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Abstract

With the development of society and the intensification of competition, people face

increasing life pressure in their daily life, which has a significant impact on the mental

health of individuals. This study is dedicated to exploring how this psychosocial health

issue can be attended to and addressed through speech emotion recognition. Speech, as a

natural and intuitive way of expressing emotions, has been found to contain up to 38% of

emotional information. Through in-depth sentiment analysis of speech, we can better un-

derstand the emotional state of individuals and provide feedback accordingly, thus helping

to alleviate the stress they face in life In this study, we innovatively start from speech and

use a novel time series analysis method to transform speech time series into 2D images.

In this process, we employed Hilbert curves to map the time series to the image space. In

this way, we successfully capture the dynamic features of speech into static images, which

lays the foundation for subsequent emotion recognition. In order to realize the accurate

recognition of speech emotion, we designed a neural network suitable for this image repre-

sentation. This neural network can effectively extract the key features in the image, thus

realizing the recognition of different emotions. Through a large number of experiments,

we have proved that our method has achieved remarkable results in speech emotion recog-

nition, providing a solid foundation for further research and application. Not only that,

this study also optimizes other time series imaging algorithms. We improved the Gram’s

Corner Field algorithm by using different downsampling techniques and designed a neural

network model for Gram’s Corner Field. This optimization makes our method more versa-

tile and able to adapt to different time series data, providing a wider range of possibilities

for future applications. In order to understand the individual’s emotional state more com-

prehensively, this study introduces the CyTex method in the extension of the method and

incorporates the concept of speech rate for the segmentation of time series. This inno-

vative approach further improves the accuracy of speech emotion recognition and lays a

solid foundation for future applications. In the segmentation processing of time series, we

adopt the CyTex method, which effectively divides the time series while maintaining its

continuity. This segmentation allows the neural network to learn the emotional informa-

tion in each time period more precisely. Compared with the traditional holistic learning

method, segmentation learning is more capable of capturing the subtle differences of emo-

tional changes in speech, making the recognition results more accurate. At the same time,

we introduce the concept of speech rate as a new analytical dimension to be incorporated

into the time-series features. Speech rate is not only a surface feature of speech, but it also

combines short-time features and rhythmic features to reflect the emotional information

in speech more comprehensively. By considering speech rate in segmentation learning, we

enable the neural network to be more sensitive to capturing emotional changes in speech,



thus improving the accuracy of recognition. This approach experimentally demonstrates

that the segmental learning approach, which introduces CyTex and speech rate, performs

well in the speech emotion recognition task compared to the traditional holistic learning

approach. This provides a more refined and accurate processing means for future speech

emotion recognition applications and lays a more solid foundation for practical applica-

tions. Therefore, by adopting the CyTex method and introducing the concept of speech

rate, we analyze the time series more carefully, which makes our algorithm achieve more

satisfactory results in the emotion recognition task. This innovative approach provides

new perspectives and methods in the field of speech emotion recognition and brings wider

possibilities for future research and applications. This research transcends the confines of

speech emotion recognition, extending its applicability to the realm of brainwave analysis.

The methodologies, initially designed for speech, prove to be versatile as they are success-

fully applied to brainwave time series, achieving remarkable results in the identification of

distinct epileptic seizure types. This breakthrough not only signifies the adaptability and

efficacy of the proposed methods but also opens new avenues for applications in neurol-

ogy and clinical diagnostics. In achieving excellence in epileptic seizure type recognition,

the study sets the stage for future endeavors aimed at identifying depressive states and

discerning emotional nuances through brainwave analysis. The envisioned expansion of

research activities in these directions reflects the commitment to pushing the boundaries

of knowledge and practical applications in mental health research. This forward momen-

tum not only enhances our understanding of neurological disorders but also holds promise

for the development of novel diagnostic tools and therapeutic interventions. The explo-

ration of brainwave signals emerges as a powerful avenue for gaining profound insights into

an individual’s mental state and emotional experiences. Through meticulous analysis of

brainwave patterns, this study provides a nuanced understanding of cognitive processes,

presenting itself as a valuable tool for researchers in psychology and neuroscience. The

nuanced nature of brainwave data offers a rich tapestry of information, shedding light

on the intricate interplay of emotions and mental states. In conclusion, this study, with

a comprehensive scope spanning speech emotion recognition to brainwave analysis, has

reached a pivotal milestone by excelling in epileptic seizure type identification. The trans-

formative methodologies introduced in speech analysis seamlessly extend to the realm of

brainwave time series, opening up new vistas for exploration. The fusion of innovative

approaches with optimized time series imaging algorithms not only enables accurate emo-

tional state recognition but also propels the research landscape into promising territories

within neurology and mental health. With a commitment to ongoing research, the study

serves as a beacon for future investigations, offering a wealth of tools and insights for

understanding, mitigating, and addressing various aspects of individual life stress, mental

health, and neurological disorders.

ii



Contents

Chapter 1 Introduction 1

1.1 background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The impact of social stress on individual mental health . . . . 1

1.1.2 The importance of Speech Emotion Recognition . . . . . . . . 6

1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Challenges and difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.1 Challenges of nine time series classification algorithms . . . . . 19

1.3.2 Challenges of time series imaging algorithms . . . . . . . . . . 20

1.3.3 Challenges of dataset . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Research Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Article structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 2 Proposal 1: Speech Emotion Recognition Based on Gramian Angular Field 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Gramian Angular Field method . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Optimization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Introduction of downsampling methods . . . . . . . . . . . . . 28

2.3.2 Novel Neural Network Modeling . . . . . . . . . . . . . . . . . 29

2.4 Experimentation and methodology . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 3 Proposal 2: Speech Emotion Recognition Based on CyTex and Speech Rate 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Speech rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Short-time feature . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Phonogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 Speech rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Experimentation and methodology . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iii



3.3.2 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Ensemble of Shallow Classifiers for Speech Emotion

Recognition . . . . . . . . . . . . . . . . . . . . . . 48

Enhanced Speech Emotion Recognition using LSTM . . 51

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Experimental results based on shallow classifiers . . . . . . . . 53

3.4.2 Experimental results based on LSTM . . . . . . . . . . . . . . 56

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 4 Proposal 3: Speech Emotion Recognition Based on Hilbert Curve 62

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Hilbert Curve Path Arrangement method . . . . . . . . . . . . . . . . . 65

4.3 Experimentation and methodology . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 5 Applications of the proposed two-dimensionalization algorithm in other fields 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.2 Epilepsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.4 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Experimentation 1 :Epilepsy recognition with two-dimensionalization . . 87

5.3.1 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Experimentation 2 : Improved Epilepsy Recognition Experiment . . . . 96

5.4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.2 Segmentation by period . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 6 Summary and discussion 110

6.1 Conclusions and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter 7 Acknowledgement 113

Chapter 8 Reference 115

iv



List of Figures

1.1 Mental illnesses prevalence(World, 2019) . . . . . . . . . . . . . . . . . . . 2

1.2 Burden of disease from each category of mental illness (World, 2019) . . . 4

2.1 Schematic diagram of the GAF algorithm. The time series are converted

from a right-angle coordinate system to a polar coordinate system by trans-

formation, and the GAF image is then generated by Eq (2.1). . . . . . . . 27

2.2 The underlying principles of the Douglas Peukcer algorithm. . . . . . . . . 29

2.3 The principles of the Visvalingam Whyatt Algorithm. . . . . . . . . . . . . 30

2.4 The specific steps of the Largest Triangle Three Bucket Algorithm. . . . . 30

2.5 The structure of symmetric diagonal matrix network. . . . . . . . . . . . . 31

2.6 The data set composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Illustration of experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Network structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Voiced sound in Chinese Pinyin, Japanese Kana, and Korean Pinyin. . . 42

3.2 Voiced sound for one sentence with six Chinese characters. . . . . . . . . 43

3.3 Schematic of RNN and LSTM networks. . . . . . . . . . . . . . . . . . . . 46

3.4 Flowchart of the experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 A comparison between the original images and result images . . . . . . . . 50

3.6 Flowchart of the experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Reconstruction the speech data for LSTM. . . . . . . . . . . . . . . . . . . 53

3.8 Results of speech emotion recognition. . . . . . . . . . . . . . . . . . . . . 55

3.9 Comparison between multiple features and single features. . . . . . . . . . 57

4.1 The two-dimensional shape of the Hilbert curve. . . . . . . . . . . . . . . . 66

4.2 The Hilbert curve represents multidimensional data on a one-dimensional

curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Illustration of conversion from one to two dimensions. . . . . . . . . . . . . 68

4.4 Illustrate the conversion of one-dimensional speech data into two-

dimensional images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Illustrate the conversion of one-dimensional speech data into two-

dimensional images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 The flowchart of the experiment. . . . . . . . . . . . . . . . . . . . . . . . 72

v



4.7 The result of Hilbert imaging algorithm. . . . . . . . . . . . . . . . . . . . 73

4.8 Hilbert-CNN network model structure. . . . . . . . . . . . . . . . . . . . 74

4.9 The result of Hilbert imaging algorithm. . . . . . . . . . . . . . . . . . . . 77

5.1 Schematic of the 10-20 system numbered according to the ACNS TCP

montage standard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Flow chart of the experiment. . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 EEG signal processing and conversion process. . . . . . . . . . . . . . . . . 90

5.4 Network model diagram for deep learning. . . . . . . . . . . . . . . . . . . 91

5.5 Histogram of the results of epilepsy species identification based on the

TUSZ database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Flow chart of the experimental process. . . . . . . . . . . . . . . . . . . . . 100

5.7 Vertical standard montage schematic. . . . . . . . . . . . . . . . . . . . . . 101

5.8 Electrode pairs and coverage locations relevant to epilepsy. . . . . . . . . . 101

5.9 Cycle methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.10 DEEP CHART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.11 Schematic diagram of the LSTM network. . . . . . . . . . . . . . . . . . . 104

5.12 The results of the four cycle recognition methods are shown. . . . . . . . . 105

5.13 Figure of the results of epilepsy species identification based on the TUSZ

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.14 ROC and confusion matrix of epilepsy species identification based on the

TUSZ database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vi



List of Tables

1.1 The advantages and applications of each method and technique . . . . . . 10

1.2 Summary of Time Series Classification Algorithms . . . . . . . . . . . . . 18

1.3 Algorithms related to image or shape in time series classification. . . . . . 19

1.4 Challenges in time series classification algorithms. . . . . . . . . . . . . . . 21

2.1 Methods for Time Series Downsampling: Advantages and Disadvantages. . 31

2.2 The parameter information of the experiment . . . . . . . . . . . . . . . . 34

2.3 The advantages and disadvantages of common optimizers. . . . . . . . . . 34

2.4 Accuracy on the three network. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Common short-time features and the performance for voiced sounds . . . . 44

3.2 Composition of the corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Comparison of the decision tree, SVM decision tree, and ELM decision tree. 47

3.4 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Selection criteria for short-time parameters . . . . . . . . . . . . . . . . . . 51

3.6 Accuracy results for speech emotion recognition(%). . . . . . . . . . . . . . 54

3.7 Time result for speech emotion recognition(ms). . . . . . . . . . . . . . . . 56

3.8 Presentation of experimental accuracy for different datasets (%) . . . . . . 58

3.9 Comparison of speech emotion recognition methods for the CASIA dataset 59

3.10 Comparison of speech emotion recognition methods on different datasets . 60

4.1 Attribute of the corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Composition of the corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Experimental environment and parameter configuration. . . . . . . . . . . 71

4.4 Hilbert Curve Dimension and Time Series Length Relationship. . . . . . . 73

4.5 Accuracy comparison of different 1D data to 2D image conversion meth-

ods(%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Accuracy comparison of same dataset methods(%). . . . . . . . . . . . . . 76

4.7 Comparison of GAF, Cytex, and Hilbert. . . . . . . . . . . . . . . . . . . . 77

5.1 Transposed BCI Interface Advantages and Disadvantages. . . . . . . . . . 82

5.2 Description of EEG images during seizures . . . . . . . . . . . . . . . . . . 84

5.3 Types of Seizures and Abbreviations. . . . . . . . . . . . . . . . . . . . . . 85

vii



5.4 Basic descriptive statistics of the data. . . . . . . . . . . . . . . . . . . . . 86

5.5 EEG Bands and Their Normal Manifestations . . . . . . . . . . . . . . . . 88

5.6 Partial TUSZ database .CSV file . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Classification report of the experiment. . . . . . . . . . . . . . . . . . . . . 94

5.9 Comparison of epilepsy species identification results based on TUSZ

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.10 Comparison of the advantages and disadvantages of signal period detection 97

5.11 Number of documents per seizure category in the TUSZ training dataset . 98

5.12 Programming Environment Settings . . . . . . . . . . . . . . . . . . . . . . 99

5.13 EEG Bands and Their Normal Manifestations . . . . . . . . . . . . . . . . 99

5.14 EEG Electrode Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.15 Description of EEG Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.16 Comparison of epilepsy species identification results based on TUSZ

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

viii



Chapter 1

Introduction

1.1 background

Understanding the intricate relationship between social dynamics and mental well-being

is essential in contemporary society. As individuals navigate through the complexities of

modern life, they encounter various stressors originating from social interactions, societal

expectations, and personal experiences. These stressors, collectively known as social stress,

have a profound impact on mental health, shaping individuals’ emotional and psychological

states. This section delves into the multifaceted nature of social stress and its implications

for individual well-being.

1.1.1 The impact of social stress on individual mental health

An increase in social pressure leads to psychological stress in individuals [1]. Accumulated

mental stress adversely affects mental health and results in various diseases [2]. Mental

health issues are pervasive globally. Fig. 1.1 displays the global prevalence of the top5

mental disorders in 2019, as estimated by the World Health Organization (WHO)[3]. The

estimates are derived from representative surveys, medical data, and statistical modeling,

reflecting the proportion of individuals affected by the most prevalent mental illnesses in

2019. As of 2019, the prevalence of the top 5 mental illnesses accounts for 8.2% of the

global population. Specifically, these prevalent mental health disorders include:

1. Anxiety disorders (3.8%): Anxiety disorders encompass a range of conditions

characterized by excessive worry, fear, or nervousness, which can interfere with

daily life and functioning. Common subtypes include generalized anxiety disorder

(GAD), panic disorder, and social anxiety disorder. Anxiety disorders involve more

than temporary worry or fear, and the symptoms can interfere with daily activities

such as job performance, schoolwork, and relationships [4].

2. Depressive disorders (3.4%): Depression is a mood disorder marked by persis-

tent feelings of sadness, hopelessness, and a lack of interest or pleasure in activities.

1



Fig. 1.1. Mental illnesses prevalence(World, 2019) [3].

The estimated share of people with each mental illness in a given year, whether

or not they were diagnosed, based on representative surveys, medical data and

statistical modeling.

It can affect one’s ability to carry out daily tasks and maintain relationships [5].

Worldwide, depression is a major cause of disability and premature death. De-

pression is prevalent among all age groups and in almost all walks of life. It may

range from a very mild condition to severe (psychotic) depression accompanied by

hallucinations and delusions. The potential causes of depression can include soci-

etal expectations and pressure, physical health problems, transition to parenthood,

social connectedness, personality and past psychological history, child health and

temperament challenges, unmet care needs, unmet expectations for childbirth, and

other life stressors [6].

3. Bipolar disorder(0.5%) : Bipolar disorder involves extreme mood swings, ranging

from episodes of elevated mood and energy (mania or hypomania) to periods of

depression. These mood shifts can significantly impact a person’s daily life [7].

