
LUTNet-RC: Look-Up Tables Networks for
Reservoir Computing on an FPGA

Kanta Yoshioka∗, Yuichiro Tanaka†, and Hakaru Tamukoh∗†
∗Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Japan

†Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology, Japan
Email: yoshioka.kanta986@mail.kyutech.jp

Abstract—We propose look-up tables networks-based reservoir
computing (LUTNet-RC). This work is the first trial of ap-
plying LUTNets to RC. LUTNet-RC consists of a LUT-based
reservoir layer and a non-LUT-based output layer. LUTNets
have disadvantages such as limited sparse connectivity and
weights cannot be changed after implementation. However, when
applied to a reservoir layer of RC (LUT-based reservoir layer),
these disadvantages are eliminated, because this layer works
with sparse connectivity and the weights are fixed, so only
the advantage of small circuit resources is obtained. For the
LUT-based reservoir layer, we propose and model a multi-bit
weight reservoir, modifying the conventional binarized reservoir
to improve calculation accuracy. In the case of LUTNets, the
proposed multi-bit weight reservoir can be implemented without
the increase in utilized circuit resources because LUTNets focus
only on the input-output relationship on neurons. Additionally,
we propose a speed-up method in the output layer with time
division calculation, which compares the current network state
with previous states and then calculates only status-changed
neurons. As a result, we implement a LUTNet-RC with 1500
reservoir neurons on a field-programmable gate array (KR260)
running at 100MHz. The utilized circuit resources are dominated
by LUTs, which use approximately 26% of the total amount
of LUTs. The LUTNet-RC can infer more than 106 data per
second. We also verify the LUTNet-RC performance using non-
linear auto-regressive moving average 10 (NARMA10) and the
performance is comparable to conventional works. We conclude
that the LUTNet-RC is one of the highest-performance RC on
an FPGA.

Index Terms—neural networks, reservoir computing, field
programmable gate array

I. INTRODUCTION

With the increasing requirements for high-performance au-
tomated vehicles, smartphones, and home-service robots, an
increasing need exists for real-time data processing in edge
computing [1], [2]. Reservoir computing (RC) [3] has attracted
attention for real-time data processing in edge environments
because of its low training and inferring cost and high accuracy
comparable to multi-layer recurrent neural networks (RNNs),
with a single-layer sparse random network (reservoir layer)
[4], [5]. RC performance depends on the reservoir layer topol-
ogy, often fine-tuned for different tasks. In graphics processing
unit (GPU)-implemented RCs, the topology is realized by
changing the weight matrix, while in field-programmable gate
array (FPGA)-implemented RCs, the topology is realized di-
rectly as circuits. Then, RCs can be implemented without huge
complex matrix circuits like GPUs and enhance parallelism
using simple circuits. Therefore, FPGA implementation of

RC has advantages in realizing low-power, high-performance,
and flexible edge systems, and is progressing [6]. However,
because of the limitation of circuit resources, many FPGA-
implemented RCs have limited the number of arithmetic units
and reduced bit precision [6].

This work focuses on look-up tables networks (LUTNets)
[7], one of the binarized neural networks (BNNs) [8], which
is more specialized for FPGA implementation than general
BNNs. LUTNets are neural networks constructed using neu-
rons oriented to LUT elements on FPGAs, focusing only on
the input-output relationship of neurons. LUTNets can operate
with smaller circuit resources and higher recognition accuracy
than general BNNs implemented on FPGAs [9] [10].

LUTNets have disadvantages such as limited sparse connec-
tivity, and weights cannot be changed after implementation.
However, when applied to a reservoir layer of RC, these
disadvantages are eliminated because this layer works with
sparse connectivity, and the weights are fixed; thus, only the
advantage of small circuit resources is obtained.

From this good complementarity between RC and LUT-
Nets, we propose LUTNet-based RC (LUTNet-RC), which
consists of a LUT-based reservoir layer and a non-LUT-based
output layer. We implemented LUTNet-RC on an FPGA and
evaluated its computational accuracy and speed and circuit
resources. The main contributions of this work are summarized
as follows.

• We discovered the good complementarity be-
tween RC and LUTNet and proposed LUTNet-
RC, which is an application of LUTNet to RC.

• We proposed a novel RC model suited for
implementation with LUTNets. The circuit pro-
gram for FPGA implementation was written in
Verilog HDL and was automatically generated
by software programs in Python from set pa-
rameters.

• We proposed a novel hardware-oriented al-
gorithm to accelerate time-division multiply-
accumulations. The acceleration method is
suited for models with many neuron changes
such as LUTNet-RC.

• We implemented the proposed LUTNet-RC on
an FPGA. The calculation accuracy of the
LUTNet-RC was comparable to that of the
conventional RC on FPGAs, while the calcu-

Fig. 1. Reservoir computing model

lation speed and circuit resources were greatly
improved. The LUTNet-RC implemented in this
work is one of the highest-performance RC on
an FPGA.

II. RELATED WORKS

A. Reservoir computing

Reservoir computing (RC), a type of RNN, consists of three
layers: an input layer, a reservoir layer, and an output layer,
as shown in Fig. 1 [3]. The input, reservoir, and output layers
contain Ni, Nr, and No neurons, respectively. Wir, Wrr, and
Wro denote the weights between the input and reservoir layers,
inside the reservoir layer, and between the reservoir and output
layers, respectively. Although RC has a simple structure, its
performance is comparable to that of deep-learning (DL)-
based RNNs with many layers [4] [5]. In addition, the weights
Wir and Wrr are fixed, and only Wro be trained, so the
training cost is lower than DL-based RNNs.

