbacks, including the
time-consuming nature of the process, the subjectivity introduced by human judg-
ment, and the potential for errors due to human oversight. Moreover, continu-
ously monitoring WDS behaviour can prove challenging, particularly in long-term
studies where researchers may be required to observe and annotate numerous in-
stances over extended periods.

Observer fatigue, resulting from the repetitive and labour-intensive nature of
manual observation, can compromise the accuracy of the annotations. Notably,
for WDS, the common technique of fast-forwarding video to analyze behaviours is
not feasible due to the short duration of WDS episodes, which in the experiments
performed for this work had an average duration of 0.33 seconds. Fast-forwarding
video is a method often employed to review and identify behavioural events of
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interest more quickly by speeding up the playback of the recorded video [48].
However, since WDS episodes are so brief, this fast-forwarding technique would
likely result in researchers missing the crucial WDS events, making it unsuitable
for detecting such short-duration behaviour.

Additionally, variability between different or even the same observer at different
times may lead to inconsistencies in the data collected. This variation can hinder
the reliability of the conclusions drawn from the analysis of WDS behaviour and
limit the reproducibility of the study results. Consequently, there is a need for
more efficient, objective, and reliable methods of detecting and analyzing WDS
behaviour in rats to overcome these challenges and enhance the quality of research
in this area.

2.4.3 WDS Deep Learning-based Detection Techniques
Deep learning techniques have shown promise in various behavioural detection
tasks, demonstrating their potential for automating and enhancing the analysis
of complex behaviours [13]. However, to date, there is no established system for
detecting WDS behaviour in rats using deep learning methods. This dissertation
aims to address this gap by developing a novel deep learning-based detection sys-
tem for WDS behaviour in rats, leveraging multi-view camera systems to improve
accuracy and robustness. The development of such a system would contribute to
the advancement of animal behaviour analysis and significantly impact the study
of animal disease models.
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3 Multi-Camera Setups and
Animal Preparation

This chapter describes the multi-camera setups and systems used for marmoset
3D pose estimation and wet dog shaking detection in rats. It also includes infor-
mation on the preparation of the rats for the recordings.

3.1 Marmoset Multi-view Capture System
The Marmoset Multi-view Capture System was designed to record the behaviour
of marmosets in a controlled environment using multiple synchronized cameras.
The system consists of eight high-resolution cameras strategically placed around
a 1.5 x 1.5-meter marmoset enclosure to ensure comprehensive coverage of the en-
tire area Figure 3.1. Each camera in the system is equipped with a high-quality
lens, offering a wide field of view to maximize the coverage of the marmoset’s
activities within the enclosure. The cameras can capture images at a resolution
of 2048 x 1536 px and a frame rate of 24 frames per second, providing detailed
and smooth video recordings of the animals’ movements and interactions. A
dedicated hardware-based synchronization system was employed to ensure pre-
cise synchronization of the cameras. This system uses a central control unit to
distribute accurate timing signals to each camera to ensure synchronization and
consistency across the various viewpoints. This synchronization is critical for the
precise reconstruction of 3D poses and the analysis of marmoset behaviour from
the multi-view recordings. The marmoset enclosure is designed to provide a com-
fortable and stimulating environment for the animals while facilitating the cap-
ture of various complex naturalistic behaviours in high-quality video data. The
enclosure includes features such as two pole structures for climbing and feeding
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stations, encouraging natural marmoset behaviours and social interactions. The
enclosure acrylic walls are constructed using non-reflective materials to minimize
glare and reflections that might interfere with the video quality. The captured
video data from the eight cameras are stored on a high-capacity, multi-channel
recording system, which allows for simultaneous recording and playback of video
data from all cameras. This feature enables researchers to review the captured
footage in real-time, allowing for quick adjustments to the experimental setup if
necessary.

Figure 3.1: A collage of the eight synchronized camera views capturing the mar-
mosets within their 1.5 x 1.5-meter enclosure. The images have been
selectively cropped to emphasize the marmosets and showcase the di-
verse perspectives provided by the multi-view capture system.

3.2 Rat Multi-view Capture System
The experiments involving rats were conducted in accordance with the Guide for
Care and Use of Laboratory Animals at the Graduate School of Life Science and
Systems Engineering of the Kyushu Institute of Technology (Sei#2021-003).
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3.2.1 Animal Preparation
The experiments were performed with three rats aged 4–5 weeks and weighing
between 104.0 and 152.5 grams (Japan SLC inc). There were eight to ten days
of adaptation before the experiment. Light (12 h light - 12 h dark), humidity
(50±5), and temperature (23±1) factors were regulated. Administering 0.05%
kainic acid (KA) (5mg/kg) after anesthesia (3.5 isoflurane) intraperitoneally us-
ing the repeated low-dose protocol (Hellier et al., 1998). The injections were
administered every hour, three times in total. The animals were recorded for one
hour immediately after the third KA injection.

3.2.2 Hardware Setup
The live mouse tracker 50 × 50 cm2 plastic cage [13] was utilized for the exper-
iments. To create a machine learning dataset, three sessions were recorded with
up to four cameras: a camcorder, a GoPro HERO8 Black, and two GoPro HERO7
Silver cameras. A camera was set on each side of the cage. The camcorder was
mounted using a tripod, as this is a common setup for manual labelling [42]. The
GoPro cameras were attached to the plastic enclosure using a suction cup mount
and positioned at the center top of the panel as illustrated in Figure 3.2. The
angle was adjusted to capture the entire enclosure. The angle and position of the
cameras changed slightly between experiments, as the cameras were mounted and
dismounted between different sessions. All cameras were set to a resolution of
1080p at 30 fps. The GoPro HERO8 features three digital lenses; the wide digital
lens was used. Videos were synchronized using Apple Final Cut Pro Multicam
editing workflow.