The mechanism by which mood episodes with completely opposite characteristics

appear repeatedly in patients with bipolar disorder remains unknown, and true

mood-stabilizing drugs effective for treating both manic and depressive episodes

currently do not exist. Mood monitoring is widely used in the treatment and self-

management of bipolar mood swings to help individuals achieve greater awareness

and understanding of their affective states, which enables them to better prepare

and account for problematic changes in their mood, preventing escalation to mood

episodes and relapse [8].

4. Schizophrenia (0.2%) : Schizophrenia is a severe mental disorder characterized

by distorted thinking, hallucinations, delusions, and impaired emotional responses.

It often leads to disruptions in social and occupational functioning [9]. Negative
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symptoms (e.g., anhedonia, amotivation, and expressive deficits) are refractory to

current medications and are among the foremost causes of disability in schizophre-

nia. A study used a two-step approach to identify and empirically test a brain

network model of schizophrenia symptoms. The results demonstrated that a con-

nectivity breakdown between the cerebellum and the right dorsolateral prefrontal

cortex directly corresponded to negative symptom severity. Restoration of network

connectivity with transcranial magnetic stimulation corresponded to amelioration of

negative symptoms, showing a statistically significant strong relationship of negative

symptom change in response to functional connectivity change.

5. Eating disorders (0.1%) : eating disorders encompass conditions such as anorexia

nervosa, bulimia nervosa, and binge-eating disorder. These disorders involve dis-

turbances in eating habits, body image concerns, and often lead to severe physical

and mental health consequences. Anorexia nervosa is characterized by restricted

eating, intense fear of gaining weight, and a distorted body image. Bulimia ner-

vosa involves recurrent episodes of binge eating followed by compensatory behaviors

such as vomiting or excessive exercise. Binge-eating disorder is characterized by re-

current episodes of eating large quantities of food, often rapidly, to the point of

discomfort, without the purging behaviors seen in bulimia nervosa. These disorders

can have serious health consequences, including nutritional deficiencies, electrolyte

imbalances, and damage to the digestive system. Treatment for eating disorders

often involves a combination of medical care, nutritional counseling, and therapy to

address the underlying psychological issues.

Unfortunately, many societies and healthcare systems frequently overlook this aspect,

failing to provide the necessary medical care and support that individuals require [10].

Mental health problems have profound and extensive impacts on society. From an indi-

vidual standpoint, these issues heighten risks for individuals, families, and communities.

At a societal level, the prevalence of mental health problems amplifies risks for entire pop-

ulations and may hinder global efforts to enhance people’s well-being. Fig. 1.2 indicates

the worldwide burden caused by the top 5 mental illnesses in 2019. The data in the fig-

ure represent the estimated number of disability-adjusted life years (DALYs) per 100,000

people for each category of mental illness.

In this regard, the main current threats from mental include:

1. Economic downturns and social divisions: Economic downturns and condi-

tions of social inequality may contribute to an upsurge in mental health problems.

Factors such as unemployment, poverty, and social exclusion have been identified

as having a detrimental impact on an individual’s mental well-being [11, 12]. The

costs associated with lost productivity and other indirect social ramifications often

far surpass medical expenses. From an economic standpoint, schizophrenia stands

3



Fig. 1.2. Burden of disease from each category of mental illness (World, 2019) [3].

Estimated number of disability-adjusted life years (DALYs) per 100,000 people

due to each category of mental illness.

out as the mental disorder incurring the highest per capita costs to society [13]. Al-

though depression and anxiety disorders exhibit lower per capita costs, their higher

prevalence means they make the most significant contribution to total national costs

[14].

With the escalation of economic and social pressures, there is a parallel increase in

workplace psychological stress, posing escalating risks to individuals’ mental health.

Workplace mental health risks encompass insufficient skills, excessive workload, pro-

longed working hours, precarious working conditions, limited co-worker support,

incidents of violence, harassment, and discrimination [15]. It is noteworthy that

over half of the global workforce engages in informal employment, often lacking

health and safety regulations. Such workers frequently operate in unsafe environ-

ments, endure extended work hours, lack social and economic security, and confront

discrimination, all of which can detrimentally impact their mental health.

2. Public health emergencies: Large-scale public health events, such as pandemics,

not only pose a threat to physical health, but can also trigger mental health prob-

lems. Social isolation, fear and uncertainty can all have an impact on people’s men-

tal health [16]. Public health emergencies, such as the COVID-19 pandemic, have

significant implications for mental health. These emergencies can lead to long-term

emotional distress, particularly for historically medically underserved and socially

marginalized populations, as well as frontline healthcare workers. The impact of

public health emergencies on mental health can manifest in various ways, including

pre-existing mental disorders, emergency-induced grief and acute stress reactions,

and humanitarian response-induced anxiety [17]. The demand for mental health ser-

vices has increased during public health emergencies, with a notable rise in mental
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illness among adults in the United States [18]. Even as public health emergen-

cies end, the mental health crisis continues, necessitating ongoing adaptation and

provision of mental health care services to communities. Research indicates that

the mental health impact of economic crises can be mitigated by countries with

strong social safety nets, suggesting that social protection responses are crucial in

addressing poor mental health during economic downturns [12].

3. Humanitarian crises and displacement: Wars, natural disasters and other

humanitarian crises often lead to displacement and trauma. The risk of mental

health problems increases significantly in these situations [19].

4. Climate crisis: Climate change-induced extreme weather events and environmen-

tal damage may lead to increased social instability and mental health problems.

There is a complex interrelationship between climate change and mental health

[20].

Economic downturns, public health emergencies, humanitarian crises, and climate crisis

not only elevate the risk of unemployment and economic instability but also contribute to a

reduction in job opportunities. Discrimination and inequality in the workplace, stemming

from factors such as race, gender, gender identity, sexual orientation, disability, social

origin, immigration status, religion, or age, can be exacerbated by the work environment.

Individuals with severe mental health problems often face exclusion from employment and

encounter disparities in the workplace. Unemployment itself is a significant factor that

can increase the vulnerability to mental health issues.

Transitioning to the global adolescent population, approximately one-sixth falls within

the age group of 10 to 19 years, known as adolescence. This phase is characterized by

substantial physical, emotional, and social changes. Adolescents may also confront chal-

lenges like poverty, abuse, or violence, increasing the likelihood of mental health problems.

Globally, one in seven adolescents experiences mental disorders, constituting 13% of the

global disease burden in this age group. Leading causes of illness and disability among

adolescents include depression, anxiety, and behavioral disorders, with suicide ranking as

the fourth leading cause of death among 15- to 29-year-olds. The repercussions of neglect-

ing adolescent mental health extend into adulthood, affecting physical and mental health,

and limiting opportunities for fulfilling lives. Mental health problems are not only common

among teenagers, but one in eight people worldwide suffer from a mental disorder. This

is an issue that cannot be ignored.

In summary, mental health challenges extend beyond the individual level and have

broader societal implications. About one-eighth of the global population grapples with

mental disorders, and individuals with severe mental health problems face premature

mortality―up to twenty years earlier [21]. Mental disorders account for one-sixth of all

global deaths [22]. Suicide, affecting people from all countries, backgrounds, and ages, is a

pervasive issue globally, with each suicide potentially accompanied by 20 suicide attempts
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[23]. Notably, suicide has become the leading cause of death among young people. The

urgency to address these challenges is paramount for both individual and societal well-

being.

1.1.2 The importance of Speech Emotion Recognition

Emotions play a crucial role in human life [24] and are an integral part of psychological

survival [25]. Emotion detection research is evolving through collaborative research in

the fields of psychology, cognitive science, machine learning, and natural language pro-

cessing (NLP)[26]. In early studies, scientists such as Darwin [27]), considered emotional

expression to be the last behavioral pattern preserved in human evolution.

Emotional expression serves as a crucial component of human communication, allowing

individuals to convey their internal states and connect with others. Understanding and

interpreting emotions have been essential for human species’ social cohesion and adapt-

ability. Early in human evolution, the ability to recognize and respond to emotions likely

played a pivotal role in survival, enabling individuals to navigate complex social dynam-

ics and environmental challenges. In the contemporary context, the study of emotions

has expanded beyond traditional disciplines, incorporating advanced technologies and in-

terdisciplinary approaches. The intersection of psychology and computational sciences,

particularly machine learning and NLP, has given rise to sophisticated tools for emotion

detection and analysis. As technology continues to advance, the application of emotion

detection has diversified across various domains, including human-computer interaction,

sentiment analysis, mental health diagnostics, and virtual communication platforms. Re-

searchers and practitioners in these fields collaborate to enhanc ehuman understanding

of emotions, develop more accurate detection methods, and explore innovative applica-

tions that positively impact individuals’ well-being. The exploration of emotions and the

development of emotion detection techniques represent a rich interdisciplinary endeavor.

From its roots in evolutionary psychology to contemporary collaborations between diverse

fields, the study of emotions reflects the intricate relationship between human behavior,

technology, and societal advancements.

Emotion detection techniques have evolved significantly with advancements in technol-

ogy, drawing on interdisciplinary approaches to understand and interpret human emotions.

Various methods and technologies contribute to the field of emotion detection, each with

its strengths and applications:

1. Facial Expression Analysis: Facial Expression Analysis involves the utilization

of computer vision algorithms to analyze facial features, including eyes, mouth, and

brows, for the identification and categorization of emotions. This method plays a

pivotal role in various applications such as enhancing human-computer interaction,

conducting market research, and performing sentiment analysis by discerning emo-
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tional states based on facial expressions. The precision of this technique contributes

to its effectiveness in interpreting human emotions in diverse contexts. Common

techniques for facial expression analysis include computer vision-based methods that

analyze facial features such as eyes, mouth, and brows to determine emotional states.

Utilizing neural networks, particularly convolutional neural networks (CNNs), helps

learn and recognize patterns of facial expressions [28]. Heatmap analysis associates

temperature variations in different facial regions with emotional states [29]. Three-

dimensional facial modeling provides more accurate facial movement information

for precise emotional state inference [30]. Deep learning methods, such as recur-

rent neural networks (RNNs) or long short-term memory networks (LSTMs), en-

able time-series analysis of facial expressions [31]. These techniques can be used

individually or in combination, allowing flexibility in choosing the most suitable ap-

proach based on specific contexts and requirements. The continuous development

and refinement of these methods contribute to the widespread application of facial

expression analysis in various fields.

2. Speech Analysis:

Speech analysis involves scrutinizing vocal cues, including tone, pitch, and speech

patterns, to deduce emotional states. This process employs Natural Language Pro-

cessing (NLP) algorithms that meticulously process spoken language, enabling the

detection and interpretation of emotions. This technique finds application in various

domains, such as call center analytics, where understanding customer emotions is

crucial for providing effective service. Additionally, virtual assistants utilize speech

analysis to comprehend user sentiments and respond accordingly. In the realm

of emotion-aware technology, this method enhances human-computer interaction

by allowing systems to adapt based on the emotional context expressed through

speech.

3. Biometric Sensors: Biometric sensors are instrumental in emotion detection by

harnessing physiological data, including metrics like heart rate, skin conductance,

and body temperature, to discern emotional responses. These sensors, often inte-

grated into wearable devices, meticulously capture physiological changes that corre-

late with distinct emotions. For instance, in stress management, these sensors can

track elevated heart rates or increased skin conductance as indicators of heightened

stress levels [32, 33]. In mental health monitoring, deviations in body temperature

might signify emotional distress. Moreover, in the realm of personalized user experi-

ences, biometric sensors can adapt interfaces based on detected emotions, providing

tailored interactions for enhanced well-being [34].

4. Text Analysis: Text analysis, specifically the application of Natural Language

Processing (NLP) algorithms, involves the examination of written text to discern

emotional content. Through sophisticated linguistic analysis, these algorithms take
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into account factors such as sentiment, tone, and contextual cues within the text

[35]. This method finds diverse applications, including sentiment analysis in social

media to gauge public reactions to events, customer feedback analysis for businesses

to understand consumer sentiments, and content moderation on online platforms to

filter out inappropriate or harmful content [36]. For instance, sentiment analysis

tools can determine whether social media posts express positive or negative emo-

tions, aiding in assessing public opinion about a product, service, or current affairs.

Similarly, businesses can utilize customer feedback analysis to identify areas for

improvement based on the emotional tone of customer reviews [37, 38]. In content

moderation, NLP algorithms can flag and filter out content that may be offensive or

violate platform guidelines by analyzing the emotional nuances in the text. Overall,

text analysis with NLP is a powerful tool for understanding and managing emotional

aspects of written communication in various contexts.

5. Brain-Computer Interfaces (BCIs): Brain-Computer Interfaces (BCIs) involve

the measurement of brain activity to comprehend emotional responses [39]. This is

achieved through technologies such as Electroencephalogram (EEG) and Functional

Magnetic Resonance Imaging (fMRI), which capture distinct brain signals associ-

ated with various emotions [40]. For instance, in neurofeedback therapy, BCIs use

real-time brain activity feedback to help individuals regulate their emotional states,

contributing to mental health interventions [41]. In the gaming industry, BCIs en-

hance player experiences by allowing direct interaction with the game environment

based on their emotional states, creating a more immersive and personalized gaming

experience [42]. Additionally, BCIs are instrumental in human-machine interfaces,

where the interpretation of emotional signals can improve the interaction between

individuals and machines, leading to more intuitive and responsive technology in-

terfaces.

6. Gait Analysis: Gait analysis involves the examination of body movements and pos-

ture to infer emotional states [43]. This method utilizes computer vision algorithms

to scrutinize the way individuals walk or move, extracting valuable information

about their emotional well-being [44]. For example, in surveillance applications, gait

analysis can be employed to identify suspicious or distressed behaviors, enhancing

security measures [45]. Additionally, in human-computer interaction, understand-

ing the user’s emotional state through gait analysis allows for more personalized

and responsive systems [46]. This technology finds practical application in security

contexts, where abnormal gait patterns might indicate potential threats or distress,

contributing to the development of proactive security measures.

7. Deep Learning Models: Deep Learning Models for emotion detection involve the

utilization of neural networks to autonomously learn and extract features associ-

ated with emotional states [47]. By training these models on extensive datasets,
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they become adept at recognizing intricate patterns indicative of various emotions.

This approach finds applications in diverse fields such as image and video analysis,

where it can accurately identify and interpret emotional cues within visual content.

Additionally, deep learning models contribute to enhancing autonomous systems,

enabling them to perceive and respond to human emotions, and they play a piv-

otal role in the development of immersive experiences in virtual reality by enabling

systems to understand and adapt to users’ emotional states.

8. Multimodal Fusion: Multimodal fusion in emotion detection involves the inte-

gration of data from diverse sources, such as facial expressions, speech, and phys-

iological signals, to enhance the robustness of emotion analysis [48]. By combin-

ing information extracted from different modalities, this approach aims to achieve

higher accuracy and reliability in understanding human emotions [49]. For instance,

in human-computer interaction scenarios, a system employing multimodal fusion

could analyze facial expressions, voice intonation, and physiological responses con-

currently to better interpret the user’s emotional state [50]. In immersive experi-

ences like virtual reality, combining visual, auditory, and physiological data enables

more nuanced emotional feedback, creating a more engaging and responsive envi-

ronment [51]. Additionally, in affective computing applications, multimodal fusion

contributes to a more comprehensive understanding of emotional responses, leading

to improved adaptive systems and personalized user experiences.