In RC, memory capacity and nonlinearity are important in-
dices, but a trade-off exists between them [11], [12]. Therefore,
various RC models with characteristics of memory capacity
and nonlinearity have been proposed, such as echo state
networks (ESNs) [3], liquid state machines (LSMs) [13], RC
based on chaotic Boltzmann machines (CBM-RCs) [14], RC
based on pulse-coupled phase oscillators (PCPO-RCs) [15],
and RC based on chaotic neural networks (ChNN-RCs) [16].

RC has attracted attention for real-time data processing in
edge environments because of its performance and low training
cost, as described previously. FPGA implementations have
been progressing because of their low power consumption and
flexible implementation [6]. However, owing to the limited
circuit resources in FPGAs, RC must be implemented with few
arithmetic operators and low bit precision, and the calculation
accuracy and speed of RC circuits are constrained.

B. LUTNet

BNNs are quantized neural network models in which the
weights and outputs of each neuron in the neural network
are binarized [8]. Therefore, the amount of memory required
to store weights is reduced, and the multiplier can be imple-
mented with simple logic elements, greatly reducing circuit

Fig. 2. Three-inpput one-output look-up table

Fig. 3. Neural network with LUT-based neurons

resources when implemented in FPGAs [10]. LUTNets are
BNNs, but unlike general BNNs, LUTNets are designed for
FPGA implementation [7].

A look-up table (LUT) is a logic block in FPGAs. In the
case of a three-input one-output LUT (LUT3), as shown in
Fig. 2, the structure is similar to a truth table in which one
output Y is determined by the three inputs X0, X1, and X2.
In FPGAs, any operation can be realized by changing the
connection between LUTs and the output table Y in each
LUT.

One LUTNet implementation method defines a neuron
model based on the LUT and constructs neural networks using
it, as shown in Fig. 3 [7], [9], [17], [18]. The neural network
is trained by optimizing the weights, similar to normal neural
networks. Then, the input-output relationship of each neuron is
mapped onto a LUT. Since only the input-output relationship
of each neuron is focused on, the bit precision of the weights
does not affect the circuit resources of the LUTNet when
implemented on FPGAs. LUTNets have been applied to image
recognition tasks and operate with smaller circuit resources
and higher accuracy than general BNNs [9], [10].

Another implementation method involves constructing net-
works by directly connecting the truth tables and changing the
output table Y directly for training [19], [20]. This method
mainly contributes to the theory of neural networks and is
expected to be able to solve the mysteries related to the
generalization and memorization of neural networks.

C. Differential multiply-accumulation

A differential multiply-accumulation (DMACC) is a scheme
for neural networks, which reduces the circuit resource utiliza-
tion and calculation time of multiply accumulations as shown
in Eq. (1) [21], [22].

zi[t] = bi +

N∑
j=1

sj [t] ∗ wi,j , (1)

Fig. 4. All-parallel implementation of zi[t] calculation circuit

Fig. 5. Time-division implementation of zi[t] calculation circuit

where zi[t], bi, sj [t] ∈ {0, 1}, wij , and N represent output of
ith neuron at time t, bias of ith neuron, external state of jth
neuron at time t, the weights between ith and jth neurons,
and the number of neurons, respectively.

One of the approaches to accelerating the multiply-
accumulation like Eq. (1) is implementing all multiply-
accumulation operators in parallel, as shown in Fig. 4. How-
ever, the number of multiply-accumulation operators increases
in proportion to the square of the number of neurons. There-
fore, it is difficult to implement all multiply-accumulate oper-
ators in parallel.

One technique that is often used is time-division calculation.
The circuit that introduces the time-division technique is
shown in Fig. 5. In simple time-division calculations (Simple-
TDC), the output value of ith neuron zi[t] is defined by
Eqs. (2) and (3), where τ ∈ [1, N] and Aτ

i represent an
iterator of the time-division and an accumulated value at time
τ , respectively. The circuit in Fig. 5 holds the accumulated
value in a register and adds the input values to it.

zi[t] = AN
i , (2)

Aτ
i = Aτ−1

i + sτ [t] ∗ wi,τ (τ ̸= 0), A0
i = bi. (3)

Using Simple-TDC, only N multiply-accumulation oper-
ators are implemented on an FPGA, and zi in Eq. (1) is

Fig. 6. Conventional time-division calculation methods

calculated by using them N times. Therefore, the number of
multiply-accumulation operators increases in proportion to the
number of neurons.

However, for circuits that introduce Simple-TDC in
Fig. 6(A), the calculation time increases significantly. For
example, for N = 1000, the multiply-accumulation operators
must be used 1000 times to calculate zi[t] in Eq. (1), and the
calculation time increases proportionally with the number of
neurons.

