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Abstract— This paper uses a data-driven approach to model
a highly redundantly driven tensegrity manipulator’s forward
and inverse kinematics. The tensegrity manipulator is based
on a class-1 tensegrity with 20 struts and bends by 40 pneu-
matic actuators whose internal pressures are independently
controlled. Based on the data obtained through random trials
with the robot, a VAE-based kinematics model is trained. The
forward model, inverse model, and null space of kinematics
are simultaneously acquired as subnetworks of the VAE-based
kinematics model. Experiments confirmed that the subnetworks
representing forward and inverse kinematics could be used
for the end position estimation and control, respectively. In
addition, the subnetwork representing null space can generate
different target pressures that achieve the same end position,
which was confirmed to mean variable stiffness properties
similar to musculoskeletal robots.

I. INTRODUCTION

The bodies of living organisms are not only soft but also
driven in a highly redundant manner. For example, muscles
are soft, and bones, which are rigid links, are connected
by multi-degree-of-freedom joints and driven by even more
muscles than joint degrees of freedom [1]. Biomimetics is
one of the promising approaches to understanding function,
and many musculoskeletal robots have been developed [2]–
[6]. On the other hand, softness is being pursued in soft
robotics in ways not limited to mimicking living organisms
to elucidate various ways of using softness [7], [8]. Similarly,
the extremely high redundancy is worth investigating in
approaches not limited to biomimetics. We have developed a
tensegrity manipulator to employ this idea, using tensegrity
as a design that allows for increased degrees of freedom and
the number of actuators while providing softness [9], [10] as
shown in Fig.1.

Tensegrity is a stable three-dimensional structure formed
by multiple rigid bodies under tension between each other.
When all rigid bodies can be represented by at least N
simple compressive members, we call it a class-N tensegrity
[11]. The most common tensegrity robot rolls and/or crawls
by deforming the structure. This type of tensegrity robot
typically uses class-1 tensegrity [12]–[17]. Recently, there
has also been active research on the use of tensegrity in
manipulators, which typically use class-(N ≥ 2) tensegrity
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Fig. 1. The developed tensegrity manipulator. A class-1 tensegrity is
employed for increasing degrees of freedom and number of actuators while
providing softness.

in this case [18]–[22]. In contrast, our tensegrity manipulator
employs class-1 tensegrity, where all members do not inter-
fere except for 3DOF pin joints. This contributes to increas-
ing the degrees of freedom and the number of actuators while
avoiding mechanical interference, which suffers the decay of
motion performance and hardware failures. In addition, the
use of pneumatic cylinders as actuators provides mechanical
softness. On the other hand, the complexity of the structure
makes it difficult to analytically model and investigate the
functionality of the extremely high redundancy.

Applying machine learning has been promising in the
control of musculoskeletal and tensegrity robots and actively
studied in recent years [23]–[26]. This study uses a data-
driven approach to model the forward and inverse kinematics
of our class-1 tensegrity manipulator. If there is redundancy
in the kinematics, the inverse kinematics model needs aux-
iliary codes to generate a variety of outputs within the same
input. At the same time, in the forward kinematics model, the
auxiliary code means the information which was not needed
for the modeling. To capture this nature, this paper employs
a kinematics model based on Variational Aturoencoder [27]
(VAE) to represent null space as a latent space by simulta-
neously modeling forward and inverse mappings [28], [29].
By training the VAE model based on data obtained through
experiments, we evaluated the accuracy of end position
estimation and control and investigated the characteristics
of the null space. The results confirmed that the developed
tensegrity manipulator has variable stiffness similar to that
of the musculoskeletal system and that can be modeled and
used with a data-driven approach.
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Fig. 2. The architecture and features of the developed tensegrity manipulator. A) The tensegrity manipulator’s height and mass are 1300 [mm] and
3.9[Kg]. 40 pneumatic control valves regulate internal pressures of 40 pneumatic cylinders independently. The control system is compatible with ROS2
Foxy. B) The structure is based on a class-1 tensegrity. It can mainly consist of three parts: stiff tensile cables (blue) , stiff compressive struts (black), and
tensile actuators (orange). C) The developed tensegrity manipulator can exhibit various bending postures.