Emotion detection techniques continue to advance, driven by ongoing research in artificial

intelligence, machine learning, and human-computer interaction. The advantages and

applications of each method and technique are shown in the Table 1.1. These techniques

play a crucial role in creating emotionally intelligent systems and applications that better

understand and respond to human emotions. Speech signaling is an important mode

of emotional expression that accounts for 38% of emotional communication [52]. This

function plays a crucial role in the recognition and communication of emotions [53]. Speech

emotion recognition (SER) is a branch of emotion detection [54]. It has more than two

decades of research history, and has accumulated numerous research results [55]. This

subject focuses on the recognition of emotions in speech without considering semantic

content [56, 57].

The significance of SER lies in its widespread applications across the fields of human-

computer interaction, emotion-aware technology, and psychology. Here are several aspects

that emphasize the importance of SER:

1. Human-Computer Interaction: In the realm of human-computer interaction,

SER plays a crucial role in enhancing communication between computers and users.

The ability to recognize emotions in speech contributes to the development of emo-

tionally intelligent systems that can understand and adapt to the user’s emotional
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state [58]. In the field of human-computer interaction, SER is a key technology

that enhances the gap between computers and users and completely changes the

way human interact with machines. If a virtual assistant with advanced SER ca-

pabilities to interact with users in natural language. As the user communicates,

the SER system discerns the emotional nuances in their speech, detecting elements

of joy, frustration, or urgency. In response, the virtual assistant not only compre-

hends the user’s requests but also adapts its tone, language, and responses to align

with the user’s emotional state.For instance, if the SER system identifies signs of

stress or frustration, the virtual assistant might offer calming responses or provide

solutions with heightened empathy. This dynamic adaptation transforms the in-

teraction into a more personalized and emotionally intelligent experience, making

technology feel more attuned and responsive to the user’s needs. This capability

extends to other HCI applications, such as smart home devices that can adjust their

behavior based on the user’s emotional cues, creating a seamless and emotionally

aware human-computer interaction.

2. Customer Service and Market Analysis: In the business domain, understand-

ing the emotions conveyed during communication is essential for improving service

quality. SER can be employed to analyze emotions in phone conversations or cus-

tomer service dialogues, aiding businesses in gaining insights into customer needs,

concerns, and satisfaction [59]. This helps in refining customer service, adjusting

marketing strategies, and increasing customer loyalty. In the domain of Customer

Service and Market Analysis, Speech Emotion Recognition (SER) proves to be in-

strumental in enhancing customer interactions and gaining valuable insights for

businesses. For instance, call centers use SER to analyze the sentiment conveyed

during customer-agent conversations. By accurately detecting customer sentiments,

businesses can identify areas of improvement in their service quality, promptly ad-

dress customer concerns, and tailor their responses to ensure a more positive cus-

tomer experience. Additionally, in market analysis, SER can be applied to analyze

public opinions expressed in recorded customer feedback, reviews, or interviews.

This allows businesses to gauge the overall sentiment towards their products or ser-

vices, providing actionable data for refining marketing strategies and maintaining

a competitive edge in the market. Through the integration of SER in customer

service and market analysis, businesses can not only enhance customer satisfaction

but also make data-driven decisions that positively impact their overall performance

and market positioning.

3. Psychological Research: In the fields of psychology and cognitive science, SER

provides a tool for gaining in-depth insights into emotional expression and commu-

nication [60]. By analyzing emotions in speech, researchers can better understand

individual emotional responses in different contexts and explore the relationship
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between emotion and language. By analyzing emotions in speech, researchers can

more fully understand individuals’ emotional responses in different environments,

as well as the complex relationship between emotion and language. For example, by

analyzing the speech of individuals in different social situations, researchers can ex-

plore the manifestations of social anxiety or emotional disorders, thereby providing

deeper insights into the diagnosis and treatment of related mental illnesses. In addi-

tion, by simulating changes in specific emotional states in a laboratory environment

through SER, researchers can experimentally explore the connection between emo-

tion and psychological processes such as cognition and memory, providing empirical

support for the development of psychological theories. Therefore, the application of

speech emotion recognition in psychological research not only helps to deepen the

understanding of the mechanism of emotional expression, but also provides a new,

non-invasive tool for various research in the field of psychology.

4. Emotional Health Monitoring: SER can be utilized for monitoring emotional

health on an individual level. By analyzing speech features, systems can detect po-

tential emotional issues such as depression or anxiety. This provides an opportunity

for early intervention and support, contributing to the improvement of an individ-

ual’s mental health [61]. By analyzing the emotional characteristics in speech, the

system can identify an individual’s emotional state and provide targeted emotional

health monitoring. For example, a voice emotion recognition system could detect

signs of depression or anxiety in speech, providing individuals with opportunities for

early intervention and support. This is particularly important for individuals who

may be experiencing emotional health challenges, as the system can help improve

an individual’s mental health by identifying problems early and prompting profes-

sional help to be sought. Through accurate monitoring of voice emotion recognition,

human can pay more comprehensive attention to the emotional state of individuals

and provide them with better mental health support.

5. Education and Training: In the education sector, SER can assess students’

emotional states and engagement. This helps educators tailor teaching strategies,

provide personalized learning experiences, and detect challenges students might be

facing [62]. SER holds substantial importance by providing valuable insights into

students’ emotional states and engagement levels. For instance, during online learn-

ing sessions, SER can analyze students’ speech patterns to discern emotions such as

frustration, enthusiasm, or disinterest. This information enables educators to adapt

their teaching methods accordingly, offering personalized support to students who

may be struggling or tailoring challenges for those in need of additional stimulation.

By integrating SER into educational technologies, institutions can create emotion-

ally intelligent systems that enhance the overall learning experience, contributing to

more effective and student-centric education. This not only facilitates a better un-
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derstanding of students’ individual needs but also fosters a positive and supportive

learning environment.

In conclusion, SER’s applications in various domains underscore its critical role in enhanc-

ing technological intelligence, improving services, and advancing research. By understand-

ing and leveraging emotional information in speech, human can build more human-centric

and intelligent systems that better meet the needs of individuals and society.

Hence, this research introduces a novel algorithm centered on speech emotion recog-

nition, aiming to enhance the precision of emotional analysis in speech. Additionally,

optimizations were applied to existing algorithms. Through empirical investigations, it

was ascertained that the newly proposed algorithm not only excelled in speech emotion

recognition but also exhibited adaptability for other time series recognition tasks. This

underscores the algorithm’s versatility and broadens its applicability beyond the realm of

speech emotion recognition, showcasing its potential impact in diverse time series recog-

nition domains.

1.2 Related work

The primary objective of this study is to delve into the classification of speech emotions.

Within the existing body of research, nine algorithms have emerged as pivotal contribu-

tors to the field of time series classification and have made great contributions to speech

emotion classification. These algorithms play a crucial role in deciphering and categorizing

emotions embedded in speech patterns.

1. 1NN-RAW: “1NN-RAW” stands for “One Nearest Neighbor - Raw”, representing

a straightforward machine learning algorithm based on nearest neighbor classifica-

tion. It serves as one of the most elementary nearest neighbor algorithms. The

term “1NN” signifies “1-Nearest Neighbor”, indicating that, given a specific data

point, the algorithm identifies the closest neighboring data point and utilizes its

label to predict the label of the given data point. The inclusion of ”RAW” em-

phasizes that the algorithm employs raw, unprocessed data during its predictive

process. The functionality of the algorithm unfolds as follows: when presented with

a labeled training dataset, each data point within it possesses a feature vector and

an associated label. When confronted with a new, unlabeled data point requiring

classification, the 1NN-RAW algorithm computes the distance (typically using the

Euclidean distance or another distance metric) between this new data point and

each data point in the training set. Subsequently, it singles out the closest data

point in the training set, referred to as the Nearest Neighbor data point (1-Nearest

Neighbor). Ultimately, the 1NN-RAW algorithm attributes the label of the selected

Nearest Neighbor data point to the new data point as its predictive label. While
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the 1NN-RAW algorithm is straightforward and easy to implement, it comes with

certain limitations. It is highly sensitive to noisy data, as an inaccurate predic-

tion may result if the nearest neighbor data point is a noisy point. Additionally, the

efficiency of the 1NN-RAW algorithm may be compromised when dealing with high-

dimensional data or large-scale datasets, given the need to calculate the distance to

each training data point. In practice, more sophisticated variants of nearest neigh-

bor algorithms, such as K-Nearest Neighbors (KNN), are often considered to address

some of the drawbacks associated with 1NN-RAW. KNN incorporates the votes of

multiple nearest neighbor data points for classification, offering better resilience to

noisy data points and enhanced handling of high-dimensional data.

2. 1NN-DTW-BWW: The fundamental approach of 1NN-DTW-BWW involves the

integration of the 1NN method with DTW and BWW. DTW serves as a mecha-

nism to gauge the similarity between two time series, particularly when there are

variations in their speeds or lengths. It assesses the distance between data points

in a time series by dynamically adjusting their alignment. The BWW method is

employed to select the optimal alignment window in DTW, defining segments of

time series that can be stretched or compressed during the DTW calculation. Opti-

mal window selection enhances the performance of time series classification. In the

1NN-DTW-BWW algorithm, the process begins by computing the DTW distance

between a new time series and all time series within a known category. Subse-

quently, it identifies the closest time series within the known category. Throughout

this procedure, the BWW method plays a crucial role in selecting the most suitable

alignment window, ensuring that the calculation of DTW considers the similarity of

time series. This algorithm finds extensive application in various domains, including

bioinformatics for gene sequence classification and protein structure identification,

medicine for disease diagnosis and vital signs monitoring, finance for stock price

prediction and trade analysis, engineering for fault detection and predictive main-

tenance, and natural language processing for tasks such as text classification and

speech recognition.

3. 1NN-DTW-nWW: 1NN-DTW-nWW is a time series classification algorithm that

bears similarity to 1NN-DTW-BWW, but it adopts a distinct alignment window

selection strategy known as nWW. Unlike the BWW strategy, nWW is employed to

enhance the classification performance by considering the structural characteristics

of time series more effectively. The algorithm initially computes the Dynamic Time

Warping (DTW) distance between a new time series and all known-category time

series. Subsequently, it selects the known-category time series with the closest

distance. Throughout this process, the nWWmethod is instrumental in aligning the

window, ensuring a more comprehensive consideration of the time series structure

and consequently improving classification performance. Primarily employed for time
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series classification, the 1NN-DTW-nWW algorithm shares its application domains

with 1NN-DTW-BWW, finding utility in various fields.

4. SAX BoP [63]: SAX BoP (Symbolic Aggregate approXimation Bag of Patterns)

represents an innovative approach to time series classification by amalgamating two

distinct techniques, namely SAX (Symbolic Aggregate approXimation) and BoP

(Bag of Patterns). SAX operates as a time series compression and dimensionality

reduction method that transforms continuous time series data into discrete sym-

bolic sequences. This compression is achieved through the segmentation of time

series data, assigning a symbol to each segment, thereby reducing the dimension-

ality while retaining crucial features. On the other hand, BoP, a machine learning

method widely employed in image and natural language processing, serves as a

feature extraction and classification tool. In the context of time series, BoP is uti-

lized to characterize the set of patterns within a time series that are pivotal for

distinguishing various time series classes. The SAX BoP algorithm unfolds in sev-

eral steps: initially, the SAX technique is applied to convert time series data into

symbolic sequences. Subsequently, a Bag of Patterns is constructed, encompassing

significant patterns or symbolic sequences within the time series. Finally, these

patterns are utilized for representation and classification of the time series. The

distinctive advantage of the SAX BoP algorithm lies in its ability to transform time

series data into a more interpretable collection of patterns, enhancing the differenti-

ation between various time series classes. It emerges as a valuable tool in the realm

of time series analysis and classification, contributing to improved classification per-

formance and pattern recognition.

5. Fast Shapelet [64]: The Fast Shapelet algorithm is designed for efficient mining of

shape subsequences within time series datasets. Its primary objective is to identify

the most representative shape subsequences, enhancing classification performance.

In this context, a shape subsequence refers to a segment of a time series that exhibits

a distinct shape or pattern, serving as a representative feature for the entire series.

Typically short yet meaningful, shapelets contribute to distinguishing between dif-

ferent classes of time series data. The algorithm achieves this objective through

a series of computational and filtering steps, rapidly pinpointing the most crucial

shapelets. Its primary application lies in time series classification, with potential

applications spanning various domains. The notable advantage of the Fast Shapelet

algorithm is its ability to extract key features from time series data, ultimately im-

proving classification accuracy. This makes it a valuable tool in the realm of time

series analysis and classification, aiding in the extraction of meaningful information

from intricate time series datasets.

6. RPCD [65]: RPCD (Random Projection for Classification of Time Series Data) is

a method designed for time series classification that leverages random projection to
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decrease the dimensionality of time series data. The key mechanism employed by

RPCD is the random projection technique, which transforms high-dimensional time

series data into a lower-dimensional representation. Random projection, as a dimen-

sionality reduction method, effectively preserves the distance information between

data points. By implementing random projection, RPCD achieves a reduction in the

dimensionality of the original time series data while retaining crucial differential fea-

tures. This reduction not only lessens the computational complexity of subsequent

classification tasks but also holds the potential to enhance classification accuracy.

Following the dimensionality reduction step, RPCD employs various classification

algorithms such as k-Nearest Neighbors (k-NN), Support Vector Machines (SVM),

decision trees, or other machine learning models. The dimensionality-reduced data

serves as the input for the classification process. The trained classification model

generated is then utilized to predict class labels or categories for new, previously

unseen time series data. RPCD addresses the challenge of high-dimensional time

series classification by effectively reducing data dimensionality while maintaining

pertinent information. This approach is particularly advantageous when dealing

with extensive and intricate time series datasets, as it aims to enhance the effi-

ciency and effectiveness of classification tasks within this context.

7. SAX VSM [66]: The SAX VSM (Symbolic Aggregate approXimation Vector Space

Model) is an innovative approach to time series classification and similarity compu-

tation, amalgamating SAX (Symbolic Aggregate approXimation) and VSM (Vector

Space Model). The VSM, widely utilized in text retrieval and information retrieval,

serves to represent words or features within textual documents. It transforms a text

document into a vector, where each dimension corresponds to a word or feature, and

the vector’s value signifies the importance of the word or feature in the document.

The SAX VSM algorithm seamlessly integrates SAX and VSM by initially convert-

ing time series data into a sequence of symbols using the SAX technique. Subse-

quently, it represents each time series as a vector, where each dimension correlates

with a symbol. The significance of each symbol is determined by its frequency in the

time series. Ultimately, these vectors can be employed for similarity computation,

clustering, or classification of time series data. The algorithm’s primary strength

lies in its ability to represent time series data as vectors, enabling the application

of vector space modeling techniques for similarity calculations and classifications.

This makes it a valuable tool in the realm of time series analysis and similarity

computation, addressing the intricacies associated with time series data.

8. TSBF [67]: TSBF, an acronym for “Time Series Bag-of-Features”, is a method

designed to represent time series data through a set of features for classification

purposes. The essence of TSBF lies in the extraction of pertinent features from

time series data, capturing diverse characteristics and patterns such as statistical
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measures, frequency domain features, and other relevant attributes. Following fea-

ture extraction, TSBF transforms each time series into a feature ”package.” Unlike

conventional approaches, TSBF disregards the order of features within a time se-

ries, focusing solely on their presence and values to represent the data. This feature

packet representation serves as input for classification algorithms like k-Nearest

Neighbors (k-NN), Support Vector Machines (SVM), Decision Trees, or other ma-

chine learning models. The primary application of TSBF revolves around classifying

time series data, assigning it to predefined classes or categories based on its feature

representation. This approach simplifies the classification task by condensing time

series information into a feature package while retaining critical details from the

original data.