Because of these disadvantages, a single-DMACC (S-
DMACC) method was proposed [21], [22], which is an
improved hardware-oriented algorithm of the conventional
Simple-TDC described previously, to reduce the increase in
calculation time. S-DMACC, which compares the current
network state s[t] with the previous network state s[t− 1] and
calculates only the changed neurons using the value calculated
one time ago zi[t− 1], as shown in Fig. 6(B). The calculation
is described in the following Eqs. (4), (5), and (6), where dj [t]
represents the difference between the previous output of the
j-th neuron sj [t− 1] and the present output for sj [t].

zi[0] = bi +

N∑
j=1

sj [0] ∗ wi,j , (4)

zi[t] = zi[t− 1] +
∑

sj [t−1]̸=sj [t]

dj [t] ∗ wi,j , (5)

dj [t] =

{
−1 (sj [t− 1] = 1, sj [t] = 0),

1 (sj [t− 1] = 0, sj [t] = 1).
(6)

When t = 0, the calculation time is equal to that of the
conventional Simle-TDC in Eq. (4). However, after the second
calculation (t > 0), the operation is performed according to
Eqs. (5) and (6) only for the changed neurons. Therefore, the
calculation time can be significantly reduced compared to that
of the conventional Simple-TDC. In [21], Kawashima reported
that by introducing S-DMACC to CBMs, the calculation time
of a CBM with 300 neurons was approximately one-twentieth
that of the conventional Simple-TDC.

III. PROPOSED LUTNET-RC

In this work, we propose LUTNet-RC, which is LUTNets
applied to RC. This work is the first to apply LUTNets to
RC. LUTNet-RC consists of a LUT-based reservoir layer and
a non-LUT-based output layer.

A. LUT-based reservoir layer

We propose a novel RC model, which is modified from
the conventional binarized RC model, binary ESN [23]. The
binary ESN is represented by Eqs. (7), (8), (9) and, (10).

si[t] = sgn(xi[t]), (7)

xi[t] =

Nr∑
j=1

Wrri,jsj [t− 1] + u[t], (8)

sgn(x) =

{
−1 (x < 0),

1 (otherwise,
(9)

ok[t] = bk +

Nr∑
j=1

sj [t] ∗Wrok,j
, (10)

where u[t], si[t], xi[t], and ok[t] are the input value, the
external state of ith reservoir neuron, the internal state of ith
reservoir neuron, and the output value of kth output neuron
at time t, respectively. The reservoir layer of the binary ESN
consists of binary neurons si ∈ {−1, 1} and binary weights
Wrri,j ∈ {−1, 0, 1} (a zero value indicates no connection
between ith and jth reservoir neurons).

The binary ESN is controlled by three parameters: (1) k, the
number of inputs to one reservoir neuron from other reservoir
neurons; (2) p, the asymmetry in Wrri,j values; and (3) Nr, the
number of neurons in the reservoir layer. For example, when
k = 100, one reservoir neuron has inputs from 100 reservoir
neurons, and when p = 1/2, there is an equal probability of
−1 and 1 in Wrr. These three parameters control the strength
of the chaos of the reservoir layer such that it operates at the
edge of chaos, where it performs best [24], [25], [26].

We modified the binary ESN model and propose a novel
RC model which is suitable for LUTNets. The proposed RC
model is represented by Eqs. (7), (9), (10), and (11).

xi[t] =

Nr∑
j=1

W ′
rri,j ∗ sj [t− 1] +

Ni∑
j=1

W ′
iri,j ∗ uj [t], (11)

where W ′
rri,j ∈ [−rrr(1 − p), rrrp] and W ′

iri,j
∈ [−rir, rir]

are non-binarized weights of the reservoir layer and weights
between the input and reservoir layers, respectively, and the
connectivity of W ′

ir is controlled by Cir value. Although
weights become multi-bit, the proposed RC model can im-
prove accuracy without increasing the circuit resources be-
cause it is implemented using LUTNets. The proposed RC
model’s strength of chaos is controlled by parameters, k, p,
Nr, rrr, and rir.

B. Non-LUT-based output layer

We propose a novel hardware-oriented algorithm called
multi-DMACC (M-DMACC), which is a modification of the
conventional S-DMACC for the LUT-based reservoir layer.

The conventional S-DMACC calculates only the changed
neurons compared to the previous network state. S-DMACC

Fig. 7. Temporal change of 5 reservoir neurons in the LUT-based reservoir

Fig. 8. Proposed time-division calculation method (M-DMACC)

is highly effective and sufficient for models such as CBMs
applied in conventional works, where the number of changed
neurons is small [21]. On the other hand, we found empiri-
cally that the proposed LUT-based reservoir layer has many
regularly changing neurons, as shown in Fig. 7, which is the
external state s of five reservoir neurons of the LUT-based
reservoir when uniform random values are input. Because of
this characteristic of the LUT-based reservoir layer, it would
often occur that the number of changed neurons is large
when compared to the previous network state, but the number
of changed neurons is small when compared to a network
state of two times ago. Therefore, we proposed M-DMACC,
which performs a DMACC operation starting from the network
state with the smallest number of changed neurons Nchanged

by comparing the current network state with before network
states, NDMACC times ago, like Fig. 8.

Furthermore, because the external state of the LUT-based
reservoir layer is not {0, 1} but {−1, 1} from Eq. (7), DMACC
of the LUTNet-RC is represented by Eqs. (4), (5), and (12).
By adding and subtracting twice the value of the weights,
DMACC became suitable for LUTNet-RC.

dj [t] =

{
−2 (sj [t− 1] = 1, sj [t] = −1),

2 (sj [t− 1] = −1, sj [t] = 1).
(12)

IV. CIRCUIT DESIGN OF LUTNET-RC

A. LUT-based reservoir layer

The LUT-based reservoir layer is represented by Eqs. (7),
(9), (10) and (11). Two types of reservoir neurons exist: those
with no input from the input layer and those with input from
the input layer. In this work, our target board is AMD’s FPGA
board; therefore we set k = 6 because the FPGA board has
six-input, one-output LUT elements (LUT6s). Therefore, the
reservoir neurons without input from the input layer were
implemented as a six-input, one-output LUT. In addition,

Fig. 9. Circuit design of neurons in the LUT-based reservoir layer

Fig. 10. Mapping a LUT-based reservoir neuron to a LUT element

the reservoir neurons with input from the input layer were
implemented as a bi+6-input, one-output LUT when the bit
width of the input data was set to bi. Because the reservoir
layer includes recurrent connections, each reservoir neuron
also has a register that is internally controlled by a valid signal
and the global clock. Reservoir neuron circuits are as shown
in Fig. 9(A) and (B) for the reservoir neurons without and
with input from the input layer, respectively.