The study was conducted using the cloud service Google Colab with a Tesla
V100-SXM2-16GB GPU graphics card and an Intel (R) Xeon (R) CPU @ 2.20GHz
hardware configuration.
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Figure 3.2: Top: the rat being depicted from different perspectives. Left bottom:
the open-source LMT Acrylic enclosure. Bottom right: GoPro Cam-
era attached by a suction cup mount.
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4.1 Multiple-Monkey 2D Pose Estimation

4.1.1 Dataset and Annotations
The MacaquePose monkey dataset, utilized for multiple-monkey 2D pose esti-
mation, comprises 13,083 RGB images featuring 16,393 monkeys that were used
to train the model [18]. These images, either sourced from the internet through
Google Open Images, captured in zoos, or taken at the Primate Research In-
stitute of Kyoto University, depict monkeys engaging in various activities and
social interactions, including feeding, grooming, sleeping, fighting, climbing, and
swimming. The dataset presents numerous challenges for pose estimation, such
as diverse backgrounds, occlusions, noise, and other artefacts. Of all the images,
93.75% were allocated for training and the remaining 6.25% for validation. Table
1 provides further details on the dataset’s distribution.

Each monkey in the dataset is annotated with 17 labels corresponding to dif-
ferent body features, as illustrated in Figure 4.1. If a body feature is present,
its (x,y) coordinates are noted, and an additional bit indicates whether the body
feature is visible or occluded.

4.1.2 Network Architecture
HyperPose, an open-source implementation, is employed as part of the Tensor-
Layer project [49]. TensorLayer is integrated with Google’s TensorFlow Frame-
work for machine learning and deep learning. In this study, ResNet18 is used
as the network’s backbone [50]. Although employing a deeper backbone like
ResNet50 might yield better results, ResNet18 allows the network to remain
lightweight. This reduces the training and execution time and computational
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Figure 4.1: Top: Examples of pictures and labels in the present dataset.

requirements, making it more accessible. Following the same rationale, the net-
work’s head is a lightweight implementation of OpenPose [5]. The network takes
body feature-related labels and masks for each monkey as input. As an output,
the network generates score maps and estimates preliminary part affinity fields.
After a refinement stage, the monkeys’ skeletons are generated. Once the model
is trained, it is exported to the Open Neural Network Exchange (ONNX) format,
allowing it to run in the Nvidia C++ TensorRT high-performance deep learning
inference framework.

4.1.3 Evaluation and Training
The Average Precision (AP) metric is used to evaluate the model. During training,
standard augmentation methods such as random rotation, shifts, and flips were
employed. A graph of the training loss is also provided. The network processes
images with a maximum dimension of 640 pixels, either in height or width. The
model is trained on an Nvidia GeForce GTX TITAN X graphics card for up to
100,000 iterations with a batch size of 8. The training takes approximately 24
hours. The same computer setup is used for evaluation and inference.
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4.2 Marmoset 3D Pose Estimation

4.2.1 Dataset and Annotations
The dataset for Marmoset 3D Pose Estimation consisted of 41 short clips, from
which random frames were extracted, resulting in a total of 3,000 annotated
marmoset bodies. Out of these, 2,700 were used for training, while the remaining
300 were reserved for validation. Both 2D and 3D annotations were provided for
each marmoset body in the dataset.

4.2.2 Network Architecture
The network architecture for Marmoset 3D Pose Estimation consisted of two main
components: HigherHRNet [51] for 2D pose estimation and VoxelPose [20] for 3D
pose estimation as illustrated in Figure 4.2.

HigherHRNet:

HigherHRNet is a state-of-the-art deep learning architecture designed for high-
resolution 2D human pose estimation. It adopts a multi-resolution approach to
predict human keypoints and generates heatmaps, which represent the likelihood
of keypoint locations. The primary advantage of HigherHRNet lies in its ability to
maintain high-resolution representations throughout the network, enabling more
accurate and precise keypoint localization.

In the context of the Marmoset 3D Pose Estimation, HigherHRNet was adapted
to estimate 2D poses for marmosets. It was pre-trained using the MacaquePose
dataset, allowing for faster convergence and improved marmoset pose estima-
tion task performance. The output of HigherHRNet consisted of 2D heatmaps
representing the likelihood of each marmoset body part’s location.

4.2.3 VoxelPose:
VoxelPose is a 3D pose estimation method that leverages the 2D heatmaps gen-
erated by the HigherHRNet to estimate the corresponding 3D poses. It works by
constructing a 3D heatmap, also known as a voxel grid, from the 2D heatmaps.
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The voxel grid is created by lifting the 2D heatmaps into 3D space, followed by
the process of matching and associating 2D keypoints across different camera
views.

Then a 3D Convolutional Neural Network processes the voxel grid to generate
the final 3D pose predictions. The network learns to identify and match keypoints
across different views, accounting for occlusions and ambiguities that may arise
in the 3D reconstruction process.

By combining HigherHRNet’s 2D pose estimation capabilities with VoxelPose’s
3D pose estimation approach, the network architecture enables accurate and ef-
ficient marmoset 3D pose estimation. This methodology allows the use of the
pre-trained MacaquePose dataset, reducing the training data required for the
Marmoset 3D Pose Estimation task and improving the system’s overall perfor-
mance.

Figure 4.2: 3D Pose Estimation Process. The diagram illustrates the steps in-
volved in the 3D pose estimation process, starting with the 2D pose
estimation using HigherHRNet, followed by the generation of 2D
heatmaps, and finally, the estimation of 3D poses using VoxelPose.

4.3 Wet Dog Shaking Detection in Rats
In this section, the methodology employed to detect WDS behaviour in rats using
the data collected from the multi-view system is detailed.
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4.3.1 Data Collection and Annotation
The dataset for machine learning was created using three one-hour recordings
captured from 3-4 cameras (views) at a frame rate of 30 fps. These recordings
were made following the third KA injection. Two of these recordings were used
for training, and one was used for validation. The target behaviour, WDS, is a
rapid oscillation of the body that occurs naturally as a spontaneous behaviour
[39]. As WDS is a rare behaviour, only KA-treated rats were considered for this
study. In the three experiments, the rats experienced 149, 220, and 49 WDS
events with a mean duration of 0.33s (approximately 10 frames) and a standard
deviation of 0.11s.