9. SMTS [68]: SMTS (Shape-based Multi-instance Time Series Classification) is a

method used for multi-instance time series classification, primarily relying on shape

features. This approach utilizes the shape features inherent in time series data

to effectively represent multi-instance time series and subsequently classify them.

In certain applications, time series data may exhibit a multi-instance structure,

where each time series instance comprises multiple subsequences, each representing

a fragment of the overall time series. The objective in multi-instance time series

classification is to determine the class of the entire time series, considering the en-

tirety of the individual subsequences. The SMTS method tackles this challenge by

leveraging shape features of the time series data to represent each multi-instance

time series. Shape features, in this context, encompass characteristics such as the

curve shape, profile information, and key attributes of the time series, including

peaks, valleys, and slopes. These features play a crucial role in capturing the essen-

tial traits of the time series, facilitating the discrimination between different classes

of time series. Utilizing the extracted shape features, the SMTS method employs

classification algorithms like k-Nearest Neighbors (k-NN), Support Vector Machines

(SVM), Decision Trees, among others, to classify multi-instance time series. The

focus of the SMTS method is centered on utilizing the shape features of the time

series to accomplish the classification task effectively.

Through meticulous examination, the study explores and understands the distinct con-

tributions of each algorithm, shedding light on their effectiveness in accurately classifying

diverse emotional states expressed through speech. The summary of these nine algorithms

is shown in the Table 1.2. These investigations are pivotal in advancing human compre-

hension of the nuanced landscape of speech emotion recognition. As research advances,

classic algorithms combine time series with images and use images to classify time series.

Table 1.3 details several algorithms related to images or shape.

Advancements in research are pushing the boundaries of speech emotion recognition

(SER), with a notable trend focusing on the transformation of one-dimensional speech
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Table 1.3. Algorithms related to image or shape in time series classification.

Algorithm Basic Method

Fast Shapelet Focus on efficient discovery of shape features in time series

SAX BoP
Convert time series to symbolic sequences, capturing overall shape

patterns

SAX VSM
Utilize symbolic sequences within a vector space model, empha-

sizing overall shape characteristics

RPCD
Implement random projection to reduce dimensionality, poten-

tially preserving shape-related information

signals into two-dimensional images. This innovative approach aims to leverage com-

prehensive image processing technology for the classification of speech signals, thereby

enhancing the accuracy and effectiveness of speech emotion recognition. By visualizing

speech signals in this manner, researchers seek to capture nuanced emotional cues em-

bedded in the speech patterns, enabling a more intricate analysis of various emotions

expressed during verbal communication. Wang et al. [69] introduced the innovative use of

the Gram Angle Field (GAF), a novel approach for transforming one-dimensional speech

signals into two-dimensional images. This pioneering method provides a unique perspec-

tive for visualizing and analyzing speech patterns. Similarly, Bakhshi et al. [70] proposed

an alternative technique by leveraging the periodicity inherent in speech signals to convert

one-dimensional speech signals into two-dimensional images (CyTex). These advance-

ments in signal processing contribute to the expansion of techniques for representing and

interpreting speech data, offering new dimensions for research and applications in the field

of speech signal analysis. This transformative shift from traditional one-dimensional anal-

ysis to image-based processing showcases the evolving landscape of SER, promising more

sophisticated and nuanced insights into the emotional nuances of spoken language.

1.3 Challenges and difficulties

Within the current research framework, challenges and difficulties are intricately linked to

the employed methods. We have delineated the prevalent issues and obstacles in research

from three primary perspectives, namely: Challenges and difficulties of nine time series

classification algorithms, Challenges and difficulties of time series imaging algorithms,

Challenges and difficulties of datasets.

1.3.1 Challenges and difficulties of nine time series classification algorithms

Within the existing research framework, there are nine time series classification algorithms,

each encountering specific challenges and difficulties, as shown in Table 1.4. Firstly, the
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1NN-RAW algorithm may face issues of computational complexity and storage require-

ments when dealing with large-scale datasets. Secondly, the 1NN-DTW-BWW algorithm,

with its dynamic time warping (DTW), might be impacted by differences in sequence

lengths, leading to increased computational costs. While the 1NN-DTW-nWW algorithm

introduces normalization strategies to address length disparities, selecting the appropriate

normalization method remains a challenge for certain datasets. The Fast Shapelet algo-

rithm’s efficiency might diminish when dealing with a substantial number of sequences

due to the exhaustive search for potential shapes. SAX BoP algorithm requires parameter

tuning to adapt to different datasets, which may necessitate domain-specific knowledge.

SAX VSM algorithm needs careful selection of parameters when constructing the vector

space model, as this choice can significantly impact the algorithm’s performance. RPCD

algorithm, being based on random projection, could be influenced by the selection of

the projection matrix. Operating within a multi-instance learning framework, the SMTS

algorithm needs to handle relationships among multiple instances, presenting a complex

challenge. Finally, the TSBF algorithm requires the selection of an appropriate feature ex-

traction method based on the dataset’s characteristics, which might depend on the specific

domain features.

Addressing these challenges and difficulties is crucial for advancing further research and

enhancing the performance of these algorithms in various contexts.

1.3.2 Challenges and diffculties of time series imaging algorithms

Wang et al. and Bakhshi et al. proposed two methods present unique challenges and com-

plexities in the field ofSER. For Wang et al.’s approach, utilizing the Gram angle field for

converting one-dimensional speech signals into two-dimensional images introduces chal-

lenges in terms of the accuracy and robustness of the transformation. The effectiveness

of this method depends on how well the Gram angle field captures the essential features

of emotional expression in speech. Ensuring that the two-dimensional representation pre-

serves the relevant emotional cues while minimizing information loss is a critical challenge.

On the other hand, Bakhshi et al.’s method, based on the periodicity of the speech signal,

faces challenges related to the generalizability of the conversion technique. The periodic-

ity of the speech signal may not universally capture the diverse patterns present in emo-

tional speech across different individuals and cultural contexts. Adapting this approach

to accommodate variations in speech characteristics and emotional expressions poses a

significant challenge.

Both methods need to address issues of standardization and calibration to ensure that

the transformed images effectively convey emotional information across various speakers

and scenarios. Additionally, the interpretability and explainability of the generated two-

dimensional representations remain important challenges in both approaches. Balancing

the need for complexity in capturing emotional nuances with the requirement for simplic-
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Table 1.4. Challenges in time series classification algorithms.

Algorithm Challenges

1NN-RAW
Computational complexity and storage requirements in

handling large-scale datasets.

1NN-DTW-BWW
Influence of sequence length differences on dynamic time

warping (DTW), leading to increased computational costs.

1NN-DTW-nWW

Introducing normalization to address length differences,

but selecting appropriate normalization methods remains

a challenge for certain datasets.

Fast Shapelet
Efficiency may decrease with a large number of sequences

due to the need to search all possible shapes.

SAX BoP
Requires parameter tuning for different datasets, which

may demand domain-specific knowledge.

SAX VSM
Building a vector space model requires selecting suitable

parameters, impacting algorithm performance.

RPCD
Performance may be influenced by the choice of the random

projection matrix.

SMTS

Operates in a multi-instance learning context, requiring

handling relationships between multiple instances―a com-

plex problem.

TSBF

Selection of appropriate feature extraction methods de-

pending on dataset characteristics, relying on domain-

specific knowledge.

ity and generalizability is a key difficulty in advancing these methods for practical SER

applications.

1.3.3 Challenges and diffculties of dataset

The study encountered challenges related to the availability and adequacy of suitable

databases. It proved difficult to identify a database that perfectly aligned with the spe-

cific requirements of the research. Additionally, the scarcity of data within the identified

databases presented a limitation. These challenges underscore the broader issue of the

need for comprehensive and diverse databases in the field, reflecting the variety of scenar-

ios and domains where time series classification algorithms might be applied. Addressing

these challenges can contribute to the robustness and applicability of the research findings.
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1.4 Research Content

Based on the above difficulties and challenges, this study proposes an innovative method to

convert one-dimensional time series into two-dimensional images. Specifically, the method

involves mapping the speech signal onto an image following the trajectory of the Hilbert

curve, utilizing the arrangement of the Hilbert curve path. Through a convolution oper-

ation, the feature values of the resulting image are extracted. These eigenvalues are then

flattened based on the Hilbert curve arrangement method, yielding a one-dimensional vec-

tor. Subsequently, a classifier is employed to categorize the vector, effectively achieving

the objective of speech emotion recognition. This methodology capitalizes on the struc-

tural properties of the Hilbert curve, providing a unique and efficient means to represent

and analyze speech signals for emotion recognition purposes.

Methods using Hilbert curves have some advantages when dealing with time series clas-

sification problems and can solve or avoid some of the challenges and difficulties mentioned

previously.

1. Challenges and difficulties of nine time series classification algorithms:

First of all, the path of the Hilbert curve is a compact, continuous and orderly curve,

which can map one-dimensional time series data to a two-dimensional image. By

arranging the time series data along the path of the Hilbert curve, we can preserve

the temporal nature of the sequence on the image while reducing the dimensionality.

This mapping to images allows local features of the data to be preserved, helping to

better capture patterns in sequences. Second, by performing convolution operations

on the Hilbert curve path, we can extract the feature values of the image. This

feature extraction method is local and can focus on important local structures in

the sequence, thereby better reflecting the characteristics of the sequence. This

process reduces computational complexity, especially relative to some algorithms

that require searching all possible shapes, such as Fast Shapelet. Additionally, the

process of flattening an image into a one-dimensional vector and passing it through

a classifier is relatively efficient. This makes the Hilbert curve method more easily

adaptable to large-scale data sets, reduces computing and storage requirements,

and thus avoids the problems that the 1NN-RAW algorithm may face. In summary,

when dealing with time series classification problems, the Hilbert curve method

is expected to solve or alleviate the challenges faced by some common algorithms

by effectively retaining the temporal nature of the sequence and extracting local

features.

2. Challenges and diffculties of time series imaging algorithms: The Hilbert

curve method effectively addresses challenges associated with standardization, cali-

bration, interpretability, and generalizability within the context of emotion recogni-
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tion from speech signals. By providing a structured trajectory for mapping speech

signals to images, the Hilbert curve method ensures a standardized and calibrated

approach, promoting consistent conveyance of emotional information across diverse

speakers and scenarios. Moreover, the inherent properties of the curve contribute

to enhanced interpretability, facilitating the understanding and explanation of emo-

tional features in the generated two-dimensional representations. Additionally, the

method strikes a balance between capturing intricate emotional nuances and main-

taining simplicity and generalizability, making it well-suited for practical SER ap-

plications. In summary, the Hilbert curve method offers a comprehensive solution to

the challenges inherent in emotion recognition methodologies, making it a promising

approach in the field of SER.

This study also expanded the database through simple transformations. The database

is augmented by simple transformations, a step that is crucial to improve the performance

and robustness of the algorithm. The expanded database can better capture the diversity

of time series and make the algorithm more generalizable. Simple transformations may in-

clude operations such as translation, rotation, or scaling. Through these transformations,

the original data gets some variations, which helps the training algorithm to better adapt

to various situations. Database expansion also helps solve the problem of data imbalance

and ensures that the algorithm can be fully trained on samples of each category. This is

critical to maintaining the fairness and reliability of the algorithm, especially when faced

with imbalanced data sets in the real world. Overall, augmenting the database with simple

transformations is a key step in research that helps improve the algorithm’s performance,

generalization ability, and adaptability to imbalanced data.

1.5 Article structure

This study consists of six chapters.

Chapter 1: Introduction

In the introduction, the study unfolds against the backdrop of the current landscape,

delving into the intricacies of the field and the specific challenges it faces. It articulates the

primary goals and objectives of the research, shedding light on the proposed methodology’s

nuances and underscoring its distinct advantages. A structural overview of the entire paper

is provided, serving as a roadmap for readers to navigate the comprehensive exploration

of speech emotion recognition.

Chapter 2: Proposal 1: Speech Emotion Recognition Based on Gramian

Angular Field

Here, a nuanced optimization proposal for the Gramian Angular Field (GAF) method

takes center stage. The optimization is bifurcated into refining GAF’s dimensionality

reduction process, pitting it against alternative sampling methods, and enhancing the
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GAF network model through a groundbreaking feature extraction approach rooted in the

fundamental structure of GAF images. The chapter meticulously substantiates the efficacy

of this approach through a thorough examination of experimental results.

Chapter 3: Proposal 2: Speech Emotion Recognition Based on CyTex and

Speech Rate

In this chapter, the focus shifts to Proposal 2, introducing a mutli-feature value - speech

rate – amalgamating speech rhythm and short-time features. The methodological intri-

cacies of feature extraction, particularly the segmentation of speech emotions using these

composite features, are laid bare. The synergy between the CyTex approach and an LSTM

network model is dissected, elucidating the steps taken for effective feature extraction and

subsequent speech emotion recognition. Experimental outcomes conclusively demonstrate

the efficiency of this innovative method.

Chapter 4: Proposal 3: Speech Emotion Recognition Based on Hilbert Curve

This chapter intricately unpacks the novel approach of leveraging the Hilbert curve to

transmute one-dimensional speech data into two-dimensional images. The methodology’s

rationale, experimental datasets, and the meticulous steps of the experimental process

are explicated. Rigorous attention is devoted to showcasing the tangible outcomes of the

proposed technique through compelling experimental results, thus validating its efficacy

in the realm of speech emotion recognition.

Chapter 5: Applications of the Proposed Two-Dimensionalization Algorithm

in EEG Field

Expanding the horizon of the proposed methodologies, this chapter traverses into un-

charted territory by applying the CyTex method to transform brainwave signals into two-

dimensional images for epilepsy recognition. The chapter serves as a testament to the

adaptability and robustness of the proposed techniques across diverse domains. Detailed

insights into the transformation method and the commendable results achieved with RNN

and LSTM network models underscore the versatility and real-world applicability of the

experimental proposals.

Chapter 6: Summary and Discussion

The concluding chapter encapsulates the essence of the entire research journey, offering a

reflective summary of accomplishments and milestones achieved. The discussion extends

beyond the immediate findings, delving into the broader implications of the research.

Future trajectories and potential avenues for further exploration are outlined, providing

a forward-looking perspective that adds a layer of depth and anticipation to the study’s

culmination.
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Chapter 2

Proposal 1: Speech Emotion

Recognition Based on Gramian Angular

Field

2.1 Introduction

In recent years, the interest in speech signals emotion recognition is increasing. The

increase in social pressure causes people to experience psychological stress [71]. The accu-

mulates mental stress impacts people’s mental health and generates diseases [72]. These

illnesses can affect the diseases and their families [73, 74]. Furthermore, threatens so-

cial stability [75, 76, 77]. However, despit the many negative consequences of mental

illness, most people who need mental health services cannot receive treatment for various

reasons [77]. Researchers have confirmed speech can convey the psychological state of

the interlocutor [78, 79, 80]. Therefore, researchers propose research on speech emotion

recognition [81, 82]. Researchers confirm the application of speech emotion recognition in

human-computer interaction (HCI). HCI system identifies the user’s emotions and provides

comfort and encouragement. Likewise, it provides psychological counseling and therapy

[77, 83, 84].

The recognition of speech emotion comprises two main steps: feature extraction and

classifier construction [85]. The input speech signal is highly time-dependent and con-

tinuous. For this reason, the traditional speech feature extraction method is Short Time

Fourier Transform (STFT). This method obtains the speech spectral features [86, 87].

