論 文

ベルト駆動型多関節ロボットの軌道逸脱を低減する 目標軌道のウエハ産業用設計事例*

藤村 統太[†]・福井 善朗[‡]・伊藤 博[‡]

Wafer Industry Design Case Study of Target Trajectory for Reducing Trajectory Deviation of a Belt-Driven Articulated Robot*

Tota FUJIMURA[†], Yoshiro FUKUI[‡] and Hiroshi ITO^{\ddagger}

This paper deals with high-speed and high-precision transfer control of silicon wafers by a beltdriven robot. We propose a target trajectory design while we only can change the trajectory due to the industry's strict development limitations. The proposed trajectory design has a piecewise linear type velocity profile. Gradients of each segment in the piecewise profile, that is acceleration, are designed with a consideration of two factors: The effects of belt elasticity and kinematics between the amount of belt elongation and the amount of tracking error. To reduce the amount of tracking error effectively, we also propose a design indicator which combines the two factors for designing the profile. An experiment with the belt-driven type wafer transfer robot UTM-R3700F, currently in use in industry, illustrates that the proposed trajectory design with the proposed indicator reduces tracking error compared to the conventional trajectory design.

1. はじめに

半導体の製造で活躍するシリコンウエハ搬送ロボット は、ウエハに空気中の微粒子(パーティクル)や分子状 汚染物質 (Airborne Molecular Contaminants: AMCs) が付着することにより、ウエハが欠陥品となることを防 ぐため、クリーンルームで稼働することが多い[1-3]. ク リーン度を維持した動作を行うには、シーリングのしや すさや手先機構の単純化が特に求められるため、ベルト 駆動型水平多関節ロボットが用いられている [4].

半導体製造工程では、ロボットアームの手先が通る手 先目標搬送軌道上にゲートバルブやカセットの入り口な ど狭い部分が存在し、ウエハが衝突することは許されな い.したがって、アームの手先は手先目標搬送軌道を精 密に追従しなければならないが、ベルト駆動型ロボット

- [†] 九州工業大学 大学院 情報工学府 学際情報工学専攻 Department of Systems Design and Informatics, Kyusyu Institute of Technology; 680-4, Kawazu, Iizuka city, Fukuoka 820-8502, JAPAN
- [‡] 九州工業大学 情報工学研究院 知的システム工学研究系 Department of Intelligent and Control Systems, Kyushu Institute of Technology; 680-4 Kawazu, Iizuka city, Fukuoka 820-8502, JAPAN

Key Words: robot control, belt driven robot, wafer transfer robot, trajectory tracking, trajectory design.

は、ウエハを把持する手先が本来通るべき手先目標搬送 軌道から軌道逸脱を引き起こすことが知られている. そ の主要因は、ロボット本体の固有振動や動力伝達機構で あるベルトの伸縮であることがわかっており [5],伸縮量 そのものを計測・制御することが難しいことから,軌道 逸脱を完全になくすことは難しいとされている.現状で は、ロボットをゆっくり動作させ、ベルトにかかる負荷 を小さくすることで軌道逸脱の低減を図っているが、顧 客からの厳しいタクトタイムの要求に応えられない問題 がある. そこで製造現場からは、タクトタイムを落とさ ずに、手先追従精度を向上させることが求められている.

これまでに、産業ロボット一般において、振動や逸脱 の低減は常に研究の主要課題である.たとえば、ロボッ ト手先の振動に対して逆位相の信号を与えることで振動 を打ち消す Input Shapingを用いた制御手法 [6,7] や、加 速度フィードバックを用いた振動抑制制御 [8],周期外乱 オブザーバを用いた振動低減 [9],線形化した運動方程式 をもとに LMI を用いたコントローラ設計による軌道逸 脱低減 [10],運動方程式と実験によって得られた詳細な モデルに対してゲインスケジューリング制御と補助入力 を使用した軌道逸脱現象の低減 [11,12] など、制御系設 計により軌道逸脱や振動現象、特に動作終了時の残留振 動をできるだけ早く低減させるための研究が多く行われ てきた.また、電動機や産業機械では、台形加減速など

^{*} 原稿受付 2022年8月10日

による目標軌道にロボットの挙動を追従させる技術が利 用されることも多い.

ウエハ搬送ロボットの開発現場においても、価格を抑 えることや開発時の工程の階層分け、動作の安全性を担 保する観点から、追従制御則を従来の制御則のまま変更 せず, 関節角度の目標軌道の再設計のみで手先の軌道追 従を精密化することが望ましい. 言い換えると、制御系 を変更せずにロボットの高精度化を目指すアプローチも 現場から求められている.たとえば、目標軌道に対して 高次元化や遺伝的アルゴリズムを用いて,不連続な角加 速度の変化をなめらかにすることで急激な加速度の変化 を減らし、軌道逸脱や振動現象を低減させる取組みがあ る [13,14]. さらに [15] では、ベルト駆動型ロボット特 有の軌道逸脱を低減させるため、ベルト駆動型ロボット の動力学を考慮した目標軌道の設計法を提案した. しか し, [15] で提案した目標軌道設計法では、アームを縮め る動作で軌道逸脱の低減が確認できておらず、検証は実 験機で行われ,製品機ではない.