Each frame was annotated either as WDS or NWDS (Not Wet Dog Shaking).
To create an object localization dataset, image features were first extracted from
a sub-sample of frames and then principal component analysis was applied to
reduce the dimensions. After clustering the frames using K-means, the images
were annotated with the help of cloud services Roboflow and Labelbox. This
resulted in a dataset containing 1.5k images for training.

For the WDS classification dataset, the Object Detection Network was used to
obtain the Region of Interest (ROI) predictions and the images were cropped ac-
cordingly. All frames containing WDS behaviour and an equal number of NWDS
behaviour images were selected, yielding a balanced dataset with 25,544 frames.

4.3.2 Neural Networks
The framework consists of three neural networks as illustrated in Figure 4.4:
NN1 for object localization, NN2 for image classification, and NN3 for predicting
the final score from a feature map that encodes multiple views and time, as
illustrated in Figure 4.5. TensorFlow on the Google Colab platform was used for
implementation.

Object Localization Network

For object localization, the Single Shot MultiBox Detector (SSD) approach [52]
with MobileNetV2 as the backbone [53] was employed. SSD maintains high ac-
curacy while being fast. The SSD consists of a single feed-forward convolutional
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Figure 4.3: Types of Annotations for Wet Dog Shaking Behaviour in Rats. (a)
Timestamp-based labelling of rat behaviour. (b) Object detection
annotation, including the region of interest and behaviour class label.
(c) Cropped image showcasing the rat and its corresponding behaviour
class label.

network with three stages. The TensorFlow 2 Detection Model Zoo API was used
for implementation.

Image Classification Network

A Convolutional Neural Network (CNN) was trained to classify images into two
categories: WDS and NWDS. Image classification can be described as assigning
a label from k categories to an image x, represented by the function 4.1:

f : x 7→ {1, . . . , k} (4.1)

In this case, k = 2, corresponding to WDS and NWDS categories. Mo-
bileNetV2 [53] was used as the backbone of the classifier, and the previously
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Figure 4.4: Overview of the Wet Dog Shaking Detection Method. The process in-
volves three neural networks: NN1 for object localization, identifying
regions of interest within the input images; NN2 for image classi-
fication, categorizing the cropped regions based on the presence of
WDS behaviour; and NN3 for predicting the final score by analyzing
a feature map encoding time and multi-view information, ultimately
determining the likelihood of WDS behaviour occurrence.

described WDS classification dataset was used for training.

Multi-view Integration and Time Series Analysis

To account for multiple views and temporal information, the image classification
equation was modified as 4.2 and a score fusion multi-view image classification
algorithm was employed. A separate network, NN3, was trained to predict the
final score from the output of NN2, which generates predictions for each view
from a specific time window. NN2 analyses all frames from all views within the
time window and creates a vector map of class scores for each camera angle. The
time window is user adjusted; in the case of this study, the time window of t-15
to t+15 was selected. This choice aligns with the average duration of the WDS
behaviour, 0.33 seconds average, as shown in Figure 4.5. This vector map is then
used as input for NN3 to generate the final prediction as illustrated in Figure 4.5.
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f : XV → {1, . . . , k} | XV = {x1, x2, . . . , xnV
} (4.2)
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In Equation 4.2, f is a function that maps a set of images XV from nV views
to one of k categories. In Equation 4.3, the function f is extended to incorporate
time information, denoted by the superscript t, and multiple views, denoted by
the subscript nV . The matrix represents the images from different views and
timepoints, with t being the current time and n indicating the number of time
steps before and after the current time.

The NN3 model architecture as illustrated in Figure 6 begins with an input
layer, followed by a Conv2D layer with 30 filters and a kernel size of (3, 5). The
output is flattened and passed through a Dense layer with 20 units and ReLU
activation. Batch Normalization and Dropout layers are employed to improve
generalization. Finally, a Dense output layer with 2 units with softmax activation
provides classification probabilities for the input data. To further refine and
eliminate gaps in the results obtained from the network, we utilize one median
and one minimum filter.

Illustrated in Figure 4.6, the NN3 model architecture initiates with an input
layer, progressing to a Conv2D layer featuring 30 filters and a kernel size of (3,
5). Subsequently, the output is flattened and directed through a Dense layer
comprising 20 units activated by. To enhance generalization and prevent overfit-
ting, Batch Normalization and Dropout layers are incorporated. The final stage
involves a Dense output layer, encompassing 2 units with softmax activation,
which yields classification probabilities for the input data, enabling precise de-
termination of the target behavior. To further refine the results and rectify gaps,
we incorporate both a median filter and a minimum filter. By employing these
post-processing filters, the model delivers more coherent and refined behavior
classification outcomes, enhancing its overall robustness and accuracy.
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Figure 4.5: Multi-view integration and time series analysis framework. NN2 ana-
lyzes all frames from t − 15 to t + 15 from all views to create a vector
map of class scores. NN3 generates the final prediction from the vec-
tor map.

Figure 4.6: Diagram of the NN3 model architecture, which consists of a Conv2D
layer, a flatten layer, a Dense layer and ReLU activation, along with
Batch
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In this chapter, the results obtained from the experiments conducted for multiple-
monkey 2D pose estimation, 3D pose estimation, and wet dog shaking detection
in rats are presented. The implications of these results and their potential appli-
cations in animal behaviour analysis are discussed.

5.1 Multiple-Monkey 2D Pose Estimation
The model was trained up to 100,000 iterations, taking around 24 hours. Figure
5.1 shows that the loss significantly decreased during the first 10,000 iterations.
Afterwards, the loss continues to drop at a slower but steady rate. The graph
also compares the training performance of the monkey model to a network trained
with the human MSCOCO 2017 dataset [54]. The monkey model’s performance
is comparable to the human one, and in fact, it performs slightly better. It
is remarkable to see the monkey model achieving close results to the human
model since the monkey dataset is approximately ten times smaller. The COCO
training set contains over 100,000 person-labelled instances. The better results
on the monkey model could be explained by the MSCOCO dataset being more
challenging. The MSCOCO dataset contains numerous objects and animals in
addition to humans, while the monkey dataset primarily consists of monkeys.