The spectral features contain plenty and complex information. Such as pitch, speech rate,

rhythm, and energy [88]. Previous research confirms the single features are not universal

[89], mixes features are leading over-fitting [90]. Therefore, the researcher suggests us-

ing sentiment labels as supervision for machine learning. Using machine learning trains

models and extracts features. This proposal simplifies the process of manual feature ex-
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traction. Traditional machine learning methods can build classifiers based on artificial

speech features or deep speech features, such as classical methods like Gaussian Mixture

Models (GMM), Hidden Markov Models (HMM), and Support Vector Machines (SVM)

[91]. Drawing upon successful experiences in computer vision [69], suggests a recognition

method. This proposal converts speech signals into image signals. This method preserves

the temporality of speech [70] and uses computer vision techniques identifies speech emo-

tions [69].

In this study, a new method is proposed on this basis, which aims to convert one-

dimensional time series data into the form of two-dimensional images containing more

information. The algorithm is inspired by converting one-dimensional time-series data

into a two-dimensional image with the structure and shape of a Hilbert curve. Subse-

quently, a convolutional neural network is utilized to extract the features of the image,

and the extracted feature values are passed through a fully connected network for senti-

ment classification. It is worth mentioning that the study compared the performance of

this method with that of previous studies ([69] and [70]). This comparison validated the

feasibility and effectiveness of the proposed algorithm in the field of emotion recognition.

The results of this study show that the proposed algorithm has potential advantages in

emotion-recognition tasks. The innovative aspect of this study is that it not only provides

a new method for processing one-dimensional time-series data but also demonstrates the

potential application of this method in emotion recognition. By presenting time series data

as two-dimensional images, open up more possibilities in the field of sentiment analysis,

with promising improved accuracy and performance. The success of this approach demon-

strates the potential value of deep learning and computer vision for sentiment recognition.

2.2 Gramian Angular Field method

Wang et al. [92] introduced a novel methodology for converting one-dimensional speech

signals into two-dimensional images, leveraging Gram Angle Fields (GAF). The GAF-

based approach offers a unique perspective on visualizing and analyzing speech patterns,

providing valuable insights into emotional expression.

The GAF algorithm is a time–series data coding method that extends the framework

proposed by Campanharo et al. [93] and aims to preserve time-domain information [92].

For a time series X containing real–valued observations (x1, x2, ..., xn), the algorithm

uses the rescaling method to normalize the time series X to the interval [0,1] or [-1,1].

Subsequently, the algorithm uses polar coordinates to represent the rescaled time series X̃,

mapping values to cosine angles and timestamps to radii. This innovative representation

provides a new perspective for understanding time series. As time progressed, the values

between different angular points on the polar coordinates changed. Unlike the traditional

Cartesian coordinate system, the polar coordinates retain absolute temporal relationships.
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Different rescaled data points correspond to different angular boundaries. For example,

[0, 1] corresponds to the cosine function of [0, π/2], whereas the cosine value of [-1, 1] lies

on the [0, π] angular boundary.

After converting the time series to polar coordinates, the algorithm can easily rec-

ognize the temporal correlation of different time intervals and calculate the triangular

sum/difference between points using Eq (2.1). One to generate a two–dimensional image

from a one-dimensional time series, as shown in Fig. 2.1. The generalized autocorrelation

matrix (GAF) of the GAF algorithm has several advantages: firstly, it preserves temporal

dependence; secondly, it preserves temporal correlation; and finally, it provides advanced

time-series features for deep neural network learning. This approach has a wide range of

applications in time series analyses.

G(x1, · · · , xn) =


⟨x1, x1⟩ ⟨x1, x2⟩ · · · ⟨x1, xn⟩
⟨x2, x1⟩ ⟨x2, x2⟩ · · · ⟨x2, xn⟩

...
...

. . .
...

⟨xn, x1⟩ ⟨xn, x2⟩ · · · ⟨xn, xn⟩

 (2.1)

Fig. 2.1. Schematic diagram of the GAF algorithm. The time series are converted from a

right-angle coordinate system to a polar coordinate system by transformation,

and the GAF image is then generated by Eq (2.1).

Despite its innovation, Wang et al.’s approach faces challenges in emotion recognition.

The accuracy and robustness of the conversion process, particularly the dependence on

GAF for capturing essential emotional features, present hurdles. The challenge lies in

ensuring that the two-dimensional representation retains relevant emotional cues while

minimizing information loss.

This chapter enhances the GAF method through a dual approach. Firstly, in terms of

data sampling, the research incorporates diverse downsampling algorithms to effectively

downsample the speech signal. This methodology not only ensures the preservation of

data integrity but also contributes to a more robust representation. Secondly, concerning

network design, a novel model is introduced that aligns more closely with the distribution

of GAF image features. This strategic enhancement leads to improved accuracy in feature

extraction, thereby enhancing the overall performance of the system.
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2.3 Optimization methods

The original GAF (Gramian Angular Field) algorithm used the PAA algorithm for down-

sampling the data in order to convert the time series data into an image representation.

However, this study explores and improves on this further. The study introduces new

downsampling methods that go beyond the original ppa algorithm and improve the accu-

racy and efficiency of the algorithm. In this study, these new downsampling methods were

shown to better capture important features in the time series while reducing the loss of

data information. Compared to the original ppa algorithm, the new methods are able to

retain meaningful data details more accurately, providing richer inputs for subsequent neu-

ral network training. Based on this optimized data representation, study furthers improve

the neural network model. The study propose a novel diagonal matrix-based network

structure that aims to better utilize the data features provided by the GAF algorithm.

This diagonal matrix-based network model is able to learn and utilize the intrinsic struc-

ture of the time series data more efficiently, allowing the neural network to capture the

data features more accurately during the learning process.

In the next part, study discuss the principles and implementation details of the new

downsampling method and the diagonal matrix network model in detail. Study presents

the experimental design and results to show how these improvements have improved the

performance of the algorithm. At the same time, study conduct a comparative analysis to

verify the superiority of the new method over the traditional method, as well as further

explore the potential impact of these improvements and future application directions.

2.3.1 Introduction of downsampling methods

Time series data are usually characterized by high dimensionality and contain numer-

ous time points. Therefore, dimensionality reduction is performed when necessary. The

purpose of this step is to reduce computational complexity and eliminate redundant in-

formation from the data. Commonly used dimensionality reduction algorithms include:

1. Piecewise Aggregate Approximation Algorithm: In 2000, Eamonn Keogh et

al. [94] proposed the Piecewise Aggregate Approximation Algorithm. The length

of time series X = {x1, x2, x3, · · · , xn} is n. Equally divided X into m part, and

each part express as length N vector X. The ith element of X expresses as X =
N
n

∑ n
N i

j= n
N (i−1)+1 xj .

2. Ramer Douglas Peucker Algorithm: In 1973, D. Douglas and T. Peueker pro-

posed the Ramer Douglas Peucker Algorithm(RDP). RDP is a classic algorithm for

linear feature extraction. While conducting retain the geometric shape, the amount

of data is simultaneously reducing [95]. As illustrated in Fig. 2.2, the schematic
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diagram represents the underlying principles of the Douglas Peukcer algorithm.

Fig. 2.2. The underlying principles of the Douglas Peukcer algorithm. Connects the

start(S) and end(E) point of the sequence, obtains the line SE. Calculates

the vertical distance di from each point in the sequence to the line SE. Com-

pares the distance di with the threshold valueϵ. If di < ϵ, delete the point di,

connect S and d(i+1). d(i+1) replaces the di become the new di; If di > ϵ, keep

the point di, take di as start connects with E. Repeat the previous steps.

3. The Visvalingam-Whyatt Algorithm: Visvalingam-Whyatt(VW) Algorithm,

alternativelyreferred to as Visvalingam Algorithm. The algorithm extracts thekey

points to generate curves with similar shapes [96]. Resemblingthe RDP Algorithm,

VW Algorithm employs a threshold value ofarea to execute downsampling. This

algorithm iteratively removes vertices froma line based on their significance or im-

portance. The operation principle is illustrated as shown in the Fig. 2.3. Utilizes

this algorithm can delete over 95% of the data points whileretaining enough feature

points. This algorithm’s parameters define indifferent ways. It can use the percent-

age of points, the number of points, or thearea threshold to keep the downsampling

[97]. This research uses thenumber of points and an area threshold for two functions.

4. The Largest Triangle Three Bucket Algorithm: The Largest Triangle Three

Bucket Algorithm (LTTB) combines WhyttAlgorithm and Intuitionistic Algorithm

[98]. It combines the bucketingidea in the intuitional algorithm, quantifies the im-

portance of the data. Reduces the number of data while preserves the essential shape

and featuresof the data. The basic principle of the LTTB algorithm as illustrated

in Fig. 2.4.

The advantage and disadvantage of these methods is shown in Table 2.1.

2.3.2 Novel Neural Network Modeling

The GAF matrix is symmetric about the main diagonal [99, 100]. And the convolution

disallows rotationalinvariance. Therefore, utilizes convolution causes repeated extraction

data feature. In order to solve the above problem, this research proposes a method forex-
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Fig. 2.3. The principles of the Visvalingam Whyatt Algorithm. The sequence X =

x1, x2, x3, · · · , xn length is n. For any point xi except the start and end, com-

posites atriangle with the two adjacent points x(i−1) and x(i+1). When thearea

of the triangle is less than the threshold value, the point xi will bedeleted.

Fig. 2.4. The specific steps of the Largest Triangle Three Bucket Algorithm. Retains the

first and the last points. Divides themiddle points into n parts an equally in

order. Each part with m points. Point A as the first point, and point C as the

temporary point. Point C is the average of this part. Point B is the point which

makes the largesttriangle ABC area. Iteration thesesteps, until the last point.

tracting the eigenvalues of GAF images. The symmetric matrix is a matrix which main

diagonal is the axis of symmetry. Each of its elements corresponds to the same. For a real

symmetric matrix A (the elements are all real numbers), there exists an orthogonal matrix

P and a diagonal matrix Λ such that the following equation holds P−1AP = Λ. Where

A is the real symmetric matrix, P is the orthogonal matrix, Λ is the diagonal matrix,

and P T denotes the transpose of P . Consequently, this research proposes a Symmetric

Diagonal Matrix (SDM) network structure. The structure of SDM as shown in Fig. 2.5.

First, calculates the symmetric matrix obtains a diagonal matrix. Second, calculates the

eigenvalue vector of the diagonal matrix. The eigenvalue vector serves as input data for the

full connected network. Finally, utilizes the fully connected network for the classification

of speech emotion.
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Table 2.1. Methods for Time Series Downsampling: Advantages and Disadvantages.

Method Advantages Disadvantages

Piecewise Aggre-

gate Approxima-

tion Algorithm

• Preserves data integrity

through equal division.

• Provides a straightforward

expression for each part of

the time series.

• May lose detailed informa-

tion due to averaging.

Ramer Douglas

Peucker Algorithm

• Retains geometric shape

while reducing data.

• Classic algorithm for lin-

ear feature extraction.

• Complexity may increase

for intricate shapes.

Visvalingam-

Whyatt Algorithm

• Preserves key points for

similar-shaped curves.

• Efficiently removes ver-

tices based on significance.

• Requires setting appropri-

ate threshold values.

• The algorithm’s parame-

ters may be defined in dif-

ferent ways.

Largest Triangle

Three Bucket Algo-

rithm

• Combines the benefits of

Whytt and Intuitionistic

Algorithms.

• Quantifies data impor-

tance through bucketing.

• Reduction in data points

may impact certain fea-

tures.

Fig. 2.5. The structure of symmetric diagonal matrix network.
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2.4 Experimentation and methodology

In this section, the paper provides a comprehensive overview of the experimentation pro-

cess and the methodology employed in the research. I detail the experimental setup,

including the selection and preparation of datasets, the configuration of experimental

parameters, and the execution of experiments. Additionally, I elucidate the underlying

principles guiding the approach and outline the rationale behind the chosen methodologies.

Through a systematic exploration of experimental design and methodology, the research

aims to ensure robustness, reliability, and reproducibility in our research findings.

2.4.1 Dataset

This research uses the speech emotion signal corpus CASIA. This corpus is recorded by

the Automation of the Chinese Academy of Sciences. According to the experimental

requirements, the research pair randomly partitioned the database to form the data set

shown in Fig. 2.6.

Fig. 2.6. The data set composition.

2.4.2 Experiment

The research set the parameters of the experiment as shown in Table. 2.2. The exper-

iment mainly uses Adam, Adagrad, and SGD optimizer to tune the parameters of deep

learning. In addition, other optimizers are also used. The advantages and disadvantages

of the optimizers a shown in the table. 2.3. The illustration of experiment as shown

in Fig. 2.7, In this experimental phase, the procedures are meticulously executed under

predefined conditions. The process commences with the acquisition of speech data, sub-

sequently transformed into waveform representations. To ensure accuracy, white spaces

at the beginning and end of the data are eliminated using endpoint detection. Employ-

ing four distinct downsampling algorithms, namely Piecewise Aggregate Approximation

(PAA), Ramer Douglas Peucker (RDP), Visvalingam-Whyatt (VW), and Largest Triangle

Three Bucket (LTTB), the speech signals undergo varied preprocessing. The downsam-

pling outcomes are then imaged using the Gramian Angular Field (GAF). Three emotion

classification neural network models are introduced, each depicted with an illustrative
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Fig. 2.7. Illustration of experiment. For data reading and preprocessing, reads the speech

data and converts it into a waveform graph. Eliminate blank data at the begin-

ning and end of the speech data using endpoint detection technology to ensure

the accuracy and consistency of the data. The application of downsampling

algorithms: four downsampling algorithms are used to process speech signals:

the Piecewise Aggregate Approximation (PAA) algorithm, the Ramer Douglas

Peucker (RDP) algorithm, the Visvalingam-Whyatt (VW) algorithm, and the

Largest Triangle Three Bucket (LTTB) algorithm. With these algorithms, mul-

tiple sets of downsampled speech data were obtained, with the VW algorithm

using two different evaluation methods, resulting in a total of five sets of data.

The downsampled data were imaged according to Gramian Angular Field (GAF)

to obtain the corresponding image data. Three network models were designed

for sentiment classification. It includes input layer, hidden layer and output

layer. Training and test the generated image data as input.

structure as sown in Fig 2.8. Additionally, a feature vector network model is designed to

calculate feature vectors from the GAF-generated feature matrix. Finally, the emotion

classification experiments are conducted, utilizing the image data as input for training

and evaluating the three neural network models, with a meticulous record of classification

accuracy and other performance metrics. This detailed experimental approach aims to

comprehensively explore the impact of different downsampling algorithms on speech emo-

tion classification and assess the effectiveness of combining feature extraction and neural

network models in emotion classification tasks.
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Table 2.2. The parameter information of the experiment

Parameter Experimental parameter setting

Dataset partitioning train set 80%, test set 20%.

Optimizer Adam, Adagrad, SGD, etc

Learning rate 1e-5, 5e-5

Loss fuction NLLloss

Batch size 12

Epoch 500

Table 2.3. The advantages and disadvantages of common optimizers.

Optimizer advantage Disadvantage

SGD

Highly computationally efficient,

more scalable for large data and

complex models.

Less convergent and the update

direction is unstable.

Adam

Combines the benefits of momen-

tum optimization and adaptive

learning rates.
Over-adjusted the learning rate.

AdaGrad

Adaptive learning rate, different

parameters have different learn-

ing rates.

The learning rate may drop ex-

cessively, resulting in slower con-

vergence.

RMSProp

Adaptive learning rate,performs

smaller updates for parameters

with larger gradients.

In some cases, learning rates may

still decline too quickly.

Adamx

Adaptive learning rate, sup-

ports sparse gradient, fast con-

vergence.