そこで本論文では、ベルト駆動型産業ロボットに対象 を限定し、追従制御則は変更せず、関節角度の目標軌道 のみを修正することで軌道逸脱量を低減させる産業現場 の問題に対し、逸脱を端的に表す評価指標を提案し、そ れに基づいて設計した目標軌道の製品機への実装結果を 報告する.提案する評価指標は、従来研究[15]で考慮し ていたベルトの伸縮だけでなく、運動学の影響も考慮し たものとなっている。その有効性は、評価指標に基づい て設計した2段階台形加速型の目標軌道と単純な台形型 を製品機に実装し、アームの伸ばしと縮めの両動作を計 測・比較することにより確認する。

2. 制御対象

2.1 ウエハ搬送ロボット

本論文では、株式会社ダイヘン社製のUTM-R3700F[16] を研究対象とし、軌道逸脱を引き起こす要因としてベル トの伸縮現象に着目する、本論文で使用するウエハ搬送 ロボットをFig.1に示す。

制御対象は半導体ウエハの水平搬送機構を3リンク の産業用ロボットアームに取り付けることで、ソータや EFEM とよばれる製造上の設備内で、走行軸なしに半 導体ウエハを搬送することができる.本論文ではウエハ の水平搬送の動作を対象とし、上下運動などは取り扱わ ない.

水平搬送機構は3リンク1自由度のベルト駆動型ロ ボットとなっている.リンク1の根本に配置されたサー ボモータに対しコントローラから指令トルクを自由に与 えることができる.与えられた指令トルクによってサー ボモータがトルクを出力し,プーリを回転させ,その運 動をベルトに伝達することによって,アームが動作する.

根本に配置されたサーボモータ部からはパーティクル が放出されるため、サーボモータ部と手先部分は空気が

Fig. 1 UTM-R3700F

Fig. 2 Coordinate system of UTM-R3700F

行き来しないようにシーリングされる.シーリング部を またいだ配線は適正な経済性をもつ製品として完成させ る観点で現実的ではない.そのため、手先部にはセンサ を配置することはできず、ロボットはサーボモータの回 転角 θ_1 のみをエンコーダにより計測できる.

本論文では、ロボット背面から見た方向を y 軸方向、 それに水平垂直な方向を x 軸方向とする. すべてのリン クが x 軸に重なる姿勢から、リンク2を π [rad]、リンク 3を $3\pi/2$ [rad] 回転させた姿勢を基準姿勢とする. そし て、リンク i における基準姿勢からの角度変位を θ_i [rad] とする. Fig. 2 に各関節角度 θ_i の座標系を示す. θ_i はベ ルトが伸縮しない場合、以下の幾何拘束を満たすように 設計されている.

$$\theta_2 = -2\theta_1, \quad \theta_3 = \theta_1 \tag{1}$$

一方で、実際にはベルトの伸縮による関節角度誤差 θ_{e1}, θ_{e2} [rad] が以下の通り発生する.

$$\theta_2 = -2\theta_1 - \theta_{e1}, \quad \theta_3 = \theta_1 + \theta_{e2}$$

状態変数を $q = [\theta_1 \ \theta_{e1} \ \theta_{e2}]^T$ とすると、ロボットの手先 座標(x, y)は以下の順運動学 $(f_1(q), f_2(q)) = (x, y)$ で表 される.

$$\begin{split} f_1(q) &:= l_1 \cos \theta_1 - l_2 \cos(\theta_1 + \theta_{e1}) + l_3 \sin(\theta_{e1} - \theta_{e2}) \\ f_2(q) &:= l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_{e1}) + l_3 \cos(\theta_{e1} - \theta_{e2}) \end{split}$$

Table 1 Spees of the C1111101001		
$I_1, I_2, I_3 [\mathrm{kg} \cdot \mathrm{m}^2]$	慣性モーメント	0.003365, 0.002114, 0.004943
l_{g1}, l_{g2}, l_{g3} [m]	リンク i の関節からの重心距離	0.07018, 0.06697, 0.10821
$l_1, l_2, l_3[m]$	リンク長	0.16, 0.16, 0.30
$m_1, m_2, m_3[kg]$	リンク質量	5.974, 4.288, 3.449
k_1, k_2 [N/m]	ベルト弾性係数	$118 \times 10^3, 118 \times 10^3$
$d_1, d_2[N \cdot s/m]$	ベルト減衰係数	$10^4, 10^4$
$\max\dot{\theta}_1[\mathrm{rad/s}]$	機械最大関節角速度	4.449
$\max\ddot{\theta}_1[\mathrm{rad/s}^2]$	機械最大関節角加速度	27.186

Table 1Specs of the UTM-R3700F

 $l_1 = l_2$ が満たされるように製品は設計されているため, $\theta_{e1} = \theta_{e2} = 0$ ならば, Fig.2のようにロボットの手先位 置が y 軸上を移動する. $\theta_{e1}, \theta_{e2} \neq 0$ の場合, x 軸方向に 手先位置の軌道逸脱が起こり得る.