5.1.1 Evaluation
To evaluate the performance of the trained model, AP was used as a metric. The
monkey-trained model was compared against the same network trained on the
MSCOCO2017 human dataset. The results reported on the original OpenPose
were also included as a reference [5]. It is important to note that a fair comparison
is not possible due to the differences in the Original OpenPose implementation
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Figure 5.1: Training Loss Comparison for Monkey and Human Models. The plot
illustrates the training loss over time for the Monkey model (blue
curve) and the Human model (orange curve
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Network Dataset Ap50 Ap75 ApM ApL
Lightweight Openpose + ResNet18 MSCOCO 2017 76.2 38.0 35.5 43.2
Lightweight Openpose + ResNet18 MSCOCO 2017 58.7 10.4 18.2 28.1
Original OpenPose MSCOCO 2016 83.4 66.4 55.1 68.1

Table 5.1: Performance comparison of the Monkey model and the Human pose
trained model using AP50, AP75, APM, and APL metrics. The Mon-
key model was evaluated on 29 randomly selected images, while the
Human pose trained model was evaluated on 11 randomly selected
images.

and backbone. The original OpenPose backbone is based on the VGG-19 [55],
while the monkey-trained model is based on ResNet18 [50] and uses a lightweight
implementation of OpenPose. Additionally, the original OpenPose is evaluated
on the MSCOCO2016 dataset.

Table 5.1 shows the results of Ap50, Ap75, ApM, and ApL. Twenty-nine ran-
domly selected images from the evaluation set were chosen to evaluate the Monkey
model. Similarly, to evaluate the human pose-trained model, eleven randomly se-
lected images from the evaluation set were selected. Compared to the network
trained on humans, the monkey network achieves better performance in all four
APs; this can be attributed to the more challenging human dataset. The original
OpenPose has a better performance compared to the monkey model.

5.1.2 Visual Assessment
Figures 5.2 5.3 5.4 show images from the evaluation set. These images were not
seen during training. Figure 5.2, in addition to the final result, also shows the
score maps and PAF. The output score maps confirm that the network can infer
monkey body features and their relations in unseen images represented by the
generated PAF.

Failure cases

Some of the most common failure cases are illustrated in Figure 5.3: (a) Although
a monkey is detected, some of its body parts are not; in most cases, this could be
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Figure 5.2: Visualization of the pose estimation process for a monkey. The in-
put image (top left) is processed to generate the score map prediction
(bottom left) and the PAF prediction (bottom right). The final out-
put (top right) shows the detected key points and skeletal structure
overlayed on the input image.
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attributed to a low confidence score on the missing body features. (b) A monkey
is not detected; this tends to happen more when facial body features are not
visible. In some of these cases, monkeys are difficult to spot, even for a human,
due to blending with the environment or small scale. (c) In a few cases, some
body parts of a nonexistent monkey are detected in the background. (d) False
body features of an existing monkey are detected in the background; in most
instances, the falsely detected body feature is close to the subject, but in a few
cases, it could appear as a random detection. (e) A skeleton prediction takes body
parts from different monkeys, or in some cases, two generated monkey skeletons
share a single body feature. These errors tend to occur when monkeys are closely
interacting.

Figure 5.3: Sample failure cases in pose estimation: (a) Missing body parts; (b)
Undetected monkey; (c) False detection in the background; (d) Ran-
dom detections; (e) Shared body part detection among multiple in-
dividuals and incorrect association of body parts from different indi-
viduals to the same skeleton.
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Success cases

Figure 5.4 shows a sample of successful detections on unseen images from the dev
set. The sampled images display various activities that include eating, playing,
jumping, crawling, and standing. The backgrounds are rich and varied, ranging
from natural sceneries with plants and trees to a city with a sea view. Figure 6
Success detection sample: challenging and varied environments, multiple individ-
uals, a variety of activities, occlusion, and social interactions.

Figure 5.4: Successful pose detection examples in challenging scenarios. The fig-
ure showcases a variety of environments, multiple individuals, diverse
activities, occlusions, and social interactions, demonstrating the ro-
bustness of the pose estimation model.

5.1.3 Real-time Performance
The trained model was exported to the Open Neural Network Exchange (ONNX)
format and ran in the Nvidia C++ TensorRT high-performance deep learning

32



5 Results and Discussion

inference framework. The model in the ONNX format has a size of 31 MB. In the
testing process, it was possible to run the model in real-time using the webcam
stream. The Hyperpose open-source project reports being able to run at 60 fps
using the default OpenPose with the ResNet18 as a backbone and a resolution of
432 x 368 images. As the trained model uses a lightweight version of OpenPose,
it should yield superior performance.

5.2 Marmoset 3D Pose Estimation
In this section, the outcomes of the marmoset 3D posture estimation model are
reported. A single clip with two monkeys and a more difficult set of four clips
with several monkeys and close interactions were used for the evaluation.

5.2.1 Evaluation
For the single clip with two monkeys, the model achieved the performance metrics
presented in Table 5.2. The AP@25 and AP@50 scores were 0.2897 and 0.3800,
respectively. These results indicate a reasonable level of accuracy in detecting
the 3D poses of the monkeys, with over 50% of the estimated poses having an
error of less than 500mm.

Scenario AP@25 AP@50
One clip with two monkeys 0.2897 0.3800
Four clips with close interactions 0.04 0.13

Table 5.2: Evaluation results for the Marmoset 3D Pose Estimation model in
different scenarios.

In the more challenging scenario with four clips containing multiple monkeys
and close interactions, the model’s performance was lower, with AP@25: 0.04 and
AP@50: 0.13. This decrease in performance can be attributed to the increased
complexity of the scenes, where close interactions and occlusions between the
monkeys make the estimation task more difficult.
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5.2.2 Visual Inspection
Upon visual inspection of the results, the 3D pose estimation model demon-
strated the ability to estimate marmosets’ poses in various challenging scenarios.
However, some limitations were observed, such as difficulty handling extreme
occlusions and large variations in scale.