High memory consumption, sen-

sitive to learning rate, difficult to

adjust parameters.

AdamW
Better regularization, robust-

ness, high adaptive learning rate.

High memory occupation and

difficult hyperparameter adjust-

ment.

Nadam

Fast convergence, adaptive

learning rate, introduction of

Nesterov momentum to accel-

erate convergence and improve

model performance.

High memory consumption, high

sensitivity to learning rate, diffi-

cult parameter tuning.

Radam
Adaptive learning rate, robust-

ness, solving offset problem.

High difficulty of hyperparam-

eter adjustment, large memory

consumption.
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Fig. 2.8. Network structures.

2.5 Results and discussion

The experiment performs experimental operations according to the set conditions and

records the results. The experimental operations include reading the data and converting

the speech data into a waveform graph. Four downsampling algorithms were used to

process the speech signal. Since the VW algorithm uses two evaluation methods, the

experiment obtained five sets of data. The experiment is based on the GAF algorithm to

complete the time series imaging, as shown in Figure reffig:3-9. The final image data will

be classified by three network models for sentiment classification. The study uses accuracy

as the evaluation metric, and the results are shown in Table 2.4

2.6 Conclusions

The main goal of this section is to explore how to improve the GAF methodology to provide

a clearer presentation of the data and a more efficient means of analysis. In this process,

we face challenges such as high memory requirements and computational complexity, and

need to consider the efficiency of the algorithm and the accuracy of the data visualization.

In order to better preserve the integrity of the data, we used a variety of downsampling

methods to process the input data.

For speech emotion recognition, we chose to use SDM as the feature extractor and fully

connected classifier. Compared with the traditional convolutional neural network, SDM

outperforms the VGG network model for recognition. However, it should be noted that

the SDM algorithm occupies more memory and takes more time compared to the other

two models. This suggests that the contribution of the SDM model to speech emotion
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(a) Comparison of waveforms after downsampling by various algorithms.

(b) Comparison of GAF images after downsampling with various algorithms.

(c) Comparison of GAF optimal parameter maps after downsampling with various

algorithms.
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Table 2.4. Accuracy on the three network.

Network Optimizer lr PAA LTTB VW NUM VW TH RDP

VGG16
Adagrad

1E-05 18.33 18.75 17.08 22.08 17.91

5E-05 18.75 17.50 20.41 28.33 00.00

Adam
1E-05 16.67 16.67 16.67 16.67 16.67

5E-05 16.67 16.67 16.67 16.67 16.67

SGD
1E-05 - - 16.67 - 16.67

5E-05 - - 16.67 - 16.67

ResNet34
Adagrad

1E-05 24.16 26.67 28.75 29.16 26.66

5E-05 25.83 31.25 26.60 28.33 25.83

Adam
1E-05 18.37 20.20 19.05 20.38 23.31

5E-05 26.38 21.25 25.06 23.35 25.03

SGD
1E-05 - - 16.67 - 16.67

5E-05 - - 16.67 - 16.67

ResNet50 Adagrad 1E-05 25.83 25.00 28.75 28.30 27.91

SDM

Adagrad
1E-05 21.33 24.75 28.08 27.08 21.91

5E-05 22.35 24.26 26.43 28.35 16.67

Adam 1E-05 - - - 22.08 -

SGD
1E-05 - - - 16.67 -

5E-05 16.67 - 16.67 16.67 -

Adamax 1E-05 - - - 24.58 -

AdamW 1E-05 - - - 21.25 -

Nadam 1E-05 - - - 22.91 -

Radam 1E-05 - - - 23.75 -

RMSprop 1E-05 - - - 22.91 -

- Indicates the accuracy rate value is unsatisfactory, is not indicated.

recognition is significant.

Future research directions include further optimizing the parameters in the diagonal

matrix model to improve the performance of the SDMmodel in speech emotion recognition.

This will help to better understand and utilize the potential of the SDM model in practical

applications.
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Chapter 3

Proposal 2: Speech Emotion

Recognition Based on CyTex and

Speech Rate

3.1 Introduction

Speech is one of the most important ways for humans to communicate. It is a common

carrier of information and emotions. Researchers have studied speech recognition exten-

sively since the late 1950s. Speech recognition involves converting human speech into

word sequences [101]. However, in this process, the machine cannot understand the emo-

tional state of the speaker during human–computer interaction (HCI). Speech emotion

recognition— a relatively new area of research—focuses on identifying the intention of

speech delivery [102, 103]. It involves extracting the emotional state of the speaker from

speech. Researchers have confirmed that speech emotion recognition can extract useful

semantics from speech and improve the performance of speech recognition systems [104].

Speech emotion recognition has important applications in various fields. In HCI systems,

it can improve the user experience. An HCI system identifies the emotional state of

the user to provide personalized and emotional responses. For example, when the user

discontentment reaches a predetermined level [105], the system transfers control to manual

customer service. This provides better assistance and service to users [106]. Speech

emotion analysis is widely used by businesses, governments, and other organizations [107].

To improve the quality of goods and services, institutions collect and analyze people’s

opinions and impressions of various topics, products, themes, and services. The objective

is to enhance people’s happiness and satisfaction [108].

Researchers have confirmed the associations between speech emotion and mental health

and mental state. Emotion recognition of speech assists in the diagnosis of depression and

suicide risk assessment. In addition, speech emotion recognition can be used to detect
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and predict mental states. In 1921, Kraepelin [109] corroborated and described depressed

patients’ articulatory features and speech characteristics before suicide [110]. The results

of [109, 110] revealed the ability of speech emotion to track the severity of depression

objectively and its usefulness for evaluating the effects of treatment [111]. [112] discussed

speech emotion features associated with autism. [113] focused on Alzheimer’s disease

detection using speech. [114] confirmed the effectiveness of speech for predicting mild

cognitive impairment. Moreover, for car driving, monitoring the emotional state of the

driver through speech recognition can prevent traffic accidents [115].

Feature extraction is an important step in speech emotion recognition. There are various

types of speech features, such as rhythmic features (e.g., pitch, tone, and prosodic contour),

qualitative features (e.g., resonant peak frequencies and spectral features), and derived

features (e.g., Mel-frequency cepstral coefficients and linear predictive coding coefficients)

[116]. Research on speech and emotional states has indicated that some features are

interrelated; e.g., the information of fundamental frequency and speech quality can be

extracted from the continuous acoustic variables [104]. Feature selection is one of the

central issues in speech emotion recognition [117]. In previous research, speech emotion

recognition has largely been based on the rhythmic features [118]. However, it is unclear

which features have the most significant influence on emotion classification [119]. Such as,

volume is higher for anger or excitement and lower for shyness or frustration; pitch is higher

for excitement or nervousness and lower for frustration or sadness. Volume and pitch both

affect excitement or frustration, but it’s unclear which is more important. Therefore,

single-parameter extraction is non-universal [120]. Therefore, researchers have explored

feature sets with a mixture of features [120, 121]. Nevertheless, with the increasing number

of parameters, the dimensionality of features is increasing. This makes the recognition

of speech emotions more complex and leads to overfitting [122]. Classifiers are another

important part of speech emotion recognition. For single-parameter classification, shallow

classifiers, such as SVM classifiers [123], ELM classifiers [122] and BayesNet classifiers

[124], can achieve satisfactory classification performance. Classifiers suitable for a mixture

of features, include the Gaussian Mixture Model classifier [125], ANN classifier [126], and

RNN classifier [127].

To address the aforementioned research gaps, we propose a feature value extraction

method that combines multiple features of speech. It achieves the mixture of features, re-

duces the dimensionality of speech feature values, and avoids the overfitting phenomenon

caused by complex computation. First, in accordance with previous research, the time–

frequency features of speech are extracted. Then, the time–frequency features are com-

bined with the phonetic features. We propose a new speed feature based on the voiced

consonant, to reduce the number of features. Finally, recognition is performed using the

selected speech emotion dataset. Through several experiments and comparisons, we ver-

ified the effectiveness of the proposed method with the Chinese speech database from
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the Institute of Automation of the Chinese Academy of Sciences (CASIA) [128]. In the

experiments, the SVMs, ELMs and decision trees are used as classifiers to evaluate the

recognition accuracies for single and multiple features. The recognition accuracy for the

multiple features is higher than that for the single features, and the same results are

achieved in the less time. The results indicate that using multiple features can increase

the recognition accuracy. Moreover, it solves the problem of time redundancy. In addition

to this, LSTM [129] was used as a network model to complete learning and recognition.

The results show that the multi-feature method has excellent recognition results, reaching

an average accuracy of up to 98.15%.

The remainder of this chapter is organized as follows. Section 3.2 briefly describes the

relevant algorithms and neural networks covered in this chapter. Section 3.3 outlines the

methodology and provides details about the specific experimental procedures. Section 3.4

presents the results obtained from the experiments and engages in a discussion of these

results. Finally, Section 3.5 concludes the study.

3.2 Speech rate

In this study, I propose a composite speech feature called the speech rate composite feature.

This feature combines the short duration feature of speech and the rhythmic feature of

speech. The rhythmic feature allows us to find how turbid sounds are represented in

speech. The short-time feature, on the other hand, captures the location of turbid sounds

in speech. The neighboring intervals between the positions of the turbid sounds reflect

the rate of speech. Using this composite feature, we can segment the speech signal and

perform emotion recognition.

3.2.1 Short-time feature

An important part of speech emotion recognition is the extraction of feature values. The

speech signal is a non-stationary signal [130]; it contains rich time-series information, and

the statistical properties change over time. However, speech signals are typically processed

with a high sampling rate, which causes a flat change in the speech signal over a short

period. This is referred to as short-time smoothness [131]. The speech short-time features

are among the most responsive to the speaker’s emotion [132]. In this section, we introduce

three short-time features: the short-time energy, short-time zero-crossing rate, and short-

time average amplitude difference (Amdf) [132]. These features reflect the emotion of

speech.

1. Short-time energy: The short-time energy of speech is the energy change of the

speech signal in short time frames. It indicates the amount of energy in each short

time frame of the speech signal. In a speech signal, the stronger parts have a higher
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short-time energy. The silent or noisy parts have a lower short-time energy. For

a speech signal frame of length N , the short-time energy can be calculated using

Equation (3.1):

E(n) =

N−1∑
i=0

x2(n− i), (3.1)

where E(n) represents the short-time energy of the nth frame and x(n-i) is the

ith sample point value of the speech signal.
∑

in the equation is the summation

operation, which ranges from the start sample point to the end sample point in

current frame—typically from 0 to N − 1.

2. Short-time zero-crossing rate: The short-time zero-crossing rate is used to de-

scribe the rate at which the signal changes its sign within short-time frames. A

higher zero-crossing rate indicates that the speech signal waveform changes faster.

Specifically, for a speech signal frame of length N , the short-time zero-crossing rate

is given by Equation (3.2):

Z(n) =
1

2N

N−1∑
i=0

|sign[x(n− i)− x(n− i− 1)]| , (3.2)

Where Z(n) represents the short-time zero-crossing rate in units of crossing / frame,

and N represents the number of samples within the frame. x[n] denotes the nth

sample within the frame. sign() denotes the sign function, which returns 1 when

x[n] is positive, −1 when x[n] is negative, and 0 when x[n] is zero.

3. Short-time average amplitude difference: The Amdf is utilized to explain the

properties of the changes of the speech signal. It reflects the changes in the ampli-

tude in the speech signal in a short period. A larger average amplitude difference

indicates that the speech signal has a larger amplitude variation. The length of the

speech signal x[n] is denoted as N . Accordingly, the Amdf is expressed by Equation

(3.3):

Amdf(n) =
1

N

N−1∑
i=0

|x(n− i)− x(n− i− 1)| , (3.3)

where Amdf(n) represents the Amdf value of the nth frame, x(n− i) and x(n− i−1)

denote the sample values of adjacent points within the frame, and the
∑

is taken

over N samples. By calculating the absolute magnitude difference between adjacent

samples within one frame, the magnitude variation of the signal within a localized

time period is quantified.
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Fig. 3.1. Voiced sound in Chinese Pinyin, Japanese Kana, and Korean Pinyin.

3.2.2 Phonogram

Speech emotion is closely related to speech rate. Previous research has indicated that

faster speech is typically associated with positive and active emotions. Conversely, slower

speech corresponds to both negative and inactive emotions [133, 134]. Speech rate is

usually expressed as the number of syllables / duration. There are various methods for

counting the syllables, including counting based on the number of samples, counting based

on the number of phonemes, and counting based on the number of frames. According to

the concept of speech rate, this study proposes a multi-feature method that combines

rhythmic and short-time features. This feature describes the phonogram speech rate.

The phonogram is a type of script in which speech is recorded using only a few let-

ters. Common phonograms include the International Phonetic Alphabet [135], Chinese

Pinyin [136], Japanese Kana [137], and Korean Hangul [138]. As shown in Fig. 3.1, in a

phonogram, each syllable contains at least one vowel ( blue part of the diagram). Vowel

pronunciation is accompanied by vibration of the vocal folds. This sound causes the vocal

folds to vibrate when pronounced, which is called a voiced sound [135]. Fig. 3.2 shows

the waveform of a sentence with six Chinese characters. In this image, the horizontal

axis represents time in seconds (s). Each time point corresponded to the location of the

waveform sampling point. The vertical axis represents the amplitude of the sound, which

is dimensionless. This study divides the waveform into six parts by text and marks the

vowel location by circles. The image below is the corresponding Chinese phonetic pinyin

of the waveform. Voiced sound sections were labeled with squares.

Therefore, this study proposes a multi-feature method based on the phonogram. This

approach defines speech rate features by calculating the time intervals between voiced

sounds in the phonogram.

3.2.3 Speech rate

Previous research indicates that the vocalization of voiced sounds has excellent perfor-

mance in short-time speech features. Vocal-fold vibration leads to speech signal energy

42



Fig. 3.2. Voiced sound for one sentence with six Chinese characters.

having a specific spectral distribution [139]. Compared with voiceless sound, voiced sound

exhibits higher energy peaks and wider spectral bandwidths in short-time features [140].

Table 3.1 lists the common short-time features and the performance of the voiced sound

[140, 138, 141, 142]. Voiced sounds exhibit unique characteristics within these short-

term features, further demonstrating the potential for utilizing the identification of voiced

sounds to define speech rate. The speech rate feature of the speech signal can be quantita-

tively obtained by extracting the frames where a voiced sound occurs within the short-time

features and calculating the number of intervals between adjacent frames.

3.3 Experimentation and methodology

This section details the design of the experiment, execution process, and methods and

techniques employed.

3.3.1 Dataset

The CASIA emotion corpus was used in this study. It consists of four professional speakers

reciting 50 different sentences. Each sentence has one of six emotions: angry, happy, afraid,

sad, surprised, and neutral. The entire dataset has a total of 1200 sentences. This corpus

can be used to compare and analyze the acoustic and prosodic characteristics of different

emotional states. It contains sentences of three lengths: 5 characters, 6 characters, and

8 characters. We randomly divided the corpus into a training set (80%) and a test set

(20%), as shown in Table 3.2. The speech was recorded in a recording studio, with no

external noise. The sampling frequency was 16000 kHz, and the storage format was PCM,

16-bit. The recording unit marked the emotion label.

3.3.2 Networks

1. Support vector machine decision tree: The SVM decision tree is based on the

SVM algorithm [151]. It combines the advantages of the SVM algorithm and the

decision-tree algorithm, improving the classification performance and interpretabil-
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Table 3.2. Composition of the corpus.