2.2 運動方程式

ベルト駆動型ロボットの多くでは、ベルトの伸縮現象は バネダンパ系やバネ慣性系としてモデル化される[17,18]. 本論文でも、ベルトの伸縮がバネダンパ系として振る舞 うと仮定し、ロボットの運動方程式を

$$\tau = M(q)\ddot{q} + C(q,\dot{q})\dot{q} + K(q)$$

$$\tau := \begin{bmatrix} \tau_1 & 0 & 0 \end{bmatrix}^T$$

$$K(q) := \begin{bmatrix} 0 & k_1\theta_{e1} & k_2\theta_{e2} \end{bmatrix}^T$$
(2)

で表す. ここで, τ は制御トルク, $M(q) \in \mathbb{R}^{3\times 3}$ は慣性行 列, $C(q, \dot{q}) \in \mathbb{R}^{3\times 3}$ は遠心力・コリオリ力項, $K(q) \in \mathbb{R}^{3}$ はベルトの弾性力項である. 慣性行列 M(q) の (i, j) 要素 である $m_{ij}(i, j = 1, ..., 3)$ は

$$\begin{split} m_{11}(q) &:= m_1 l_{g1}^2 + I_1 + m_2 l_1^2 + m_2 l_{g2}^2 + I_2 \\ &+ m_3 l_1^2 + m_3 l_2^2 \\ &+ 2(m_2 l_{g2} + m_3 l_2) l_1 \cos(2\theta_1 + \theta_{e1}) \\ m_{12}(q) &:= m_2 l_{g2}^2 + I_2 + m_3 l_2^2 \\ &+ (m_2 l_{g2} + m_3 l_2) l_1 \cos(2\theta_1 + \theta_{e1}) \\ &- m_3 l_1 l_{g3} \sin(\theta_1 + \theta_{e1} - \theta_{e2}) \\ &+ m_3 l_2 l_{g3} \sin(\theta_1 + \theta_{e1} - \theta_{e2}) \\ &- m_3 l_2 l_{g3} \sin(\theta_1 + \theta_{e1} - \theta_{e2}) \\ m_{21}(q) &:= m_{12}(q) \\ m_{22}(q) &:= m_2 l_{g2}^2 + I_2 + m_3 l_2^2 + m_3 l_{g3}^2 + I_3 \\ &+ 2m_3 l_2 l_{g3} \sin(\theta_1 + \theta_{e2}) \\ m_{23}(q) &:= -m_3 l_{g3}^2 - I_3 - m_3 l_2 l_{g3} \sin(\theta_1 + \theta_{e2}) \\ m_{31}(q) &:= m_{13}(q) \\ m_{32}(q) &:= m_{23}(q) \\ m_{33}(q) &:= m_3 l_{g3}^2 + I_3 \\ \end{split}$$

で書き表される. また, $C(q,\dot{q})\dot{q}$ は, M(q)を用いて,

$$C(q,\dot{q})\dot{q} = \dot{M}(q,\dot{q})\dot{q} - \frac{1}{2}\frac{\partial}{\partial q}\left(\dot{q}^{T}M(q)\dot{q}\right)$$
$$\dot{m}_{ij}(q,\dot{q}) := \frac{\partial m_{ij}}{\partial a}(q)\dot{q}$$

で表される. ただし, $\dot{m}_{ij}(i,j=1,...,3)$ は \dot{M} の(i,j)要素である.

Table 1 に物理パラメータを示す.

2.3 問題設定

ロボット開発時の制約より, ロボットに対して使用さ れている PI 制御則

$$\tau_{1}(t) = -K_{p}(\theta_{1}(t) - \theta_{1r}(t)) - K_{i} \int_{0}^{t} \theta_{1}(\tau) - \theta_{1r}(\tau) d\tau$$
(3)

は変更できず、 $\theta_{1r}(t)$ のみ変更可能とする.ここで、 $\theta_{1r}(t)$ は関節角度 θ_1 の目標軌道、 $K_p, K_i > 0$ は制御則ゲインであり、 τ_1 はモータが発生する制御トルクである.

また搬送動作でのタクトタイムを製品機の目標軌道の 基本設計として採用されている従来の台形加速での目標 軌道と同程度に設定し,タクトタイムを変えずに軌道逸 脱を低減できるような目標軌道の作成を行う.

初期時刻から次の動作の終了時刻まで,手先目標軌道 と手先位置の最大軌道逸脱量がより小さくなる,つまり,

$$\sup_{t\in[0,\infty)}|x(t)|$$

をできるだけ小さくする目標軌道の設計が、本論文にお ける問題である.