Failure Cases

Despite the model’s success in various situations, there were instances where the
model failed to estimate the 3D poses of the marmosets accurately. Common
failure cases include extreme occlusions, where one marmoset is almost entirely
hidden by another, or when the marmosets are very close to each other, making it
difficult to distinguish between their body parts. As illustrated in the supporting
Figure 5.5, the 3D pose prediction shows a successful pose prediction for an
isolated marmoset. However, for a group of three interacting marmosets, the
model failed to estimate their poses accurately. It is also important to note
that the three marmosets belonged to different development stages and, thus,
sizes. In this case, body parts were incorrectly assigned to other individuals
within the group, resulting in an inaccurate combined pose. This highlights
the challenges faced by the model in estimating poses for closely interacting or
occluded marmosets.

Success Cases

In contrast to the failure cases, the model successfully estimated the 3D poses
of marmosets in a variety of situations. The successful cases often involved mar-
mosets that were clearly visible and not occluded, allowing the model to predict
their poses accurately. Furthermore, when the marmosets were positioned at
a reasonable distance from each other, the model could effectively distinguish
between their body parts and produce accurate pose estimations.

As shown in Figure 5.6, the model was capable of generating accurate 3D pose
predictions for two separate marmosets in both 3D space and when mapped to
the image. These successful cases highlight the model’s effectiveness in handling
non-human primate pose estimation when individuals are not closely interacting
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Figure 5.5: Illustration of 3D pose prediction for marmosets. On the left, the 3D
pose prediction in a 3D space, and on the right, the 3D prediction is
projected to the image. The figure shows an isolated marmoset with a
successful pose prediction and a group of three interacting marmosets
with a failed pose estimation, resulting in body parts being assigned
to different individuals within the group, creating an inaccurate com-
bined pose.

35



5 Results and Discussion

or experiencing significant occlusion.

Figure 5.6: Illustration of successful 3D pose prediction for marmosets. On the
left, the 3D pose prediction in a 3D space, and on the right, the
3D prediction mapped to the image. The figure shows two separate
marmosets with accurate pose estimations, demonstrating the effec-
tiveness of the model when individuals are not closely interacting.

5.2.3 Discussion
The Marmoset 3D Pose Estimation model demonstrates promising performance
in simpler scenes, such as the single clip with two monkeys. However, when
dealing with more challenging scenarios involving multiple monkeys and close
interactions, the model’s performance decreases. The observed limitations, such
as difficulty handling extreme occlusions and large variations in scale, suggest that
further improvements to the model are necessary for more robust performance in
complex situations.

One major limitation is the low amount of available training data compared
to human pose estimation datasets. The scarcity of annotated marmoset data
may limit the model’s ability to generalize to more complex scenes and handle
various challenging cases. Collecting and annotating more marmoset pose data
could potentially improve the model’s performance by providing a more diverse
and representative training set, allowing the model to learn more robust features
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and better handle complex situations.
To better adapt the model to marmosets, some changes have already been

implemented, such as modifying the size of feature volumes and cuboid proposals
and training the HRNet to predict heatmaps specifically for marmosets. However,
these adjustments may not be sufficient to fully account for the unique behaviours
and characteristics of marmosets. Marmosets exhibit more dynamic movements,
such as jumping and rapidly changing their shape, compared to humans, who
typically stand and walk. Further adaptations to the model to accommodate
these specific behaviours could lead to improved performance in marmoset pose
estimation.

In addition to expanding the training dataset and refining the model’s adap-
tations, other strategies could potentially improve the model’s performance in
handling challenging scenarios. For example, incorporating additional context
information from the environment, utilizing a more robust method for handling
occlusions, or employing a multi-stage approach for pose estimation that refines
initial predictions. Further research and development are needed to address these
limitations and enhance the model’s applicability in real-world scenarios involving
marmoset behaviour studies.

In conclusion, the Marmoset 3D Pose Estimation model shows potential for
application in marmoset behaviour studies. However, its limitations, particularly
the low amount of available data and the need for further model adaptations to
marmoset-specific behaviours must be addressed to achieve better performance
and robustness. Increasing the amount of annotated marmoset data, making
further model adjustments, and exploring additional modelling techniques could
lead to significant improvements in the model’s performance, making it more
suitable for real-world scenarios.

5.3 Wet Dog Shaking Detection in Rats
In this section, the results of the efforts to develop a multi-view animal behaviour
classification system for detecting Wet Dog Shaking (WDS) behaviour in rats
are presented. The evaluation of the system includes the assessment of object
detection and image classification performance, as well as the effectiveness of
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multi-view integration in improving the detection of WDS events.

5.3.1 Object Detection Results
The object detection network was trained on a dataset containing 1572 images,
with 1500 images used for training and 72 for validation. The network achieved an
average Intersection over Union (IoU) of 0.98 on the validation dataset, indicating
successful localization of the animal in the image. However, the network’s clas-
sification score was insufficient for practical application, achieving 0.79 precision
and 0.52 recall. This led to the decision to use this network only for predicting
the Region of Interest (ROI).

5.3.2 Image Classification Results
The image classification network (NN2) was trained on a dataset consisting of
25,549 images, using 24,920 of those images for training purposes and the remain-
ing 629 for validation. The network achieved a 92% accuracy on the validation set.
However, the 8% error rate, although seemingly low, is translated into numerous
false positives when predicting the WDS behaviour.

Figure 5.7 illustrates the issue more clearly, showing the raw per-frame pre-
dictions from NN2 across three different views (blue) alongside the ground truth
(red). The figure highlights the presence of many false positives generated by the
network, despite the overall high accuracy. The result seems even worse when
taking into account the fact that WDS behaviour occurs just 0.38% of the time
in an already overexpressive-WDS disease model during the experiments, making
false positives more noticeable and detrimental.

This observation demonstrates that relying solely on image classification us-
ing NN2 is not sufficient for accurately detecting the onset and termination of
the WDS behaviour. To improve the detection of this behaviour, additional
strategies, such as incorporating multiple views and temporal information with
the help of NN3, should be employed to reduce false positives and enhance the
overall performance of the system.
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Figure 5.7: Figure displaying the raw per-frame predictions generated by the im-
age classification network (NN2) across three distinct views, depicted
in blue, in contrast with the ground truth marked in red.