Number of words 5 words 6 words 8 words Total

Sentences numbers 192 960 48 1200

Training set numbers 144 768 24 960

Test set number s 48 192 24 240

ity. The SVM algorithm is used for each leaf node subset, and the optimal partition-

ing is used to generate a tree structure. The SVM algorithm computes an optimal

hyperplane at each node. The hyperplane segments the data into two child nodes.

Using this approach, the next level of nodes is segmented. When the node data

cannot be further partitioned, the node becomes a leaf node. Thus, the decision

tree is constructed.

2. Extreme learning machine decision tree: The ELM decision tree is a hybrid

machine learning algorithm that combines the ELM algorithm with a decision-tree

structure for classification or regression tasks. The ELM model is used for each

decision-tree node to make predictions and decisions [122].

3. LSTM: Recurrent Neural Networks (RNN) are artificial neural networks specialized

for processing sequential data [152]. Unlike traditional neural networks, RNN excel

at utilizing the internal memory states when dealing with sequential data. Their

standout feature lies in their internal recursive structure, which allows the contin-

uous looping of information within the network. This internal memory mechanism

empowers the RNN to use prior information to influence output.

Long short-term memory networks (LSTM) are specialized structures within the

realm of RNN that are designed for processing and learning time-series data [153].

Unlike standard RNN, LSTM primarily focuses on overcoming common issues, such

as gradient vanishing and explosion, particularly in managing lengthy sequential

data. LSTM has gained widespread adoption because of its internal architecture,

which allows the network to capture and retain long-term dependencies, which are

crucial for tasks that require sustained memory. Information transfer within LSTM

occurs through units equipped with gating mechanisms, which control the informa-

tion flow by managing forgetting and adding memory, thus enabling more adaptable

long-term memory storage.

Structurally, LSTM differs from an RNN, as shown in Fig. 3.3. RNN consist of sim-

ple input, forget, and output gates that directly transfer information. By contrast,
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Fig. 3.3. Schematic of RNN and LSTM networks. The figure on the left shows a schematic

of the basic RNN. The horizontal lines connect the network of time steps. Dif-

ferent rows represent multiple time steps organized in chronological order from

top to bottom. The right-hand figure shows a schematic of the LSTM network

with the cellular structures added to the RNN structure.

LSTM has a more intricate cellular structure. The cell state enables the network to

finely control the information flow, prevent gradient vanishing, and effectively man-

age the long-term memory. Consequently, this enhancement in sequence handling

allows the LSTM to capture and utilize long-term information more efficiently than

a standard RNN.

The advantages and disadvantages of the traditional decision tree, SVM decision tree, and

ELM decision tree are presented in Table 3.3.

3.3.3 Experiment

The experiment is divided into two parts, namely shallow classifier ensemble for speech

emotion recognition and enhanced speech emotion recognition using LSTM. These two

parts use different deep learning perspectives for the speech emotion recognition task. The

shallow classifier ensemble in the first part is mainly based on traditional machine learning

methods such as Support Vector Machine (SVM) and Decision Tree. These methods

usually use hand-designed features or shallow network-based feature extraction methods,

which are then fed into the classifier for training and classification. This approach is

simple and straightforward, easy to understand and implement, and suitable for small-scale
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Fig. 3.4. Flowchart of the experiments.

speech emotion recognition tasks. While in the second part, Long Short-Term Memory

(LSTM) network is used to enhance the performance of speech emotion recognition.LSTM

is a deep learning model for sequential data processing, which is able to capture long-term

dependencies in sequential data and has advantages for processing time-series data such as

speech signals. By using the LSTM model, we can better model the temporal information

in speech signals and improve the accuracy and robustness of speech emotion recognition.

These two parts of the experiment explore and compare the effect and performance

of different deep learning methods in speech emotion recognition tasks from different

perspectives, providing reference and guidance for practical applications.

Ensemble of Shallow Classifiers for Speech Emotion Recognition

In these experiments, speech emotion recognition was performed via the process shown in

Fig. 3.4. The diagram outlines the progression from raw input data to the classification

of emotions. Within this experiment, the initial speech data underwent preprocessing,

followed by the extraction of short-time features. Subsequently, the speech rate was com-

puted based on these extracted features. Based on the speech rate, speech data were

supplied to the 5 shallow classifiers for training. The completed trained model recognizes

the emotion of the speech data, thus completing the speech emotion recognition based on

the speech rate. The configuration involved in the experiment is presented in Table 3.4.

The input speech signal was normalized to the range of [0−255] and endpoint detection

was performed. The purpose of the normalization is to unify the evaluation metrics and

eliminate the amplitude differences [154]. The purpose of endpoint detection is to remove

blank data at the beginning and end of the speech signal to reduce interference in the

experiments and computational cost [155]. This experiment obtained short-time features

using Python wave library. The common short-time features are presented in Table 3.1.

Short-time features were selected according to three criteria: complexity, expression of

speech time-domain features, and ability to identify voiced sound locations. As shown in

Table 3.5, the short-time autocorrelation, short-time pitch, and short-time peak amplitude

do not provide a clear indication of the location of the voiced sound. The short-time

harmonic ratio and short-time cepstral coefficients are used to evaluate speech frequency
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Table 3.4. Experiment settings

Project Configuration

Operating system Ubuntu 20.04, Windows 10

Programming language Python 3.7 and Pytorch

Libraries librosa, numpy, sklearn, torch, wave

Filter moving average filter, savgol filter

Learning rate 0.001

Optimizer Adam

Hiddern size 256

Number of layers 3

Epochs 500

features. Consequently, this experiment selected three short-time features to describe

the speech rate: short-time energy, short-time zero-crossing rate, and short-time average

amplitude difference. Three short-time features were filtered using the filter. A Savgol

filter was used for the short-time energy and short-time zero-crossing rate, and a moving

average filter was used for the short-time average amplitude difference. Filtering makes

the data smoother and makes it easier to calculate voiced sounds. In this experiment,

Table 3.1 lists voiced sounds with short-term features. Based on this, the frames of the

voiced sounds of the three short-time features were calculated individually. The experiment

calculated the frames of the short-time energy peaks, short-time zero-crossing rate valleys,

and short-time average amplitude difference variations. The results are shown in Fig. 3.5.

We replace the number of syllables with the number of frames between adjacent voiced

sounds. Because of the voiced sound features of vowels, the focus of this research is finding

the location of the voiced sound in the sentence. A sentence with frame length N contains

n words and the multiple features T , as given by Equation (3.4):

T =
1

n−1

∑n
1 fi − fi−1

N
, (3.4)

Here, fi denotes the i
th frame of the voiced sound. The average of frame number between

adjacent voiced sound is used as the speech rate of this sentence. We selected three short-

time features to describe the voiced sound and used the SVM, ELM, and decision trees to

evaluate the features.
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Fig. 3.5. A comparison between the original images and the image was filtered and labeled

with the position of the voiced sound images. The first column of the figure

represents the original images, from first row to last row: the original speech

signal waveform image, short-time energy image, short-time zero-crossing rate

waveform image, and short-time average amplitude difference waveform image.

The second column shows the images regularized to the range of [-255, 255] from

first row to last ros: the preprocessed speech signal waveform image, the voiced

sound position in the preprocessed and filtered short-term energy image, the

voiced sound position in the preprocessed and filtered short-time zero-crossing

rate, and the voiced sound position in the preprocessed and filtered short-time

average amplitude difference.
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Table 3.5. Selection criteria for short-time parameters

Feature C1 T2 V3

Short-Time Autocorrelation é Ë é

Short-Time Average Amplitude Difference Ë Ë Ë

Short-Time Cepstral Coefficients é é Ë

Short-Time Energy Ë Ë Ë

Short-Time Harmonic Ratio Ë é Ë

Short-Time Peak Amplitude Ë Ë é

Short-Time Pitch é é é

Short-Time Zero-Crossing Rate Ë Ë Ë

1 C indicates the computational complexity of computing the feature:

Ëimplies indicates computational simplicity, and éimplies indicates

computational complexity.
2 T indicates whether the feature can describe the speech signal in

the time domain: Ëindicates that it can describe the speech signal

in the time domain, and éindicates that it can describe the speech

signal s in the frequency domain.
3 V indicates whether the feature can indicate the position of the

voiced sound clearly: Ëindicates that it can indicate the position,

and éindicates that it cannot.

Enhanced Speech Emotion Recognition using LSTM

The experimental process is illustrated in Fig. 3.6. The figure illustrates the process from

the input data to emotion classification. In this experiment, the input speech data were

preprocessed, and short-time features were extracted. The speech rate was calculated from

the extracted features. Based on the speech rate, speech data were reconstructed to fit

the LSTM network. Reconstructed data were supplied to the LSTM network for training.

The completed trained model recognizes the emotion of the speech data, thus completing

the speech emotion recognition based on the speech rate.

The experiments were based on computed voiced sound frames, and the speech data

were reconstructed. The reconstructed data were used as inputs to the LSTM network for

training. To satisfy the uniformity of the data size requirement supported by the LSTM

network, the longest voiced sound interval in each short-time feature was calculated as

the step size of the input data to the network, and the maximum number of voiced sound

dots as the number of steps. Zero values were used to compensate for the shortfalls. As
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Fig. 3.6. Flowchart of the experiments.

shown in Fig. 3.7, the reconstructed data are trained on the network to obtain the best

model. This model realizes emotion recognition of speech signals.

There were some problems in the experiments, mainly owing to the small size of the

dataset, which led to insufficient training and thus had an impact on the results. To

solve this problem, the experiment expanded the database [156]. By accelerating (1.5x

speed) and decelerating (0.5x speed) the original speech signal, the experimental data size

was expanded to three times the original data size [156]. The experiment and method-

ology employed are thoroughly detailed up to this point. The next section focuses on a

comprehensive discussion of the obtained results, conducting an in-depth analysis, and

exploration of the data and observations.

3.4 Results and discussion

In this experiment, multi-feature speech rates are proposed. Speech rate is obtained by

calculating the voiced position of three short-term eigenvalues. This feature uses five

shallow classifiers and LSTM network model respectively for emotion recognition.
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Fig. 3.7. Reconstruction the speech data for LSTM. The input speech data were seg-

mented according to the frame nodes at which the voiced sounds were located.

The speech signal in the example had six voiced nodes; thus, it was divided

into seven segments. Each piece of speech was inputted into the LSTM network

model as a single time step. The zero-filled speech segments were sequentially in-

put into the LSTM network model in chronological order for learning to achieve

speech emotion classification.

3.4.1 Experimental results based on shallow classifiers

We used five shallow classifiers to identify the speech emotions: the SVM, ELM, decision

tree, SVM decision tree, and ELM decision tree. The accuracy and time cost for recog-

nition are presented in Tables 3.6 and 3.7. We use Fig. En to represent the short-time

energy, Zcr to represent the short-time zero-crossing rate, and Amdf to represent the

short-time average amplitude difference. As shown in Fig. 3.8, we compared the corre-

sponding multiple features with the single short-time feature. From 3.8(a), the accuracy

of speech emotion recognition with multiple features was higher than that for the single
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Table 3.6. Accuracy results for speech emotion recognition(%).

Short-time features Multiple features

En Zcr Amdf En Zcr Amdf

SVM 22.50% 17.50% 25.83% 23.25% 21.67% 26.25%

ELM 19.58% 20.00% 19.60% 23.75% 21.69% 26.70%

Decision Tree 21.67% 24.17% 23.75% 25.00% 29.37% 25.25%

SVM Decision Tree 22.92% 23.33% 25.00% 28.75% 27.50% 27.08%

ELM Decision Tree 28.75% 27.50% 20.83% 29.72% 28.75% 29.17%

one. The highest identification accuracy was achieved by the ELM classifier with multiple

short-time energy features . Fig. 3.8(b) indicates that the features had a similar time cost

for speech emotion recognition.

We subtracted the accuracy and time cost of the corresponding single feature with the

accuracy and time cost of each composite feature separately, as shown in Fig. 3.9. Fig.

3.9(a) indicates that compared with the single features, the multiple features yielded a

higher accuracy. The short-time average amplitude difference based on the ELM decision

tree exhibited the largest improvement (8.34%), and the short-time energy based on the

ELM decision tree exhibited the smallest improvement (0.97%). The use of multiple

features increased the accuracy by 3.40% on average. Fig. 3.9(b) shows the improvement

of the computation time in the case of multiple features. The left side with red words

indicates the time saved by using multiple features, and the right side with black words

indicates the extra time used in the case of multiple features. The figure indicates that

using multiple features took less time on average than using single features. Using multiple

features took more time than using single features in 3 of the 15 cases, and it took less

time in 7 of the 15 cases.

The results of the experiment indicate that the multiple features yielded a higher ac-

curacy of speech emotion recognition than single short-time features. Additionally, in the

case of multiple features, it took less time to achieve recognition. The results confirmed

that the proposed feature outperformed short-time features alone. Thus, the proposed

speech rate feature can solve the problems of a single feature and data redundancy.
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(a) Accuracy (%)

(b) Time (ms)

Fig. 3.8. Results of speech emotion recognition.
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Table 3.7. Time result for speech emotion recognition(ms).

Short-time features Multiple features

En Zcr Amdf En Zcr Amdf

SVM 57.01 58.01 58.02 57.01 57.01 57.01

ELM 4.43 7.06 13.00 8.00 8.00 7.00

Decision Tree 4.00 4.01 4.00 4.00 4.00 5.00

SVMDecision Tree 41.01 42.01 42.01 41.01 42.01 42.01

ELM Decision Tree 11.00 11.01 11.00 10.00 10.00 10.00

3.4.2 Experimental results based on LSTM

In this experiment, Accuracy was used as the main evaluation index, while the confusion

matrix and ROC curve were used to demonstrate the classification results more intuitively.

1. Accuracy : Accuracy was calculated as the ratio of correctly predicted samples

to the total number of samples in the classification problem. The formula for ac-

curacy is expressed as a percentage, as shown in Equation (3.5). This signifies the

proportion of all the samples that the model correctly classifies.

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(3.5)

2. Confusion matrix : A confusion matrix is used to evaluate the performance of

a classification model, especially for classification problems in supervised learning.

This shows the correspondence between the model’s actual predictions and the

actual labels in the test dataset. A typical confusion matrix is an (N ×N) matrix

where (N represents the number of categories. The rows of this matrix represent

the actual categories and the columns represent the predicted categories. In the

confusion matrix, the diagonal elements represent the number of samples correctly

predicted by the model, whereas the off-diagonal elements represent the number of

samples incorrectly predicted by the model.

3. ROC curve : The receiver operating characteristic curve (ROC curve) is a tool for

evaluating the performance of a binary classifier. In multi-classification problems,
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(a) Accuracy (%)

(b) Time (ms)

Fig. 3.9. Comparison between multiple features and single features.

one-to-one and one-to-one rest methods can be used to draw and evaluate multi-

category ROC curves. The one-to-one method plots a one-to-one ROC curve for

each category by calculating each category separately in combination with the other

categories. A pair of methods combines each category separately and draws the

corresponding ROC curve. The area under the ROC curve (AUC) is an important

indicator for evaluating the performance of a multiclass classifier. The closer the

value is to one, the better the performance of the classifier. For the evaluation of

multi-class classifiers, ROC curves and AUC provide a comprehensive measure of

performance.