3. 軌道逸脱の主要因

3.1 ベルトの伸縮による幾何拘束の逸脱

ベルトの伸縮によって生じる関節角度誤差 θ_{e1}, θ_{e2} が0 でない値をとると、幾何拘束(1)式が崩れ、手先位置の軌 道逸脱が発生するのであった。予備実験により、 θ_{e1}, θ_{e2} はそれぞれ 10⁻⁵, 10⁻¹⁰ 程度のオーダの値をとることが わかっているため、軌道逸脱の主要因は θ_{e1} である。し たがって、 $\ddot{\theta}_{e1}$ を生じさせる主要因を考察する。

予備実験により θ_{e2} , $\dot{\theta}_{e2}$, $\ddot{\theta}_{e2}$ は充分小さい値をとること がわかっている.これと,運動方程式(2)式より,

Fig. 3 Relationship between θ_1 and $(-2.4m_{21}^{-1}, m_{22}^{-1})$

Fig. 4 Relationship between θ_1 and $j_2 m_{22}^{-1}$

$$\ddot{\theta}_{e1} = \left[m_{21}^{-1}(q) \ m_{22}^{-1}(q) \right] \left[\begin{pmatrix} (-C(q,\dot{q})\dot{q} - K(q) + \tau)_1 \\ (-C(q,\dot{q})\dot{q} - K(q) + \tau)_2 \end{bmatrix}$$

$$(4)$$

の近似式が得られる.ただし, m_{ij}^{-1} は M^{-1} の(i,j)要素であり,(4)式右辺にある添え字1,2はベクトルの1要素目,2要素目をとることを意味している. m_{21}^{-1} または m_{22}^{-1} の絶対値が大きいほど $\ddot{\theta}_{e1}$ が大きな値をとりやすいことがわかる.

Fig.3に台形加速により θ_1 を動かした場合の $m_{22}^{-1}(q)$ と $-2.4m_{21}^{-1}(q)$ のグラフを示す. グラフより

 $-2.4m_{21}^{-1}(q) \,\dot{=}\, m_{22}^{-1}(q)$

と解釈できることから、 $\lceil m_{22}^{-1}(q)$ が大きいほど $\ddot{\theta}_{e1}$ が大 きな値をとりやすい」という単純なルールで、軌道逸脱 の主要因 θ_{e1} の発生しやすさを見積もれることがわかる.

3.2 ベルトの伸縮が軌道逸脱に与える影響

軌道逸脱方向の順運動学 $x(t) = f_1(q(t))$ を時間 $t \circ 2$ 階微分すると,

$$\ddot{x}(t) = \frac{d}{dt} \left(\frac{\partial f_1}{\partial q}(q(t)) \right) \dot{q}(t) + \frac{\partial f_1}{\partial q}(q(t)) \ddot{q}(t) \quad (5)$$

$$\frac{\partial f_1}{\partial q}(q) = \left[j_1(q) \ j_2(q) \ j_3(q) \right]$$

$$j_1(q) := -l_1 \sin\theta_1 - l_2 \sin(-\theta_1 - \theta_{e1})$$

$$j_2(q) := l_2 \sin(\theta_1 + \theta_{e1}) + l_3 \cos(\theta_{e1} - \theta_{e2})$$

$$j_3(q) := -l_3 \cos(\theta_{e1} - \theta_{e2})$$

が得られる.(5)式右辺第1項は数値実験により充分小さい値をとることがわかっている.また, θ_{e1}, θ_{e2} は10⁻⁵以下の値をとることがわかっており,構造上 $l_1 = l_2$ が満たされるから,

$$j_1(q) = 0$$

$$j_2(q) = l_3 + l_2 \sin(\theta_1)$$

$$j_3(q) = -l_3$$

の近似が成り立つ.

したがって、ベルトの伸縮が軌道逸脱方向である *x* 軸 に与える加速度 (5) 式は

$$\begin{split} \ddot{x} &= j_2(q) \ddot{\theta}_{e1} \\ &= j_2(q) m_{22}^{-1}(q) \left[-2.4 \ 1 \right] \begin{bmatrix} (-C(q,\dot{q})\dot{q} - K(q) + \tau)_1 \\ (-C(q,\dot{q})\dot{q} - K(q) + \tau)_2 \end{bmatrix} \end{split}$$

で近似される. そこで、本研究では

$$j_2(q)m_{22}^{-1}(q) \tag{6}$$

の値を目標軌道設計における評価指標とし,評価指標(6) 式の値が小さい関節角度 θ_1 で大きく加速するような目 標軌道を設計することを**5**章で提案する.

4. 軌道逸脱傾向の実機調査

本章では、従来の台形加速による目標軌道から各設計 パラメータを変化させたときの最大軌道逸脱量を計測し、 どのパラメータが軌道逸脱低減のために重要なパラメー タであるか調査する.

4.1 実験条件

本論文では、従来の台形加速による目標軌道を基準角 加速度 α=15.31[rad/s²],最高角速度を機械最大関節角 速度の95% (=4.227[rad/s])で設計した目標軌道とする.

実験動作は、 θ_1 を最小関節角度 $\theta_{1s} = -1.037$ [rad]から最大関節角度 $\theta_{1f} = 1.334$ [rad]まで動かす伸ばし動作と、最大関節角度 θ_{1f} から最小関節角度 θ_{1s} まで動かす縮め動作で行う.