5.3.3 Multi-view Performance Evaluation
A 1-hour experiment featuring 49 WDS events was conducted, examining the
impact of using different numbers of views, ranging from one to three cameras,
and assessing the multi-view system’s effectiveness. The significant benefits of
incorporating additional views into the approach were demonstrated by evalu-
ating the system’s performance using recall and precision metrics, as well as
considering time analysis. As illustrated in Table 5.3, precision remained consis-
tently high across all camera configurations, highlighting the system’s capacity
to identify WDS events while minimizing false positives accurately. Additionally,
recall improved as the number of views increased, suggesting an enhancement in
the system’s ability to detect WDS events without missing true instances. This
boost in recall emphasizes the importance of integrating multiple cameras into
the methodology and considering time analysis to capture WDS behaviour better,
ultimately leading to a more accurate and dependable detection process.

A direct comparison with previous methods is not feasible, as no existing sys-
tems could detect WDS behaviour. Moreover, modifying existing behaviour de-
tection systems, such as the Live Mouse Tracker [13], to incorporate WDS de-
tection is challenging. However, in the absence of previous automated WDS
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Views Precision Recall
Three 0.91 0.86
Two 0.97 0.65
One 0.90 0.57

Table 5.3: Comparison of WDS recall and precision metrics with three different
camera configurations in the 1-hour validation recording.

detection methods, we can use manual labelling as the benchmark for compari-
son. Manual labelling is considered the prior method for such analysis. Although
time-consuming and labour-intensive, manual labelling provides a reliable refer-
ence for evaluating our system’s performance. Precision and recall metrics are
particularly useful in this context. Recall allows us to measure the system’s abil-
ity to identify all instances of WDS behaviour compared to the human-annotated
labels (ground truth).

To further assess the effectiveness of our system with various camera setups,
Figure 5.8 has been incorporated, showcasing the ROC curves for three distinct
scenarios: single-view, two-views, and three-views. These ROC curves effectively
demonstrate the balance between sensitivity and specificity for each configuration.
Notably, the outcomes reveal that the inclusion of multiple views enhances the
overall performance of our system. However, it is important to note that the ROC
curves are generated based on raw per-frame data, while the results presented in
Table 2 are computed on a per WDS event basis. The integration of multiple
views proves beneficial in refining the system’s capabilities.

5.3.4 Visual Inspection
Figure 5.9 presents a visual comparison of the final predictions of the multi-
view system for WDS behaviour in a two-minute video sample extracted from
the 1-hour validation experiment session. The two-minute sample is analyzed
with different numbers of views (from one up to three views) in blue, alongside
the ground truth in red. Out of the 10 WDS events represented in the ground
truth, the system detected 6 WDS events with one view, 8 with two views, and
all 10 with three views. In all cases, no false negatives were observed. Upon
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Figure 5.8: Receiver operating characteristic (ROC) curves for one, two, and three
view configurations
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visually inspecting the predictions in Figure 5.9, it becomes evident that the
number of WDS events recalled increases with the addition of more cameras while
maintaining zero false positives. This improvement in recall can be attributed
to the fact that multiple views offer better coverage of the subject’s behaviour,
reducing the likelihood of missing true instances due to occlusion or orientation.
Moreover, the increased information from multiple views also aids the system
in discerning true WDS events and other similar actions, thereby reducing the
number of false positives. These observations are consistent with the results in
Table 5.3, as the recall values improve with the inclusion of more views, confirming
the benefits of using multiple views for more accurate and reliable WDS behaviour
detection.

Figure 5.9: Figure displaying the raw per-frame predictions generated by the im-
age classification network (NN2) across three distinct views, depicted
in blue, in contrast with the ground truth marked in red.

Failure cases

In this section, analyze the instances where the multi-view behavior classification
system failed. Throughout the 1-hour validation experiment, we observed a total
of four false positives, which can be seen in Figure 5.10. Among these cases,
two instances depicted the rat engaging in rearing behavior, while the other two
instances showed walking behavior.
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Figure 5.10: The false positives (four in total) during the 1 h validation experi-
ment where the rat exhibits rearing behavior (two cases) and walking
behavior (two cases).
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The false positives in rearing behavior can be attributed to the occasional oc-
currence of forelimb elevation during Wet Dog Shaking (WDS) behavior, leading
to a resemblance with rearing, as demonstrated in Figure 2.1. To ensure the
model can distinguish between rearing and WDS, we conducted an analysis of
the first 10 minutes of the validation experiment. During this period, we identified
seven instances of rearing behavior, and remarkably, none of them were falsely
detected as WDS. This observation suggests that the model generally exhibits
the capability to distinguish between rearing behavior and WDS accurately. As
for the false positives involving the rat’s walking, we noted that the rat frequently
moved throughout the experiment, yet only two instances were mistakenly classi-
fied as WDS behavior. In Figure 5.7, we showcase the raw per-frame predictions
generated by the image classification network (NN2) across three distinct views,
with the ground truth marked in red. Interestingly, between 15 and 17 seconds,
all views indicated some probability of WDS, despite the rat actually walking,
as illustrated in Figure 5.11. However, the final prediction by NN3 successfully
filtered out the noise. While the raw classification predicted a high probability of
WDS, reaching around 80 percent, true WDS events exhibited probabilities close
to 100 percent, demonstrating the system’s remarkable capability to distinguish
walking from WDS in most cases.

In the case of false negatives, no discernible pattern was found to explain these
misclassifications. Therefore, it is imperative to conduct further investigation
and potentially make adjustments to the model to address these instances and
significantly enhance the overall performance of the behavior classification system.

5.3.5 Discussion
Inspired by the human decision-making process that frequently depends on visual
information from a variety of angles, a multi-view animal behaviour classification
system for detecting Wet Dog Shaking (WDS) behaviour in rats was developed,
which showed promising results. This system addresses unique challenges in
animal behaviour classification, such as the lack of datasets and the variety of
animals across different species used for experiments.