We created a circuit program for the LUT-based reservoir
layer in Verilog HDL, which was automatically generated
by a software program in Python from the set of hyper-
parameters, as shown in Fig. 10. For example, a reservoir
neuron without input from the input layer is a six-input, one-
output neuron model (left part in Fig. 10). Then, the inputs
{X0, X1, X2, X3, X4, X5} was {1, 0, 1, 0, 0, 0}, the output Y
was 1 from Eq. (7) and Wrr, and this result was filled in the
truth table (center part in Fig. 10). In this manner, the output
Y is calculated for all 26 input patterns, and the output table
Y of the truth table is filled and mapped to a LUT6 (right
part in Fig.10). Finally, reservoir neurons are connected, and
a circuit program is automatically generated in Verilog HDL
using Python programs, as shown in Fig. 11, which includes
the register. By performing this for all reservoir neurons,
the circuit program becomes equivalent to the reservoir layer
defined in Python programs; thus, model validation is easy.

B. Output layer with proposed M-DMACC

The output layer is a multiply-accumulation circuit con-
taining the proposed hardware-oriented algorithm M-DMACC,
and we created the circuit program in Verilog HDL. Fig. 12
shows the circuit design of the output neuron with M-DMACC,
which compares the current network state with the network
states up to the past NDMACC times. The current network
state is held in rSt, the past network states are held in rSt−1

to rSt−NDMACC
, the differences are calculated by performing

XORs, and the network state with the smallest difference is

Fig. 11. Circuit program of one reservoir neuron in Verilog HDL

Fig. 12. Circuit design of a neuron in the output layer with M-DMACC

selected using a selector circuit. A controller circuit calculates
the address τ to perform DMACC. Using the address τ ,
Wro stored in memory is input into the multiply-accumulation
circuit. After the calculation is complete, the holding network
state is updated by adding the current network state s[t].

When implementing the output layer with S-DMACC, one
past network state is stored, and the selector circuit is not re-
quired. When implementing the output layer without DMACC,
i.e., Simple-TDC, none of the circuits for DMACC described
above are required, and the controller circuit increases the
address τ by one and calculates all reservoir neurons.

V. IMPLEMENTATIONS

The implemented system is illustrated in Fig. 13 for an
FPGA in the environment listed in Table I. We implemented
direct memory access (DMA) cores, a DMApub and DMAsub,
to exchange data with the CPU and LUTNet-RC circuit. Wro

writes use a block RAM (BRAM) interface consisting of a
valid, address, and value signals, whereas other data are
exchanged by handshaking using the AXI, AXI-lite, or AXI-
stream (AXIS) protocols. We used ridge regression to train
Wro in Eq. (13):

Wro = dsT (ssT + λI)−1, (13)

where d, s and λ are the vectors of target data d(t), network
states s[t] and the regularization factor, respectively.

We implemented the LUTNet-RC system on an FPGA
with hyperparameters listed in Table II, with three different
time-division calculations (Simple-TDC, S-DMACC, and M-
DMACC) of the output layer, and the utilization of circuit
resources are shown in Table III, which running at 100MHz.

Fig. 13. Implemented LUTNet-RC system on an FPGA

TABLE I
IMPLEMENTATION ENVIRONMENT

Target board KR260
Device Zynq UltraScale+ MPSoC EV (XCK26)
Vitis, Vivado, VitisHLS v2022.2
Python v3.8.10

In addition, we synthesized only the LUT-based reservoir layer
for bi = 6, 8, 10, 12 and obtained all 1490 LUTs and 1470 FFs.

VI. EXPERIMENTS

We evaluated the performance of LUTNet-RC by measuring
the memory capacity and nonlinearity and by solving the
benchmark task nonlinear auto-regressive moving average 10
(NARMA10) [27]. The number of training data Ttrain and test
data Ttest were 1000 and 500, respectively.

A. Memory capacity and nonlinearity

We conducted experiments with two tasks to investigate the
characteristics of LUTNet-RC. The first task was a short-term
memory (STM) task used to measure memory capacity [28],
which is represented by Eqs. (14) and (15). The STM task
involves inferring a uniform random input Sin ∈ {0, 1} before
the Tdelay step at time t.

Sin[t] = 0 or 1 (random), (14)

y[t]Tdelay
= Sin[t− Tdelay], (15)

The second task was a parity-check (PC) task used to
measure memory capacity and nonlinearity simultaneously
[29] and is represented by Eqs. (14) and (16). The PC task
involves inferring whether the sum of inputs before Tdelay step
is odd or even.

y[t]Tdelay
=

Tdelay∑
i=0

Sin[t− i] (mod2), (16)

Then, the STM and PC tasks were tested with various Tdelay

values. The coefficient of determination R2 is represented in
Eq. (17) was summed to obtain task scores MCSTM and
MCPC in Eq. (18). ˆy[t] denotes the RC output data at time t.