台形加速による目標軌道はアーム伸ばし姿勢での動作, 等速動作,アーム縮め姿勢での動作の三つに分離して考 えることができる.したがって,以下のようにパラメー タを変更し,製品機にて逸脱傾向を調査する.

- (1) 等速動作部分での最高角速度の変更
- (2) アーム伸ばし姿勢での角加速度の変更
- (3) アーム縮め姿勢での角加速度の変更

台形加速を構成する各種パラメータは、実務上の軌道設 計手順を考慮し、チューニング可能な範囲で設定した.

4.2 設計パラメータ変更による軌道逸脱傾向調査4.2.1 等速動作部分での最高角速度の変更

目標軌道の最高角加速度を変更することで軌道逸脱に どのような変化を与えるかを調査する. 最高角速度は, MMV (Machine's Maximum Velocity: 機械最大関節角 速度)の定数倍の形で0.95MMV, 0.85MMV, 0.7MMV の3種類で計測を行う. なお,加減速動作部分では従来 の台形加速と同様に角加速度 α[rad/s²] で加減速を行う よう設定した. 計測の結果を Table 2 に示す.

iniuni angular velocity			
最高角速度	タクト	軌道逸脱量 [mm]	
[rad/s]	タイム [s]	伸ばし動作	縮め動作
$0.95 \mathrm{MMV}$	0.845	1.307	1.508
$0.85 \mathrm{MMV}$	0.880	1.147	1.265
0.70MMV	0.970	0.625	0.832

 Table 2
 Change in orbit deviation due to change in maximum angular velocity

Table 3	Change in orbit deviation due to change in an
	gular acceleration in arm-extended posture

伸ばし姿勢の	タクト	軌道逸脱量 [mm]	
角加速度 [rad/s ²]	タイム [s]	伸ばし動作	縮め動作
1.3α	0.815	1.223	1.617
α	0.845	1.312	1.607
$\alpha/2$	0.985	1.023	1.089
$\alpha/3$	1.125	0.815	0.736

Table 2より,タクトタイム 10[msec] 増加に対し,伸 ばし動作では軌道逸脱量 0.055[mm] 低減,縮め動作では 軌道逸脱量 0.057[mm] 低減したことがわかる.これは, 最高角速度を小さくすることでアーム伸ばし姿勢,縮め 姿勢の両方で評価指標 (6) 式の値が大きい姿勢の加減速 領域が減少したからであると評価できる.

4.2.2 アーム伸ばし姿勢での角加速度の変更

目標軌道のアーム伸ばし姿勢での角加速度の大きさを 変更することで軌道逸脱にどのような変化を与えるかを 調査する.角加速度の値は、 $\alpha/3$ 、 $\alpha/2$ 、 α 、1.3 α の4種 類で計測を行う.最高角速度は従来の台形加速による目 標軌道と同じ0.95MMV[rad/s]に設定した.計測の結果 を Table 3 に示す.

Table 3より,タクトタイム 10[msec] 増加に対し,伸 ばし動作では軌道逸脱量 0.012[mm] 低減,縮め動作では 軌道逸脱量 0.030[mm] 低減したことがわかる.これは, 伸ばし姿勢の角加速度を小さくすることで,逸脱しやす い姿勢でベルトにかかる負荷が小さくなり,ベルトの伸 縮量が減少したからだと考えられる.一方で,角加速度 を小さくすると評価指標(6)式の値が大きい姿勢での加 減速領域が増加するため,最高角速度の変更よりも軌道 逸脱量は低減していないこともわかる.

4.2.3 アーム縮め姿勢での角加速度の変更

目標軌道のアーム縮め姿勢での角加速度の大きさを変 更することで軌道逸脱にどのような変化を与えるかを調 査する.角加速度の値は,0.8 α , α ,1.3 α ,1.65 α の4種 類で計測を行う.最高角速度は従来の台形加速による目 標軌道と同じ0.95MMV[rad/s]に設定した.計測の結果 を Table 4 に示す.

Table 4より,伸ばし動作では角加速度に係る係数が 1以上の場合、タクトタイム10[msec] 増加に対し、軌道 逸脱量 0.056[mm] 低減したことがわかる.ただし、角加 速度に係る係数が1未満の場合、軌道逸脱量は増加した.

Table 4 Change in orbit deviation due to change in an-

guiar acceleration in arm-contraction posture			
縮め姿勢の	タクト	軌道逸脱	量 [mm]
角加速度 [rad/s ²]	タイム [s]	伸ばし動作	縮め動作
1.65α	0.790	1.537	1.600
1.3α	0.815	1.462	1.617
α	0.845	1.232	1.647
0.8 lpha	0.880	1.555	1.573

これは、角加速度を小さくすることにより逸脱しやすい 姿勢での加減速領域が増加したことによるものだと考え られる.また、縮め動作では4条件でほぼ同じ軌道逸脱 量となった.これは、最大軌道逸脱がアーム伸ばし姿勢 で発生しており、縮め姿勢での挙動変化は軌道逸脱に影 響しないからだと考えられる.