The evaluation of the system included assessments of object detection, image
classification performance, and the effectiveness of multi-view integration in im-
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Figure 5.11: Time-lapse of the rat at the 15-17s mark, displaying the rat’s walking
behaviour, NN2 displays high probability of WDS behaviour
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proving WDS event detection. The object detection network achieved successful
animal localization in the image, with an average Intersection over Union (IoU)
of 0.98 on the validation dataset. However, the network’s classification score
needed to be revised for practical application, leading to the decision to use it
only for predicting the Region of Interest (ROI). The image classification network
(NN2) achieved a 92% accuracy on the validation set. Nevertheless, the 8% error
rate resulted in a significant number of false positives when predicting WDS be-
haviour, demonstrating that relying exclusively on image classification with NN2
was insufficient for accurately detecting WDS events.

Incorporating multiple views and temporal information with the help of NN3
proved to be an effective strategy to reduce false positives and enhance the sys-
tem’s overall performance. The system’s recall and precision improved by adding
more cameras, achieving 0.91 precision and 0.86 recall in the WDS behaviour
classification task. This improvement can be attributed to the better coverage
of the subject’s behaviour and the increased information available from multi-
ple views, which aids in discerning true WDS events and other similar actions,
thereby reducing the number of false positives.

The findings confirm the benefits of using multiple views for more accurate
and reliable WDS behaviour detection. The developed multi-view system shows
potential for further application in the field of animal behaviour analysis, in-
cluding other rat disease models where WDS is present and adaptation for other
subjects, classification tasks, and animals. The system is designed to be eas-
ily adapted and used with different animals, behaviours, and other classification
tasks while training with little data. It can also be easily adapted to be used with
different amounts of cameras and/or for new environments by only fine-tuning
the third network (NN3).

In the context of other rat disease models, the method should work where WDS
is present, either as a spontaneous behaviour or in various disease models. This
is because no studies suggest significant WDS locomotion differences between
disease models. Additionally, the system could be adapted for use with other
subjects and classification tasks, including other animals and behaviours.

In conclusion, the developed multi-view animal behaviour classification system
demonstrates the advantages of using multiple views for accurate and reliable
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behaviour detection. The system’s adaptability opens up possibilities for further
application in the field of animal behaviour analysis.
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In this dissertation, two multi-view deep learning frameworks for animal be-
haviour analysis are introduced, first targeting pose estimation, adopting Voxel-
Pose to non-human primates and second a novel feature-independent approach for
behaviour detection, exemplified by its use in detecting wet dog shaking behaviour
in rats. By harnessing sophisticated deep learning techniques and multi-view
data from various angles, these frameworks showcase their potential to enhance
behaviour analysis accuracy and robustness beyond the scope of conventional
single-view systems. The primary contributions of this work can be summarized
as follows:

1. The first Multiple-Monkey pose estimation system, called "Multiple Monkey
Pose Estimation Using OpenPose," OpenPose was trained for non-human
primates, such as macaque monkeys.

2. An extensive dataset of macaque monkey images in the wild, known as
"MacaquePose," has been assembled, serving as a valuable resource for re-
searchers in the field. Its natural environments and wide range of data have
already proven useful in numerous studies, enabling researchers to gain a
deeper understanding of macaque monkey behaviour in natural environ-
ments.

3. To further enhance the analysis of non-human primate behaviour, 3D pose
images of monkeys and marmosets were collected in a laboratory setting.
Utilizing these images, deep neural networks were trained specifically for
3D pose estimation in non-human primates. The resulting system is capa-
ble of performing multi-view pose estimation with a high degree of accu-
racy, providing a more complete and detailed representation of the animals’
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movements and behaviours. This advancement in 3D pose estimation tech-
niques allows researchers to study non-human primates more effectively and
comprehensively.

4. A novel multi-view approach for the detection of wet dog shaking (WDS)
behaviour in rats was developed, marking the first system capable of de-
tecting this behaviour. WDS is a short-duration behaviour relevant to the
study of various animal disease models, including acute seizures, morphine
abstinence, and nicotine withdrawal. By better detecting and analyzing
WDS, this approach could significantly impact the study of these disease
models. A multi-view system was designed and implemented to simultane-
ously capture WDS behaviour from multiple perspectives, providing a more
comprehensive understanding of the rats’ movements. Classifiers for each
view were trained to detect WDS behaviour, and an additional network was
developed to fuse the classification results and perform time analysis.

5. The first wet-dog shake dataset was compiled, containing over three hours of
video footage from multiple views. This extensive dataset offers a valuable
resource for researchers seeking to study this particular animal behaviour.
It introduces a novel non-human multi-view dataset for activity recogni-
tion with a practical application, supporting the development of advanced
recognition techniques and fostering further research.

In conclusion, the innovative multi-view deep learning framework presented in
this dissertation has the potential to improve animal behaviour analysis. By cap-
turing a complete representation of animal movements from multiple perspectives,
the approach will enable researchers to gain a more comprehensive understand-
ing of complex behaviours, leading to new discoveries and insights into animal
cognition, communication, and social dynamics. Furthermore, the application
of deep learning techniques to animal behaviour analysis opens up new avenues
for research in animal welfare, conservation, and the development of innovative
therapies and interventions for human and animal health. As the methods and
techniques introduced in this dissertation continue to be refined and expanded
upon, we hope they will have a transformative impact on the broader scientific
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community and society as a whole, ultimately contributing to a deeper under-
standing of the intricate world of animal behaviour.

6.1 Limitations
This thesis introduces two successful frameworks that employ deep learning for
multi-view animal behaviour analysis. The first framework has adapted Voxel-
Pose for pose estimation in non-human primates, specifically marmosets. The
second framework presents a novel feature-independent approach for behaviour
detection, as exemplified by its application in detecting wet dog shaking behaviour
in rats. However, it is important to acknowledge the presence of limitations. This
section discusses some of these limitations, with a specific focus on the proposed
multi-view detection system applied to WDS behaviour in rats, as outlined below:

• Limited species and behaviours: The current framework for pose estimation
focuses on non-human primates.