R2(Tdelay) =
Cov(y[t]Tdelay

, ˆy[t])2

V ar(y[t]Tdelay
)V ar(ˆy[t])

, (17)

TABLE II
IMPLEMENTED LUTNET-RC’S HYPARPARAMETERS

the bit width of input data u (bi) 10
the bit width of Wro 32

Ni, Nr, No 1, 1500, 1
k 6
p 0.665

Cir, rir 0.15, 20
rrr 4

NDMACC 4

TABLE III
UTILIZATION OF CIRCUIT RESOURCES FOR LUTNET-RC SYSTEM

type of the
output layer

Utilization
LUT (%) LUTRAM (%) FF (%) BRAM (%)

Simple-TDC 6,945 (5.93) 367 (0.64) 12,209 (5.21) 4 (2.78)
S-DMACC 17,901 (15.28) 367 (0.64) 15,247 (6.51) 4 (2.78)
M-DMACC 30,549 (26.08) 387 (0.67) 19,681 (8.40) 4 (2.78)

MCSTM ,MCPC =
∑

Tdelay

R2(Tdelay). (18)

We conducted ten times trials on the two tasks with 1500 reser-
voir neurons LUTNet-RC, ESN, and CBM-RC with different
seeds Si. The termination conditions of the two tasks were as
follows: for the STM task, when Tdelay was greater than 20
and the average of ten R2 values was less than 0.01; and for
the PC task, when Tdelay value was greater than 10 and the
average of ten R2 values was less than 0.01.

The results of the STM and PC tasks are presented in
Figs. 14 and 15, respectively, and MCSTM and MCPC scores
are listed in Table IV.

B. NARMA10

We solved NARMA10 [27], represented by Eq. (19), with
the FPGA-implemented 1500-reservoir-neuron LUTNet-RC
and a software-implemented 1500-reservoir-neuron ESN and
CBM-RC. NARMA10 is one of the most well-known bench-
mark problems for nonlinear time-series tasks.

y[t+1] = 0.3y[t]+0.05y[t]{
9∑

j=0

y[t−j]}+1.5u[t]u[t−9]+0.1,

(19)
where u[t] is a uniform random input between 0 and 0.5. We
measured the mean squared error (MSE), the normalized MSE
(NMSE), the root MSE (RMSE), and the normalized RMSE
(NRMSE), as represented by Eqs. (20), (21), (22), and (23),
respectively. y[t] and ˆy[t] are target data and RC output data,
respectively.

MSE =

Ttest∑
i=1

(y[i]− ˆy[i])2/Ttest, (20)

NMSE =

∑Ttest

i=1 {y[i]− ˆy[i]}2∑Ttest

i=1 y[i]2
, (21)

RMSE =
√
MSE, (22)

Fig. 14. Experimental results of the STM task

Fig. 15. Experimental results of the PC task

NRMSE =

√∑Ttest

i=1 {y[i]− ˆy[i]}2∑Ttest

i=1
ˆy[i]/Ttest

, (23)

The FPGA-implemented LUTNet-RC inference results are
shown in Fig. 16, and MSE, NMSE, RMSE, and
NRMSE values are listed in Table IV.

In addition, we estimated the calculation times for three
different types of output layers. As a result of the estimation
using NARMA10, the output layer with Simple-TDC, S-
DMACC, and M-DMACC required 1500 clk, 83 clk, and 60
clk to process one data on average, respectively. Therefore,
because all the LUTNet-RC implemented on an FPGA ran at
100MHz, the number of processed samples per second (sps)
exceeded more than 106 (1Msps) by introducing DMACC.

VII. DISCUSSION

A. LUT-based reservoir layer

The circuit resources of the LUT-based reservoir layer were
small, according to the implementation and synthesis results. A
method exists for implementing a reservoir with a small circuit
resource that implements only one reservoir neuron and uses it
repeatedly (virtual-RC), but the circuit resources of LUTNet-
RC are comparable to those of virtual-RCs. For example, [35]
required two adders, two multipliers, one nonlinear function
circuit, and several memory units. A 32-bit precision adder
and multiplier require (32 LUTs, 99 FFs) and (717 LUTs, 47
FFs) from the synthesis results, respectively. Therefore, the
virtual-RC [35] requires 1498 LUTs, 292 FFs, a nonlinear
function circuit, and memory units, which would be larger
than the 1490 LUTs and 1470 FFs required by the LUT-based
reservoir layer.

Another reservoir with a small circuit resource is the au-
tonomous Boolean network reservoir [38] [39] [40]. However,
this method recurrently connects arithmetic elements, such
as AND and OR, without the global clock and uses the
chaos generated by them as a reservoir, which means that
FPGAs are used as analog circuits. This approach makes
the model stability and analysis difficult. Furthermore, the

Fig. 16. Experimental result of LUTNet-RC on an FPGA for the NARMA10

TABLE IV
EXPERIMENTAL RESULTS

LUTNet-RC ESN CBM-RC
Nr 1500 1500 1500

MCSTM 10.53 75.20 4.01
MCPC 3.13 1.15 4.01

NARMA10
MSE 0.00282* 0.00214 0.00628

NMSE 0.01769* 0.01006 0.03992
RMSE 0.05306* 0.04626 0.07925

NRMSE 0.13721* 0.10150 0.19344
default is software result, * is FPGA result

method is impractical because the performance depends on
the arrangement of elements on the used FPGA board, and the
timing of data input depends on the dynamics of the reservoir.