II. DEVELOPED TENSEGRITY MANIPULATOR

Fig.2 shows the architecture and features of the developed
tensegrity manipulator. The developed tensegrity manipulator
has 1300 [mm] height and 3.9 [Kg] mass. The structure is
based on a class-1 tensegrity in which five 4-struts tensegrity
prisms are vertically stacked and connected. Of the total of
80 tensile members, 40 are replaced by pneumatic cylinders,
which allow for actively bending. In the developed tensegrity
manipulator, two types of pneumatic cylinders with an equal
stroke length of 45 [mm] and different diameters are used.
Specifically, the lower 24 cylinders have a diameter of 16
[mm] (MSPCN16-45, Misumi), and the upper 16 cylinders
have a diameter of 10 [mm] (MSPCN10-45, Misumi). To
facilitate the bending, the bottom of the structure (i.e. four
different struts’ ends) is connected to the base via sliders
and ball joints. The base contains 40 pressure control valves
(VEAB, FEST Inc.) so that internal pressures of 40 pneu-
matic cylinders can be independently controlled. The target
pressure values are fed from the embedded AD/DA system
that is compatible with ROS2 Foxy.

Employing a class-1 tensegrity contributes to the use of
40 pneumatic cylinders without mechanical interference. In
addition, the class-1 tensegrity contributes to a robot with
fewer parts because of the repetitive connections of com-
pressive and tensile members. In the developed tensegrity
manipulator, two types of struts with an equal length of 300
[mm] are used. Specifically, the lower 12 struts consist of
three CFRP pipes of 5 [mm] in outer diameter, and the upper
8 struts employ only one CFRP pipe which is one of three
CFRP pipes. Therefore, despite the entire structure being
complex, the developed tensegrity manipulator comprises
from few parts: two types of struts, two types of pneumatic
cylinders, and the same type of stiff cables.

The features of the developed tensegrity manipulator, such
as the flexibility of the pneumatic drive, the large number
of actuators, the small number of mechanical interferences,

and the small number of component parts, make analytical
modeling difficult. On the other hand, even though the hard-
ware is complex, it can reduce hardware failures. Therefore,
it is suitable for collecting data through random movements
without prior knowledge. These features indicates that the
developed tensegrity manipulator is suitable as a platform to
investigate the functions of flexibility and redundancy from
a constructivist perspective.

III. VAE-BASED KINEMATICS MODEL
Fig.3 shows the VAE-based forward/inverse kinematics

model employed in this study. This model is basically the
goal-conditioned VAE model [29] which is an extension
of the Joint VAE model [30], but no discontinuous latent
variable is used. The central idea is to enforce a part of
latent variables to output goals (e.g. end position/orientation)
in the encoding/decoding of motion commands (e.g. target
pressure) by VAE so that the remaining latent variables
represent null space.

Let u ∈ Rn denotes motor commands fed to a robot.
Considering the VAE framework, the posterior/encoder
qϕ(y, z|u) and the likelihood/decoder pθ(u|y, z) are repre-
sented by neural networks parameterized by ϕ and θ where
y and z both denote latent vectors. The Joint VAE model
minimizes the objective function as following:

J = Eu∼D [Ljoint(θ,ϕ)] . (1)

The Ljoint(θ,ϕ) is defined as following:

Ljoint(θ,ϕ) = Eqϕ(y,z|u) [log pθ(u|y, z)]
−γ|DKL(qϕ(y|u)||p(y)− Cy|
−γ|DKL(qϕ(z|u)||p(z)− Cz|, (2)

where Cy and Cz represent the information capacities that
are gradually increased during training, and γ is a coefficient.

In the VAE-based forward/inverse kinematics model, we
explicitly train a part of latent variables y in a supervised
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Fig. 3. The schematic of the model for forward/inverse kinematics
modeling learning system. A VAE is trained by data of motor commands,
and a part of the latent space is trained to be corresponding goal conditions.
The rest of the latent space is not trained explicitly but will express the null
space of the mapping between motor commands and goal conditions through
the training of VAE.

manner. For the encoder, this auxiliary supervised learning
enables forward kinematics modeling. On the other hand,
for the decoder, this auxiliary supervised learning forces a
one-to-many mapping from y to u, which induces z to have
a complementary representation, i.e., null-space modeling,
enabling inverse kinematics modeling as the entire decoder.
The objective function can be written as:

J = E{u,y}∼D [Lgc(θ,ϕ) + log qϕ(y|u)] . (3)

where

Lgc(θ,ϕ) = Eqϕ(y,z|u) [log pθ(u|y, z)]
−γ|DKL(qϕ(z|u)||p(z)− Cz|. (4)

The second term in Eq.3 is the likelihood function to
represent the goal conditions given in the data D. We use
the reparametrization trick in [27] for the continuous latent
variable z.

In this study, the u means target pressures of 40 pneumatic
cylinders of the tensegrity manipulator, and the y means
three-dimensional positions of the tip. Once the model in
Fig.3 is trained, the following functions become available:

1) By the decoder, from the target end position and an
adequate z, the target pressure to achieve the given
target is obtained (the inverse kinematics model).

2) By the encoder, from the actual current pressure, the
estimated end position that converges at equilibrium is
obtained (the forward kinematics model).