4.3 設計パラメータ変更による軌道逸脱への影響 4.2節の実験より、最高角速度の変更は角加速度の変 更と比較すると、伸ばし、縮め動作の両者で軌道逸脱への影響が最も大きいといえる。

また、アーム伸ばし、縮め姿勢での角加速度の変更に より、「ベルトにかかる力の増減」と「軌道逸脱しやすい 姿勢での加減速領域の増減」のトレードオフ関係が存在 するといえる.本論文で想定している角度動作範囲では、 アーム伸ばし姿勢はアーム縮め姿勢よりも相対的に評価 指標(6)式の値が小さい.また、最大軌道逸脱はアーム 伸ばし姿勢側で発生している.よって、アーム縮め姿勢 での角加速度の変更はアーム伸ばし姿勢と比較して影響 度が小さいと判断できる.

したがって,設計パラメータの変更による軌道逸脱へ の影響度は以下の順で大きいといえる.

- (1) 等速動作部分での最高角速度
- (2) アームを伸ばし姿勢での角加速度
- (3) アームを縮め姿勢での角加速度

5. 提案法

本論文では、手先の軌道逸脱が起きにくい姿勢のとき に大きく加速する2段階台形加速による目標軌道を提案 する.ただし、ここでいう2段階の加速とは、Fig.6や Fig.8で示すように異なる角加速度で2回にわけて加速 することを意味する.

Fig.4に表されるグラフ形状をしている評価指標(6) 式を参照しつつ,従来の台形加速による目標軌道を4.1 節ならびに4.2節で述べた三つの要因を軌道逸脱への影 響度が大きい順に考慮して修正することで,2段階台形 加速を設計することを提案する.

具体的には,

- (1) 等速動作部分での最高角速度を落とすことで、軌 道逸脱の最大値を低減させる.ただし、ここの操 作でタクトタイムは増加する、
- (2) アームを伸ばした姿勢での角加速度を引き下げた

2段階台形加速軌道の設計を行い,軌道逸脱の最大 値を低減させる調整を行う,

(3) アームを縮めた姿勢での角加速度を引き上げ、許 容できる範囲までタクトタイムを短くする。

の手順で台形加速による目標軌道を2段階台形加速に修 正することを提案する.

6. 実機実験

6.1 実験条件

製造現場で実際に使われている製品である,株式会社 ダイヘン製 UTM-R3700F[16] により提案法の有効性を 確認する.基準角加速度 α [rad/s²],目標軌道の設計上 のタクトタイム t_{move} は従来の台形加速による目標軌道 のタクトタイム 0.845[s] の±0.01[s] 以内を共通条件とし て与える. θ_1 に対する PI 制御則 (3) 式の各ゲインは変 更しない.上記の共通条件のもと,従来の台形加速に対 して提案法は軌道逸脱を低減できるかを確認する.

比較実験は θ_1 を最小関節角度 θ_{1s} から最大関節角度 θ_{1f} まで動かす伸ばし動作と、最大関節角度 θ_{1f} から最 小関節角度 θ_{1s} まで動かす縮め動作で行うものとする.

手先軌道は FARO 社製レーザトラッカー VANTAGE Laser Tracker を用いて計測する. 当該レーザトラッカー の計測精度は 0.001[mm] であり,最小で 0.004[s] ごとに 手先位置の計測が可能なものになっている.

6.2 目標軌道設計

本研究で用いる評価指標に基づいた目標軌道の設計例 を示す.

6.2.1 等速動作部分での最高角速度の変更

最高角速度を小さくすることによるタクトタイムの 増加と軌道逸脱の低減の両者を考慮し、伸ばし動作と 縮め動作での最高角速度を決定する、今回は二つの動 作で従来の台形加速による目標軌道での最高角加速度 0.95MMV[rad/s]に対し、0.85MMV[rad/s]に設定した.

6.2.2 アーム伸ばし姿勢での角加速度の変更

伸ばし動作では、最大関節角度 θ_{1f} から $\theta_1 = 1.309$ [rad] まで 1.65 α [rad/s²] で大きく加速し、その後、最高角速 度に達する $\theta_1 = 0.659$ [rad] まで 2 α /3[rad/s²] で緩やかに 加速するように設計した、また縮め動作では、最大関節 角度 θ_{1f} から $\theta_1 = 1.294$ [rad] まで 1.65 α [rad/s²] で大き く加速し、その後、最高角速度に達する $\theta_1 = 0.470$ [rad] まで α /2[rad/s²] で緩やかに加速するように設計した.