Furthermore, from the synthesis results of the LUT-based
reservoir layer, the bit width of input bi did not affect the
utilization of circuit resources. In addition, when bi is 10, a 16-
input, one-output LUT is built, which requires 216/26 = 1024
LUT6s, but the actual synthesis results show that the circuit
size was extremely reduced. These were caused by various
input weighting and a simple activation function. Wir and
Wrr were randomly defined values, so each input had a
different strength of influence on the output. Some inputs had
a relatively minimal and ignorable influence on the output
after processing by the binarized activation function in Eq. (9).
Therefore, even when a 16-input, one-output LUT was built,
it was actually sufficient to refer to only a few bits of the 16-
bit input to determine the output. Vivado logic optimization
organized such input/output dependencies, causing an extreme
reduction in circuit size. In Fig. 11, the output depended only
on the input wData[798].

In terms of performance, as shown in Figs. 14 and 15
and Table IV, both the memory capacity and nonlinearity of
LUTNet-RC were high, and the results of NARMA10 were
comparable to those of ESN. The importance of nonlinearity
in RC has been highlighted [12], and LUTNet-RC will have
advantages in tasks that require both memory capacity and
nonlinearity.

B. Output layer with DMACC

The experimental results show that by introducing DMACC,
the calculation time was significantly reduced, and the in-
ference was performed faster than 1Msps. Furthermore, the
output layer with the proposed M-DMACC was approximately
1.4 times as fast as the output layer with the conventional S-
DMACC. Although DMACC is a highly powerful hardware-

TABLE V
FPGA IMPLEMENTATIONS OF RC

RC type
Accuracy Speed Circuit resources

Nr NARMA10 Nr throughput module Nr
Utilization

LUT FF DSP BRAM
LUTNet-RC

ESN

1500

MSE=0.00282
NMSE=0.01769
RMSE=0.05306

NRMSE=0.13721

1500

RC

1500Simple-TDC 0.067Msps 6945 12209 0 4
S-DMACC 1.2Msps 17901 15247 0 4
M-DMACC 1.7Msps 30549 19681 0 4
[30] (2020) 100 (NMSE=0.1250) 32 2.6Msps 16† 10967 7203 162 12
[31] (2022) - - 16 1.2Msps 16† 2133 5978 16 0
[32] (2020) 600 MSE=0.0030* 100 0.20Msps 100 28933 44021 20 48
[33] (2020) - - 300 0.035Msps 300 4071 5497 6 12.5
[34] (2016) - - 50 25sps 50 5306 Logic elements

[35] (2021) ESN
(virtual)

400 NRMSE=0.159 400 0.12Msps RC +
trainer

400 (CycloneIV EP4CE10F17C8)

[36] (2018) - - 18 0.31Msps 18 (Virtex6: 7% of LUTs
and 77% of BRAMs)

[37] (2008) LSM
(virtual) - - 200 0.024Msps

RC
10 10118 - 103 30

[22] (2021) CBM-RC 1500 NMSE=0.040* 1500 0.033Msps 2048† 1089461 593285 2048 1 +
256††

[26] (2021) PCPO-RC 100 RMSE=0.249 100 0.23Msps reservoir 100 2283 1695 0 0
Accuracy: default is FPGA result, * is software result. () value is uncertain of definition.

Circuit resources: † means synthesis result without interface and †† is the number of ultra RAM, which are larger RAM elements than BRAMs on FPGAs.

oriented algorithm that can reduce the increase in calculation
time caused by time-division calculations without decreasing
accuracy, it causes an increase in circuit resources. However,
some applications require higher calculation speed at the
expense of increased circuit resources. Therefore, the introduc-
tion of DMACC in the output layer is important for LUTNet-
RC because, unlike other small circuit resource reservoirs,
the LUT-based reservoir layer completes its calculation in 1
clk; therefore, the overall calculation speed of LUTNet-RC is
limited by the calculation speed of the output layer. Further-
more, the trade-off between circuit resources and calculation
time can be controlled by increasing or decreasing NDMACC

and whether DMACC is introduced or not. These results and
analyses show that LUTNet-RC is practical and allows for the
implementation of RC systems that are fitted to applications.

C. Comparison with conventional works
Table V shows a comparison of LUTNet-RC with conven-

tional RCs on FPGAs in terms of calculation accuracy, speed,
and circuit resources. In terms of accuracy, the LUTNet-RC
had the best score for RC on FPGAs when solving NARMA10.
However, because an indice is an uncertain definition in [30]
and other RC systems on FPGAs have been verified in various
tasks such as speech recognition, it is necessary to verify the
LUTNet-RC in other tasks as well. In terms of speed, the
LUTNet-RC is one of the few RCs on FPGAs that exceed
1Msps. The throughput reported in [30] was 2.6Msps, but
Nr was small and the accuracy in this situation was low; if
Nr is increased to 100 or 1500 to obtain higher accuracy,
it causes a serious increase in calculation time, making the
throughput smaller than 1Msps. In terms of circuit resources,
the LUTNet-RC has a large number of reservoir neurons Nr

with small circuit resources. Since the performance of RC
improves with an increase in the number of reservoir neurons
[3], the implementation of RC using the proposed method is
highly powerful.