3) By the decoder, from the target end position and a
variety of latent code candidates z, a variety of target
pressures to achieve the given target with different
pressures is obtained (change in vectors belonging to
the null space).

TABLE I
THE NETWORK STRUCTURE.

Layer name Output dim Activation function
Input 96 (motor command dim) ReLU

Hidden 1 520 ReLU
Hidden 2 1080 ReLU
Hidden 3 520 ReLU
Hidden 4 96 ReLU
Hidden 5 3 (task dim) + 37 (latent dim) Linear
Middle 96 ReLU

Hidden 6 520 ReLU
Hidden 7 1080 ReLU
Hidden 8 520 ReLU
Hidden 9 96 ReLU

Output 40 (motor command dim) Linear

IV. EXPERIMENTAL SETUP

This section presents specific information on the experi-
mental setup, including network structure, training method,
and data sampling.

A. Network structure and training method

Table.I shows the specific information on the network
structure of the VAE-base kinematics model. Because the
developed class-1 tensegrity manipulator has 40 pneumatic
cylinders, the input/output dimension is set to 40. The latent
space appears on the middle layer where has 40 dimensions.
Because the input/output and middle layers’ dimensions are
identical and the other hidden layers have bigger dimensions,
no information is lost due to dimensional compression.
Three out of the 40 dimensions in the middle layer are
given supervised data corresponding to the motor commands.
Therefore, the latent space that will express the null space
has 37 dimensions (i.e. u ∈ R40, y ∈ R3, and z ∈ R37 hold).

The layers are fully connected. These weights are opti-
mized upon the objective function defined in Eq.3 and 4. The
Cz is scheduled to increase linearly from 0 to 5.0 from the
start of the training until the 20000 iteration and to remain
unchanged thereafter. For the training, the ADAM optimizer
is employed.

B. Data sampling

The training data consists of pairs of target pressures and
corresponding end positions in the equilibrium posture D =
{u(t),y(t)} where t = 1, 2, · · · , N . The training data were
collected using the following procedure:

1) Generate a random target pressure
ui ∼ U(0.1, 0.6) [MPa] where ui indicates the i-th
element of the u.

2) Feed the random target pressure, and wait 3 seconds
for the transient response to subside.

3) Store the target pressure u(t) and the corresponding
end position y(t) as a record of D.

4) Return to 1).
To measure the end position, we used the Motion Cap-
ture System (8 Optitrack Prime X13 cameras with Motive
software. NatNet SDK is used for ROS2 compatible data
provision). On the tensegrity manipulator’s side, a thin, light
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Fig. 4. Sequential snapshots and the end trajectories when given two different orders via eight points on a circle. The eight points are equally spaced
on a horizontal circle with a diameter of 1600[mm] with a height of 900[mm]. These points are fed to the trained VAE-based kinematics model to obtain
corresponding target pressures. The latent variables z = [zi], i = 1 · · · 37 were set to zi = 3.0 and zi = 0.0 at the top and bottom results, respectively.

plastic plate with three reflecting markers was firmly attached
to the rectangular cable loop at the tip. We sampled N =
38, 800 records in total by actually moving the developed
tensegrity manipulator.

V. RESULTS

To verify the trained VAE-based kinematics model, we
separately tested the encoder and decoder as the forward and
inverse kinematics models, respectively. In this section, we
will explain in the following order: A) feedforward control
of the end position using the obtained inverse kinematics
model, B) the end position estimation using the obtained
forward kinematics model, and C) null space representation
of the redundancy obtained in the latent space.

A. Feedforward control of the end position using the ob-
tained inverse kinematics model

Fig.4 shows sequential snapshots and trajectories of the
end position control by the inverse kinematics model (the de-
coder of trained VAE). To verify that the decoder represents
the inverse kinematics model, we gave target end positions
y with two different patterns, i.e. star (top) and circular
(bottom) shapes, from eight points on a horizontal circle
with a diameter of 1600[mm] with a height of 900[mm]. All
elements of the latent variables z = [zi], i = 1 · · · 37 were
set to zi = 3.0 and zi = 0.0 for the star and circular shapes,
respectively. The outputs were directly used for the target
pressure values and fed to the embedded AD/DA system
of the tensegrity manipulator. As with the data sampling
process, it waited 3 seconds for each new target pressure
given.

In Fig.4, the given target end positions are roughly real-
ized for both transitions of target end positions. The three-
dimensional average reaching error in Fig.4 is approximately
90[mm]. Note that this control is feedforward, and there is no
reaching error feedback loop. Therefore, it confirmed that the
inverse kinematics model was acquired as the decoder part
of the trained VAE.
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Fig. 5. Control and estimation results of the end position. The horizontal
and vertical axes indicate the elapsed time and positions in each direction
of the Cartesian coordinate system. The top/bottom are the results when 8
points are passed through star/circular shapes, respectively.