• Reliance on annotated data: The pose estimation framework depends on an-
notated datasets to train deep learning models. Gathering and annotating
extensive datasets can be laborious and difficult, particularly for uncom-
mon behaviours or hard-to-access species. While the multi-view behaviour
detection system presented here mitigates this by not relying on feature en-
gineering, investigating unsupervised or semi-supervised learning methods
could be even better.

• Challenging environments: The performance of the multi-view behaviour
detection framework for WDS could be impacted by environmental factors
like varying lighting conditions, occlusions, and complex backgrounds. No-
tably, the dataset was gathered within a single environment, specifically
the same laboratory setting. However, the cameras were mounted and dis-
mounted, and the LMT acrylic cage was moved between experiments, in-
troducing some degree of variability into the dataset. Consequently, future
endeavours could introduce new environments.
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• Computational complexity: The deep learning models used in this frame-
work may require significant computational resources, which can be a lim-
iting factor, especially for real-time applications. In this work, an attempt
was made to mitigate this limitation by utilizing computational cloud plat-
forms, such as Google Colab. Moreover, expanding cameras, enhancing
frame rate, or incrementing resolution may entail higher hardware expenses
and necessitate additional processing capabilities..

These limitations highlight areas for future research and improvement, con-
tributing to the development of more robust and versatile tools for animal be-
haviour analysis.
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6.2 Future Work
This thesis introduces two successful frameworks that employ deep learning for
multi-view animal behaviour analysis. The first framework, VoxelPose, has been
adapted for pose estimation in non-human primates, specifically marmosets. The
second framework presents a novel feature-independent approach for behaviour
detection, exemplified by its use in detecting wet dog shaking behaviour in rats.
However, several open questions for further research within this field persist.
This section proposes potential solutions for future investigation, with particular
emphasis on the proposed multi-view detection system applied to WDS behaviour
in rats, as outlined below:

How can the multi-view behaviour detection proposed framework be trained to
include more species and additional behaviours?

Future work could be trained in other animal species and behaviours. This
could be achieved by expanding the existing datasets to include more annotated
images and videos of different animals performing various behaviours. .

Can the multi-view behaviour detection framework be adapted to handle real-
time analysis ?

Future efforts could focus on simplifying deep learning models or improving
existing ones to address the challenge of real-time analysis. These changes might
involve methods like reducing the neural network size and exploring ways to
speed up hardware. Additionally, using ONNX could help access hardware en-
hancements or run the system on powerful local hardware, as the proposed sys-
tem currently uses Google Colab. ONNX, or Open Neural Network Exchange, is
an open-source framework that facilitates interoperability between different deep
learning frameworks. It allows seamless sharing of trained models between vari-
ous platforms and tools, enabling efficient deployment and optimization.

How can the proposed multi-view behaviour detection framework be adapted to
work in more challenging environments with limited visibility or occlusions?

The current framework could be improved to handle challenging environments
by incorporating additional sensors or data modalities, such as infrared cameras,
depth sensors, to supplement the multi-view camera data. By fusing this addi-

52



6 Conclusion

tional information with the existing multi-view data, the deep learning models
could be better equipped to handle occlusions and low visibility scenarios.

How can the insights gained from the multi-view behaviour analysis be integrated
with other behavioural or physiological data to provide a more holistic understand-
ing of an animal’s state? Future research could focus on developing methods to
integrate the multi-view behavioural analysis results with other relevant data
sources, such as physiological measurements, hormone level measurements, or en-
vironmental factors. This integration could be achieved by developing models
that consider these additional data sources as input features or by fusing the
results of separate models in a hierarchical or ensemble-based approach. By in-
corporating these additional dimensions, the framework could provide a more
holistic understanding of an animal’s state, ultimately leading to more accurate
and meaningful conclusions about animal behaviour and welfare.

How can the proposed multi-view behaviour detection framework be adjusted to
function with multiple subjects? Currently, NN1, utilized for object localization,
can identify one or more subjects, rendering it suitable for multi-subject detection.
However, addressing the issue of assigning identity across frames is crucial, given
that the network operates on a per-frame basis. This should not be challenging,
as it is a well-explored problem with numerous solutions accessible.

How could the accuracy of the system be improved?
To enhance the system’s accuracy, several strategies could be explored. In-

corporating more cameras into the setup could provide a broader perspective of
the behaviour and add redundancy, which is particularly beneficial for capturing
complex actions. Increasing the dataset size by recording more instances of the
behaviour or introducing recordings in novel environments could contribute to
better generalization. Similarly, increasing the frame rate might capture finer
details of the behaviour. However, each of these strategies comes with its own
set of challenges and complications that need to be carefully considered. For
instance, incorporating more cameras could lead to increased hardware costs and
require additional processing resources. Collecting a substantial dataset could be
time-consuming and necessitate significant annotation efforts. Similarly, a higher
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frame rate would result in a larger volume of data for processing and storage. In
this study, we carefully balanced factors such as the number of cameras, frame
rate, and dataset size, taking into account the technical complexities and resource
demands associated with each potential enhancement.

The future work proposed in this section seeks to address key open questions in
the field of multi-view animal behaviour analysis using deep learning. The tools
introduced in this dissertation hold the potential to advance the field of animal
behaviour analysis significantly. By harnessing the advancements in deep learning
techniques and leveraging multi-view data, these frameworks offer the means to
achieve a more accurate and comprehensive understanding of animal behaviours.
The utilization of these tools is anticipated to yield findings that not only enhance
our insights into animal behaviour but also propel broader scientific progress.
The study of animal behaviour often provides valuable insights that can parallel
and shed light on human behaviour, given the shared underlying behavioural
patterns and neural mechanisms. As scientific knowledge continues to evolve,
these tools could lay the groundwork for even more sophisticated approaches
capable of deciphering the intricacies of human behaviour. This would empower
researchers to unravel the intricacies of human actions, interactions, psychological
states, and other unknown connections. The horizon holds the promise of a deeper
grasp of both animal and human behaviour, ultimately contributing to a more
comprehensive understanding of the complexities of life itself.
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