When considering the three indices together, the LUTNet-
RC achieves a high level of coexistence; therefore, we con-
clude that the LUTNet-RC proposed and implemented in this
work is one of the highest-performing RC on an FPGA.

VIII. CONCLUSION

In this work, we proposed LUTNet-RC, which consists
of a LUT-based reservoir layer and a non-LUT-based output
layer. In the LUT-based reservoir layer, we modeled a multi-
bit weight reservoir, modifying the conventional binarized
reservoir to improve calculation accuracy. In the non-LUT-
based output layer, we introduced DMACC to reduce the
increase in the calculation time caused by time-division cal-
culation. Furthermore, because conventional S-DMACC is not
suited for the LUT-based reservoir, which has many regular
node changes, we proposed and introduced M-DMACC, which
compares the network state several times ago and calculates
only the changed neurons.

We implemented LUTNet-RC with 1500 reservoir neu-
rons on an FPGA running at 100MHz. We measured the
memory capacity and nonlinearity of LUTNet-RC and solved
NARMA10 using the LUTNet-RC. These scores were compa-
rable to those of conventional RC on FPGAs, and the LUTNet-
RC can process more than 106 data per second. We conclude
that the LUTNet-RC proposed and implemented in this work is
one of the highest-performance RC on an FPGA. In the future,
we plan to implement an RC system that can run on an FPGA
alone by combining LUTNet-RC and a learning accelerator
[41].

ACKNOWLEDGEMENT

This work is based on results obtained from a project,
JPNP16007, commissioned by the New Energy and Industrial
Technology Development Organization (NEDO) and JSPS
KAKENHI Grant Number 23H03468. We gratefully acknowl-
edge support from TIER IV Inc.

REFERENCES

[1] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge
computing: A survey,” Future Generation Computer Systems, vol. 97,
pp. 219–235, 2019.

[2] M. Groshev, G. Baldoni, L. Cominardi, A. de la Oliva, and R. Gazda,
“Edge robotics: Are we ready? An experimental evaluation of current
vision and future directions,” Digital Communications and Networks,
vol. 9, no. 1, pp. 166–174, 2023.

[3] H. Jaeger, “The “echo state” approach to analysing and training recur-
rent neural networks-with an erratum note,” Bonn, Germany: German
National Research Center for Information Technology GMD Technical
Report, vol. 148, no. 34, p. 13, 2001.

[4] C. Gallicchio, “Euler State Networks: Non-dissipative Reservoir Com-
puting,” arXiv preprint arXiv:2203.09382, 2022.

[5] J. Moon, Y. Wu, and W. D. Lu, “Hierarchical architectures in reservoir
computing systems,” Neuromorphic Computing and Engineering, vol. 1,
no. 1, p. 014006, 2021.

[6] F. Nowshin, Y. Zhang, L. Liu, and Y. Yi, “Recent advances in reservoir
computing with a focus on electronic reservoirs,” in 2020 11th Inter-
national Green and Sustainable Computing Workshops (IGSC). IEEE,
2020, pp. 1–8.

[7] E. Wang, J. J. Davis, P. Y. Cheung, and G. A. Constantinides, “LUTNet:
Rethinking inference in FPGA soft logic,” in 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2019, pp. 26–34.

[8] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

[9] R. Fuchikami and F. Issiki, “Fast and light-weight binarized neural
network implemented in an fpga using lut-based signal processing
and its time-domain extension for multi-bit processing,” in 2019 IEEE
9th International Conference on Consumer Electronics (ICCE-Berlin).
IEEE, 2019, pp. 120–121.

[10] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien,
Y. Umuroglu, M. Leeser, and K. Vissers, “FINN-R: An end-to-end deep-
learning framework for fast exploration of quantized neural networks,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 11, no. 3, pp. 1–23, 2018.

[11] D. Verstraeten, J. Dambre, X. Dutoit, and B. Schrauwen, “Memory
versus non-linearity in reservoirs,” in The 2010 international joint
conference on neural networks (IJCNN). IEEE, 2010, pp. 1–8.

[12] M. Inubushi and K. Yoshimura, “Reservoir computing beyond memory-
nonlinearity trade-off,” Scientific reports, vol. 7, no. 1, p. 10199, 2017.

[13] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[14] Y. Katori, H. Tamukoh, and T. Morie, “Reservoir computing based on
dynamics of pseudo-billiard system in hypercube,” in 2019 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2019, pp. 1–8.

[15] D. Pramanta and H. Tamukoh, “Design and implementation of pulse-
coupled phase oscillators on a field-programmable gate array for reser-
voir computing,” in International Conference on Neural Information
Processing. Springer, 2020, pp. 333–341.

[16] Y. Horio, “Chaotic neural network reservoir,” in 2019 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2019, pp. 1–5.

[17] Y. Umuroglu, Y. Akhauri, N. J. Fraser, and M. Blott, “LogicNets: Co-
designed neural networks and circuits for extreme-throughput applica-
tions,” in 2020 30th International Conference on Field-Programmable
Logic and Applications (FPL). IEEE, 2020, pp. 291–297.

[18] N. Soga and H. Nakahara, “Design Method for an LUT Network-
Based CNN with a Sparse Local Convolution,” in 2020 International
Conference on Field-Programmable Technology (ICFPT). IEEE, 2020,
pp. 294–295.

[19] S. Chatterjee, “Learning and memorization,” in International conference
on machine learning. PMLR, 2018, pp. 755–763.