B. End position estimation using the obtained forward kine-
matics model

Fig.5 shows time-series data of the tensegrity manip-
ulator’s end positions in each direction of the Cartesian
coordinate system during its control. These graphs show tar-
get/realized/estimated end positions. The target and realized
positions are corresponding to movements shown in Fig.4.
On the other hand, the estimated positions were obtained by
feeding realized (measured) pressure values to the encoder
part of the trained VAE. It is noteworthy that the VAE
was trained based on the desired pressure values, but the
encoder received the realized pressure values for the position
estimation.

In Fig.5, the estimated end position quickly followed
changes in the target end position. It would be counter-
intuitive that the encoder can immediately estimate where the
end will go despite the realized end position being delayed.



Fig. 6. Verification of change in stiffness due to change in latent variables.
Top) Results of controlling the end position with different latent variables.
The left, middle, and right are given the latent variables zi = −2.0, 0,
and 2.0, respectively. Middle) Posture change of tensegrity manipulator at
the same posture, different latent variables, and the same vertical downward
load. The load is applied by hanging a 200 [g] weight. The initial posture
is made by giving y = [600, 0, 1100]. Bottom) Vertical displacement of
the end position.

It implies that pressure control valves can quickly realize
target pressure values even if the tensegrity manipulator is
moving. This point merits further investigation, but at least
we have confirmed that the encoder part of the trained VAE
acquired the forward kinematics model.

C. null space representation of the redundancy obtained in
the latent space

Fig.6 shows the effect of varying the latent variables
during control by the decoder part. In the experiment, at first,
we examined the reaching behavior with three different latent
variables zi = {−2, 0, 2}. The result appears in the top row
of Fig.6. It shows that changes in the latent variables z do not
impact the accuracy of the end position control. Therefore,
it means that the latent variables z represent the null space
of the kinematics that the VAE-based model learned.

Next, we examined the physical meaning of the change in
the latent variables. For this purpose, we fed three different
latent variables zi = {−2, 0, 2} and the same target end
position y = [600, 0, 1100] to the decoder to obtain target
pressure values to make the same initial end position with
different internal states. Then, a 200 g weight was hung
from the end to measure the amount of vertical displacement.
Three loaded postures with three different internal states are
depicted in the middle row of Fig.6, and the amount of
vertical displacement is shown in the bottom row of Fig.6.
These results indicate that changes in the latent variables

A
A’

Fig. 7. The distribution of y stored in the supervised data. The left figure
shows the 3D scatter plot of y in the Cartesian coordinate system. The right
figure shows the points contained between sections A and A’.

z modify the stiffness of the tensegrity manipulator. There-
fore, it suggests that the developed tensegrity manipulator
has variable stiffness properties similar to musculoskeletal
robots.

VI. DISCUSSION

Fig.7 shows the distribution of target end positions y stored
in the supervised data D sampled in the procedure explained
in sectionIV-B. In this figure, the end of the tensegrity
manipulator looks almost uniformly distributed on a certain
sphere surface. The variation in the orthogonal direction (the
thickness direction of the sphere surface) confirms that the
end moves three-dimensionally. However, the distribution
along the orthogonal direction is highly biased toward the
sphere surface. This shows the bias in motions that the
developed tensegrity manipulator innately has.

This feature of D implies that the kinematic relationship
along the orthogonal direction is more challenging to model
than on the sphere surface. Because movements along the
orthogonal direction can be achieved by taking ”C” or ”S”
shapes, this also implies that generating different pressures,
which realize the same end position but different bending
postures, is more challenging than varying the stiffness. In
fact, this paper successfully showed the variable stiffness but
not postural variation with the same end position. Focusing
on incremental data sampling procedure to improve the null
space representation is an important future work for this
research.

Although Fig.4 showed that the inverse kinematics model
could control the end position, the positional error showed
different tendencies for two different patterns. It assumes
that pneumatic cylinder hysteresis induced this problem.
Therefore, considering the previous target pressure values
in the VAE-based model will improve the control accuracy,
and this will also be future work.

VII. CONCLUSION

In this study, we used the VAE-based kinematics model
for expressing the redundant forward/inverse kinematics of
the developed class-1 tensegrity manipulator. The VAE-based
kinematics model aims to represent null space with a part



of latent variables by training the rest part with supervised
data. Experiments using the trained VAE-based kinematics
model confirmed that the forward/inverse kinematics were
acquired in its encoder/decoder subnetworks. In addition, by
modulating the latent variables which had not been trained
in a supervised manner, different pressures that conduce the
same end position were obtained. The loading experiment
confirmed that these pressure values have different stiffness,
thereby showing that the developed tensegrity manipulator
has variable stiffness properties similar to musculoskeletal
robots.
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