6.2.3 アーム縮め姿勢での角加速度の変更

要因 (1)(2) の考慮によって増加したタクトタイムを短縮するために、アーム縮め姿勢では大きな角加速度で動作させる。伸ばし動作と縮め動作のアーム縮め姿勢で、従来の台形加速による目標軌道での角加速度 α [rad/s²] に対し、1.65 α [rad/s²] の大きな角加速度で加速するように設定した。

Fig. 5, Fig. 6 に従来の台形加速による目標軌道と提案 法により設計した伸ばし動作の目標軌道を示す. 同様に,

Fig. 5 Target trajectory θ_{1r} of proposal method (Extension)

Fig. 6 Time derivative of target trajectory $\dot{\theta}_{1r}$ of proposal method (Extension)

Fig. 7 Target trajectory θ_{1r} of proposal method (Contracting)

Fig. 8 Time derivative of target trajectory $\dot{\theta}_{1r}$ of proposal method (Contracting)

Fig.7, Fig.8に縮め動作の目標軌道を示す.

6.3 評価指標との関係

作成した目標軌道がどの程度,評価指標(6)式を考慮 することができているかを確認する指標として,本論文 では,

Table 5 Evaluation of target trajectory

	評価値	
	縮め姿勢	伸ばし姿勢
従来法	0.544	6.847
提案法 (伸ばし動作)	0.384	5.825
提案法 (縮め動作)	0.389	5.680

Table 6 Maximum trajectory deviation

	軌道逸脱量 [mm]	
	伸ばし動作	縮め動作
従来法	1.330	1.536
提案法	1.089	1.087

$$\frac{\sum_{i=1}^{n} \left\{ j_2(q(t_i)) m_{22}^{-1}(q(t_i)) \cdot \ddot{\theta}_1(t_i) \right\}}{n}$$
(7)

を用いる.ただし,目標軌道の加減速領域でのステップ 数を n, i ステップ目の時間を t_i とする.アームの伸ば し姿勢と縮め姿勢の加減速領域内でサンプリングごとに (評価指標値)·(角加速度の大きさ)を計算した平均値を意 味する.したがって,(7)式の値が小さければ小さいほ ど,評価指標(6)式が小さい姿勢で大きく加速している といえる.従来の台形加速による目標軌道と作成した目 標軌道に対する(7)式の値を Table 5 に示す.

Table 5より, 従来の台形加速による目標軌道と比較 して提案法のほうが, アーム伸ばし姿勢, 縮め姿勢の両 姿勢で(7)式の値が小さい.このように, 設計した目標 軌道は評価指標(6)式が小さい軌道逸脱が起きにくい姿 勢で大きく加減速するという設計を行ったものであると 確認できる.

6.4 結果

Fig.9に伸ばし動作での手先軌道を,Fig.10に縮め動 作での手先軌道を示す.また,Table 6 に二つの動作で の手先目標搬送軌道からの最大軌道逸脱量を示す.伸ば し動作では約18%,縮め動作では約29%の軌道逸脱低減 を達成できている.

7. おわりに

本論文では、ベルト駆動型のウエハ搬送ロボットにおいて、産業現場において目標軌道の変更しか許されない 制約のもとで、手先の軌道逸脱を低減する目標軌道の設 計指針と、その成功事例を報告した。

具体的には、ロボットの姿勢角に応じたベルトの伸縮 による変位とその影響度の変化を数理的に解析し、軌道 逸脱の端的な評価指標を定めた.これを使って、手先の 軌道逸脱が起きにくい姿勢のときに大きく加速する2段 階台形加速による目標軌道を提案し、ダイヘン社製ウエ ハ搬送ロボットに実装した実験結果に基づき、効果を議 論した.

従来の台形加速による目標軌道との比較実験では、2段

Fig. 9 Comparison of extending hand trajectories (Extension)

Fig. 10 Comparison of extending hand trajectories (Contracting)

階台形加速によってロボットの伸ばし動作では最大で約 18%,縮め動作では約29%の軌道逸脱低減を確認した.

台形加速の加減速部分を2段階で行うというシンプル な拡張自体には画期的な新規性はないが、本論文で取り 組んだ機構を持つベルト駆動型ロボットの技術向上にお いては、大きな軌道逸脱低減効果を得られている.また、 1)軌道逸脱の特徴を端的に抜き出し、2)現場で簡単に 使える実用的設計手順で軌道逸脱低減ができた、という 点で研究的な新規性もある.半導体製造の最先端の現場 におけるシリコンウエハの搬送ロボットに対し、単純な 方法で大きく性能向上できることを示した点でも貢献が ある.

本論文では、エンジニアがパラメータチューニングし やすいように、あるいは、経営者が変更の決断をしやす くするため、2段階台形の加速度の解を提供するよりも、 「評価指標 (6) 式である $j_2(q)m_{22}^{-1}(q)$ が小さければ大き く加速、大きければ小さく加速するように目標軌道を設 計する」という単純で質的な指針を提案することを目標 にした、わかりやすさを残したまま自動で最適化できる ようにするなど、更なるユーザの負担軽減は、今後の大 切な研究方向の一つである。

また,搬送ロボットの研究では動作終了時に残る振動 にも様々な取り組みが行われている.ベルト駆動型ロ ボットに特化した実用性の高い方法で手先の軌道逸脱, 残留振動の両者を低減することも今後の課題である.