[20] C. Kiefer, “Stochastic Optimisation of Lookup Table Networks, for
Realtime Inference on Embedded Systems,” in Proceedings of the 2nd
Joint Conference on AI Music Creativity, p. 10.

[21] I. Kawashima, T. Morie, and H. Tamukoh, “FPGA implementation of
hardware-oriented chaotic Boltzmann machines,” IEEE Access, vol. 8,
pp. 204 360–204 377, 2020.

[22] I. Kawashima, Y. Katori, T. Morie, and H. Tamukoh, “An area-
efficient multiply-accumulation architecture and implementations for
time-domain neural processing,” in 2021 International Conference on
Field-Programmable Technology (ICFPT). IEEE, 2021, pp. 1–4.

[23] P. Verzelli, L. Livi, and C. Alippi, “A characterization of the edge of
criticality in binary echo state networks,” in 2018 IEEE 28th Interna-
tional Workshop on Machine Learning for Signal Processing (MLSP).
IEEE, 2018, pp. 1–6.

[24] P. Barančok and I. Farkaš, “Memory capacity of input-driven echo
state networks at the edge of chaos,” in Artificial Neural Networks
and Machine Learning–ICANN 2014: 24th International Conference on
Artificial Neural Networks, Hamburg, Germany, September 15-19, 2014.
Proceedings 24. Springer, 2014, pp. 41–48.

[25] L. Livi, F. M. Bianchi, and C. Alippi, “Determination of the edge of criti-
cality in echo state networks through Fisher information maximization,”
IEEE transactions on neural networks and learning systems, vol. 29,
no. 3, pp. 706–717, 2017.

[26] D. Pramanta and H. Tamukoh, “FPGA Implementation of Pulse-Coupled
Phase Oscillators working as a Reservoir at the Edge of Chaos,” in 2021
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,
2021, pp. 1–5.

[27] A. F. Atiya and A. G. Parlos, “New results on recurrent network
training: unifying the algorithms and accelerating convergence,” IEEE
transactions on neural networks, vol. 11, no. 3, pp. 697–709, 2000.

[28] H. Jaeger, “Short-term memory in echo states networks,” Technical
Report GMD Report 152, 2002.

[29] N. Bertschinger and T. Natschläger, “Real-time computation at the edge
of chaos in recurrent neural networks,” Neural computation, vol. 16,
no. 7, pp. 1413–1436, 2004.

[30] V. M. Gan, Y. Liang, L. Li, L. Liu, and Y. Yi, “A cost-efficient digital
esn architecture on fpga for ofdm symbol detection,” ACM Journal on
Emerging Technologies in Computing Systems (JETC), vol. 17, no. 4,
pp. 1–15, 2021.

[31] C. Lin, Y. Liang, and Y. Yi, “FPGA-based Reservoir Computing with
Optimized Reservoir Node Architecture,” in 2022 23rd International
Symposium on Quality Electronic Design (ISQED). IEEE, 2022, pp.
1–6.

[32] K. Honda and H. Tamukoh, “A hardware-oriented echo state network
and its FPGA implementation,” Journal of Robotics, Networking and
Artificial Life, vol. 7, no. 1, pp. 58–62, 2020.

[33] D. Kleyko, E. P. Frady, M. Kheffache, and E. Osipov, “Integer echo
state networks: Efficient reservoir computing for digital hardware,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 33, no. 4,
pp. 1688–1701, 2020.

[34] M. L. Alomar, V. Canals, N. Perez-Mora, V. Martı́nez-Moll, and J. L.
Rosselló, “FPGA-based stochastic echo state networks for time-series
forecasting,” Computational intelligence and neuroscience, vol. 2016,
pp. 15–15, 2016.

[35] K. Yoshida, Y. Abe, M. Akai-Kasaya, and T. Asai, “FPGA Architecture
for Reservoir Computing with time-division input interfaces and online
learning systems,” IEICE Technical Report; IEICE Tech. Rep., 2021.

[36] B. Penkovsky, L. Larger, and D. Brunner, “Efficient design of hardware-
enabled reservoir computing in FPGAs,” Journal of Applied Physics, vol.
124, no. 16, 2018.

[37] B. Schrauwen, M. D’Haene, D. Verstraeten, and J. Van Campenhout,
“Compact hardware liquid state machines on FPGA for real-time speech
recognition,” Neural networks, vol. 21, no. 2-3, pp. 511–523, 2008.

[38] D. Canaday, A. Griffith, and D. J. Gauthier, “Rapid time series prediction
with a hardware-based reservoir computer,” Chaos: An Interdisciplinary
Journal of Nonlinear Science, vol. 28, no. 12, 2018.

[39] H. Komkov, L. Pocher, A. Restelli, B. Hunt, and D. Lathrop, “RF signal
classification using Boolean reservoir computing on an FPGA,” in 2021
International Joint Conference on Neural Networks (IJCNN). IEEE,
2021, pp. 1–9.

[40] S. Apostel, N. D. Haynes, E. Schöll, O. D’Huys, and D. J. Gauthier,
“Reservoir Computing Using Autonomous Boolean Networks Realized
on Field-Programmable Gate Arrays,” Reservoir Computing: Theory,
Physical Implementations, and Applications, pp. 239–271, 2021.

[41] K. Yoshida, M. Akai-Kasaya, and T. Asai, “A 1-Msps 500-Node FORCE
Learning Accelerator for Reservoir Computing,” Journal of Signal
Processing, vol. 26, no. 4, pp. 103–106, 2022.