謝 辞

株式会社ダイヘンクリーンロボット事業部の森本様, 神谷様にロボットメーカとして本論文への助言や実験環 境の提供をいただきました.感謝の意を表します.

参考文献

- 大森,福本:ゴミと信頼性;日本信頼性技術協会誌, Vol. 11, No. 2, pp. 20-25 (1989)
- [2] 佐藤: よくわかる最新半導体製造装置の基本と仕組み、 秀和システム (2010)
- [3] 竹田: 化学汚染の評価分析技術; 表面技術, Vol. 50, No. 10, pp. 887–893 (1999)
- [4] 前羽、山川: 真空におけるダストフリー技術; 真空, Vol. 33, No. 12, pp. 909–915 (1990)
- [5] 長崎: 産業用ロボットにおける搬送動作の高精度化にむ けて, 立命館大学大学院修士論文 (2020)
- [6] Y. Liu, Y. Cao, L. Sun and X. Zheng: Vibration suppression for wafer transfer robot during trajectory tracking; 2010 IEEE International Conference on Mechatronics and Automation (2010)
- [7] 山下, W. Aribwo, 山内, 寺嶋, 増井, 佐伯: 半導体ウェ い搬送ロボットへの Preshaping 制御の応用と実験検証;
 計測自動制御学会論文集, Vol. 50, No. 4, pp. 328–334 (2014)
- [8] 浜松,内田:加速度フィードバックによるベルト駆動ロボットの振動抑制制御;日本機械学会九州支部講演論文集,Vol. 60, pp. 277–278 (2017)
- [9] 李,武居,古荘:歯付ベルト駆動サーボ系の周期的速度 変動の外乱オブザーバによる低減に関する研究;日本機 械学会論文集 C 編, Vol. 68, No. 676, pp. 3673–3680 (2002)
- [10] 大原,平田,太田:入力・横揺れ制約を考慮した真空環 境用二軸ウエハ搬送ロボットの制御系設計と実験による 検証;日本機械学会論文集 C 編, Vol. 72, No. 716, pp. 1184–1193 (2006)
- [11] 大原,平田,太田,山本:ゲインスケジューリングによる ウエハ搬送ロボットの軌道追従制御;計測自動制御学会 制御部門 第2回制御部門大会, pp. 111–114 (2002)
- [12] 大原,平田,太田: ウエハ搬送ロボットの直動運動高精度 化に関する考察と実験による検証; 計測自動制御学会制 御部門 第6回制御部門大会, Vol. 2, pp. 487–490 (2006)
- [13] 小島,千木良,桑野,阿部,菊池:ステッピングモータで 駆動される3自由度半導体ウエハ搬送ロボットアーム の軌道追従制御と誤差解析;日本機械学会論文集C編,

Vol. 72, No. 719, pp. 2008–2014 (2006)

- [14] 本村,大橋,榎本,小島,桑野,細谷:ステッピングモータ をアクチュエータとする半導体ウエハ搬送ダイレクトド ライブ型3関節ロボットアームの軌道計画と制御;埼玉 ブロック大会(講演会)講演論文集,pp. 253-254 (2007)
- [15] 藤村,福井,伊藤:2段階台形加速を用いたベルト駆動型 ロボットの軌道追従制御;第64回自動制御連合講演会講 演論文集(2021)
- [16] https://www.daihen-robot.com/items/utm_ r3700f
- [17] K. Fukada, S. Morimoto, Y. Takeda and T. Hirasa: Dynamic model and vibration control of a robot arm with flexible timing belts; *Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation* (1992)
- [18] T. Kim, M. Jegal, J. Kim, J. Choe and S. Kim: Dynamic modeling of flexible glass substrate transfer robot arm and meandering estimation; *Proceedings -IEEE International Conference on Robotics and Automation* (2011)

著 者 略 歴

藤村統太(正会員)

1998年10月15日生.2023年3月九州 工業大学大学院情報工学府博士課程前期課 程修了.修士(情報工学).同年4月平田 機工株式会社入社,現在に至る.

福井 善朗 (正会員)

1985年8月21日生.2013年3月奈良先 端科学技術大学院大学情報システム学専攻 博士後期課程修了.同年4月立命館大学グ ローバルイノベーション研究機構専門研究 員,2014年4月同大学情報理工学部知能 情報学科助教,2018年4月九州工業大学

助教となり現在に至る. 非線形制御, ロボット制御の研究に 従事. 計測自動制御学会, 日本ロボット学会, IEEE, SIAM などの会員.

·· とう ひろし 伊藤 博

1968年1月5日生.1995年3月慶應義 塾大学大学院理工学研究科博士後期課程修 了.同年4月九州工業大学情報工学部講師 となり,助教授,准教授を経て,2013年9 月同大学情報工学研究院教授となり現在に 至る.非線系の制御理論と応用,ダイナミ

カルシステムのロバスト性などの研究に従事. 計測自動制御 学会,日本機械学会,電気学会,IEEEなどの会員.