To verify the generality and robustness of the proposed method, experiments were vali-

dated using other datasets. Table 3.8 shows the experimental results for different datasets.
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By testing our experimental results on speech data in multiple languages and emotion

categories, we demonstrate that the proposed method exhibits good performance in emo-

tion recognition tasks in most cases. Specifically, we observed that our model achieved

high accuracy on most databases using short-time energy, short-time zero-crossing rate,

and short-time average amplitude difference as features. For example, on the Emo-DB

database, our model achieved 100% accuracy in speech emotion recognition, whereas close

to or over 90% accuracy was obtained on other datasets. This demonstrates the strong

generalization ability of our proposed speech-rate-based approach on the speech data of

different languages and emotion categories, providing an effective solution for emotion

recognition tasks.

Table 3.8. Presentation of experimental accuracy for different datasets (%)

Database Name Language Emotion Classes En Zcr Amdf

ANAD Arabic 3 classes 96.83 94.72 95.66

Emo-DB German 7 classes 100 99.58 99.90

CASIA Chinese 6 classes 97.64 98.47 98.33

EMOVO Italian 7 classes 98.87 96.43 86.12

RESD Russian 7 classes 90.91 89.94 90.77

TESS Toronto 7 classes 96.20 96.89 97.58

This study performed a comparative analysis of three methods utilizing the same CASIA

dataset for Chinese speech emotion recognition, as shown in Table 3.9. The DBN & SVM

was proposed in [131]. This study explored methods for improving the accuracy of Chinese

speech emotion recognition. The study extracted five features: MFCC, pitch, resonance

peaks, short-time over-zero rate, and short-time energy through deep learning models.

This study used a Deep Belief Network (DBN) combined with a Support Vector Machine

(SVM) for the experiment, and the classification method achieved 95.8% accuracy, which

exceeded the results of the DBN or SVM alone. The ELM decision tree was proposed

in [122]. This study utilizes correlation analysis and Fisher’s feature selection method to

remove redundant features that are closely correlated. A sentiment recognition classifier

based on an Extreme Learning Machine (ELM) decision tree was proposed. The proposed

method achieved an average recognition rate of 89.6%.

By comparing these three methods, the proposed multi-feature speech rate achieved the

highest recognition accuracy on the CASIA dataset. This shows that the use of speech-

speed features to identify speech emotions is an effective method.

Table 3.10 shows the comparative results of the speech emotion recognition methods
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Table 3.9. Comparison of speech emotion recognition methods for the CASIA dataset

Method Features Network Accuracy

DBN & SVM [131]

MFCC, pitch, resonance

peaks, short-time

over-zero rate, short-time

energy

combine DBN and

SVM 95.8%

ELM decision tree

[122]

correlation analysis,

Fisher criterion

ELM decision tree,

SVM decision tree
89.6%

Our work

short-time energy,

short-time zero-crossing

rate, and short-time

average amplitude

difference.

LSTM

97.64%,

98.47%,

98.33%

on different datasets. The processing of audio clips using deep 1D and 2D CNN LSTM

networks [157] in the Berlin EmoDB database achieved an accuracy of 92.34%. In contrast,

the method using spectrogram features and combining them with CNN networks [158]

achieved an accuracy of 53.11%. Using an approach based on the Bidirectional LSTM

architecture and a deep confidence network [159], a BiLSTM network with RBF features

achieved 85.57% accuracy.

In our study, we achieved 100%, 99.58%, and 99.90% accuracy on the Berlin EmoDB

database using LSTM networks based on features such as energy (En), over-zero rate

(Zcr), and average amplitude difference (AMDF). For the EMOVO database, our model

achieved 98.87%, 96.43%, and 86.12% accuracies with the same features. Compared with

previous methods, our method exhibits higher accuracy rates, proving its effectiveness and

superiority in speech emotion recognition tasks.

3.5 Conclusions

The aim of this study is to explore and validate a novel approach to speech emotion

recognition that utilizes a combination of short-and rhythmic features, with speech rate

as a key parameter. By analyzing the speech rate information extracted from short-

time features, our method avoids the overfitting problem that may be caused by complex

computation, thus improving the accuracy and robustness of sentiment classification.

The experimental process involved several steps, starting with data preprocessing, in-

cluding normalization and endpoint detection, to ensure the quality and consistency of the
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Table 3.10. Comparison of speech emotion recognition methods on different datasets

Database

Name
Paper Features Network

Accuracy

(%)

Berlin EmoDB

deep 1D & 2D

CNN LSTM

networks [157]

audio clips
1D-CNN-

LSTM
92.34%

Deep Learning

Techniques for

Speech Emotion

Recognition [158]

Spectrogram CNN 53.11%

Speech emotion

recognition based

on Bi-directional

LSTM architecture

and deep belief

networks [159]

RBF BiLSTM 85.57%

Our work
En

Zcr

Amdf

LSTM
100%

99.58%

99.90%

EMOVO

Improved speech

emotion

recognition with

Mel frequency

magnitude

coefficient [160]

MFMC 12

MFMC 24

MFMC 30

SVM
64.12%

70.92%

73.30%

Our work
En

Zcr

Amdf

LSTM
98.87%

96.43%

86.12%

data. We then extracted short-time features using Python’s wave library and calculated

the speech rate. Next, we reconstructed the speech data using the extracted features and

used them as the training input for the LSTM neural network. During model training,

we used a series of hyperparameters and configurations such as the learning rate, opti-

mizer, hidden layer size, and number of network layers. Through repeated experiments

and tuning, we determined the optimal parameter settings for achieving the best emotion

recognition performance.
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We conducted experimental validation on multiple speech databases, and the results

showed that our method achieved a significant accuracy improvement for each database.

Specifically, the accuracies of the different databases were 97.64%, 98.47%, and 98.33%,

respectively, demonstrating the wide applicability and effectiveness of speech rate as an

important parameter for speech emotion recognition.

However, this study also has some limitations and challenges. First, the dataset size was

relatively small, which may limit the training and generalization ability of the model. To

mitigate this problem, we adopted the strategy of expanding the dataset to improve the

model performance by increasing the amount of data. Second, our method must be further

optimized to improve its robustness and generalization in complex speech environments.

In summary, this study provides a new method for speech emotion recognition using

speech rate analysis. Future research can explore more data enhancement techniques and

model optimization strategies to further improve the accuracy and robustness of sentiment

recognition. This will promote the development of speech emotion recognition technol-

ogy and provide more accurate and reliable emotion recognition capabilities for speech

intelligence applications.
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Chapter 4

Proposal 3: Speech Emotion

Recognition Based on Hilbert Curve

In the field of speech emotion recognition, researchers have been exploring improved rep-

resentation methods to enhance the capture of emotional information. Traditional one-

dimensional time series classification exhibits limitations in expressing complex emotional

patterns, particularly due to the nuanced and intricate nature of emotional information in

speech signals, posing challenges in terms of accuracy and robustness in emotion classifi-

cation tasks. This chapter proposes an innovative algorithm aiming to effectively capture

and express emotional information by refining the representation method for time series.

The method utilizes Hilbert curves to transform one-dimensional speech data into two-

dimensional data, preserving the integrity of the data for more accurate feature extraction.

Additionally, a tiling module based on fully connected layers is designed to fully leverage

the arrangement of Hilbert curves, unfolding multidimensional feature maps extracted by

convolutional neural networks based on temporal correlations for better capturing emo-

tional information. The experimental results clearly demonstrate the outstanding perfor-

mance of this approach. Firstly, in terms of spatial utilization efficiency, this method can

save up to 23,195 times the pixel units compared to other time series imaging methods,

effectively improving data storage efficiency. Secondly, in terms of accuracy, this method

significantly outperforms other methods on the same dataset, particularly when using the

Hilbert unfolding data representation method, achieving a remarkable accuracy of 98.73%.

Most importantly, compared to traditional classification methods, this approach achieves

higher accuracy on the same dataset, highlighting its superior performance in emotion

classification. These data-driven findings effectively showcase the effectiveness and supe-

riority of this proposed method, providing a solid empirical foundation for this research

work.
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4.1 Introduction

Emotions play an important role in human life and profoundly influence the psychology

and behavior of individuals [161]. They are not only essential for individual survival

and adaptation[162], but also play a crucial role in interpersonal relationships, social in-

teractions [163], and decision-making [164]. Emotions are essential for expressing and

understanding human experience, and they serve as a link between individuals and the

world around them [165]. In social settings, emotions convey information, intentions, and

relationships [166]. People express emotions to make connections, convey empathy, and

generate deeper understanding in their interactions [167]. Emotions also play a key role in

decision making [168]. Individuals’ emotional states may influence their decision prefer-

ences and risk tolerance levels [169, 170]. Positive emotions may prompt more optimistic

and risky decisions, while negative emotions may lead to more conservative and cautious

choices [171, 172]. Therefore, understanding and identifying emotions is crucial to better

understand individual behavior and decision-making processes.

Speech Emotion Recognition (SER), a branch of emotion detection, is an important form

of emotional expression and accounts for 38% of emotional communication [173]. This

subject focuses on the recognition of emotions in speech without considering semantic

content [174, 175]. Speech signals contain many acoustic features that can reflect the

emotional state of the speaker as well as information related to the speaker and speech.

Therefore, the central concept of emotion detection is to study the acoustic differences

produced when speech is vocalized in different emotional contexts [176].

SER has a wide range of applications in the field of emotion-related information. For

example, speech emotion recognition provides important assistance in areas such as health-

care, education, and social interactions [177, 178, 179]. It helps monitor stress-induced

changes in mental health [180], conduct mental health assessments [181], and quickly pre-

dict depression severity [182]. In social media analytics, speech emotion recognition plays

an active role in improving decision–making in the tourism industry [183, 184]. In addi-

tion, it helps to collect and analyze people’s opinions and impressions of various topics,

products, themes, and services, improving their sense of well-being and satisfaction, and

thus contributing to social stability and harmony [184] [185].

The convergence of SER with real–life applications enhances the close connection be-

tween human and computer interaction. By enabling computer systems to recognize and

respond to human emotions, SER offers the possibility of more intuitive and emotion-

ally rich human-computer interactions in various domains [178]. For example, in 2017,

researchers [186] proposed a flexible emotion recognition system that utilizes visual and

auditory input analyses. In 2020 [187], three models or experts were integrated using

integrated learning, focusing on different feature extraction and classification strategies.
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Other studies [188] have employed rectangular filters and improved pooling strategies to

create lightweight SER models. They used a CNN approach to learn deep frequency

features and trained CNN models for sentiment assessment using frequency features ex-

tracted from speech data. In addition, a new SER approach is based on the bidirectional

attentional long short-term memory (BLSTMwA) model and deep convolutional neural

networks (DCNN) [189]. Integrated classifiers have also been created using deep convolu-

tional recurrent neural networks, specifically for SER [190]. These studies enrich knowledge

in the field of SER and provide more options for practical applications.

However, one of the main challenges in the field of SER is to extract relevant features

from speech signals to recognize emotional states [191, 192] and to develop appropriate

classifiers [193, 175]. Speech feature extraction is considered to be a key issue in speech

emotion recognition systems. Many studies have proposed a variety of speech features,

such as pitch, energy, frequency, linear predictive resonance frequency coefficients (LPCC),

MFCC, and modulation spectrum features that reflect the speaker’s emotional informa-

tion [194, 195, 196]. Therefore, many studies have combined multiple types of affective

features to adequately characterize the available speech signals. However, combining mul-

tiple affective features increases the dimensionality and redundancy of speech data, thereby

increasing the learning difficulty of most machine learning algorithms and the risk of over-

fitting [197]. Against this backdrop, two studies explored new approaches to combat this

problem. Wang et al. proposed a compelling approach for transforming a one-dimensional

speech time series into more informative two-dimensional image data [92]. This study uti-

lizes the comprehensive and versatile nature of computer vision to improve the efficiency

and accuracy of speech emotion recognition. Its innovation lies in presenting speech sig-

nals in a novel manner, providing more possibilities for sentiment analysis. Another study

utilized the quasi-periodic nature of speech signals to transform one-dimensional speech

data into more information-rich two-dimensional data by periodically segmenting speech

signals [198]. The uniqueness of this approach is that it exploits the periodic nature of

speech signals to improve emotion recognition performance. These two research results

introduce new ideas and methods in the field of speech sentiment recognition that are ex-

pected to improve the accuracy and practicality of sentiment analysis. However, Wang et

al. and Bakhshi et al. proposed two methods present unique challenges and complexities

in the field of SER. For Wang et al.’s approach, utilizing the Gram angle field for convert-

ing one-dimensional speech signals into two-dimensional images introduces challenges in

terms of the accuracy and robustness of the transformation. On the other hand, Bakhshi

et al.’s method, based on the periodicity of the speech signal, faces challenges related to

the generalizability of the conversion technique.

Building on these foundations, this study proposes a new method that adeptly tackles

challenges associated with standardization, calibration, interpretability, and generalizabil-

ity in emotion recognition from speech signals. This method endeavors to convert one-
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dimensional time series data into more informative two-dimensional images. Inspired by

converting one-dimensional time-series data into a two-dimensional image with the struc-

ture and shape of a Hilbert curve. Subsequently, a convolutional neural network is utilized

to extract the features of the image, and the extracted feature values are passed through a

fully connected network for sentiment classification. It is worth mentioning that compared

the performance of this method with that of previous studies ([92] and [198]). This com-

parison validated the feasibility and effectiveness of the proposed algorithm in the field

of emotion recognition. The results of this study show that the proposed algorithm has

potential advantages in emotion-recognition tasks. The innovative aspect of this study is

that it not only provides a new method for processing one-dimensional time-series data

but also demonstrates the potential application of this method in emotion recognition.

By presenting time series data as two-dimensional images, open up more possibilities in

the field of sentiment analysis, with promising improved accuracy and performance. The

success of this approach demonstrates the potential value of deep learning and computer

vision for sentiment recognition.

The remainder of this paper is organized as follows. Section 4.2 briefly describes the

proposed method in this study. Section 4.3 provides details about the specific experimental

procedures and dataset. Section 4.4 presents the results obtained from the experiments

and engages in a discussion of these results. Finally, Section 4.5 concludes the study.

4.2 Hilbert Curve Path Arrangement method

This study introduces an innovative method for transforming one-dimensional time series

into two-dimensional images. Specifically, the approach involves arranging the signal along

the path of the Hilbert curve, mapping the speech signal onto an image that follows

the trajectory of the Hilbert curve. The purpose of using Hilbert curves is to reduce

information loss and thus improve the accuracy of the conversion from 1D time series

to 2D images. By mapping the speech signal onto the trajectory of the Hilbert curve,

the temporal correlation is preserved, making the new representation more capable of

capturing the temporal correlation and dynamic features in the speech signal.

The Hilbert curve, proposed by German mathematician David Hilbert in 1891 [199], is a

special kind of space-filling curve with a wide range of applications. This curve can fill any

bounded two-dimensional space, and is unique in that it maintains the locality of neigh-

boring points, making neighboring points also neighboring on the curve, which facilitates

localized access to spatial data. As shown in Fig. 4.1, the image represents the morphology

of Hilbert curves of different dimensions in two dimensions. In addition, Hilbert curves

are able to map multidimensional data onto one-dimensional curves, improving the effi-

ciency of indexing and searching the data, as well as having a nested structure that allows

for resolution adjustments as needed. The image representation utilizes Hilbert curves to
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achieve a mapping of a two-dimensional image onto a one-dimensional curve as shown in

Fig. 4.1(a). Such curves are also used in image compression and coding, where pixels

are arranged in the order of the curve to achieve a compact representation of the data.

Thus, Hilbert curves play a key role in the fields of geographic information systems, image

processing, database query optimization, and distributed computing, and are particularly

suitable for processing spatial and multidimensional data.

(a) Original shapes of Hilbert curves of dimensions 3, 4, 5, and 6.

(b) Hilbert curves represent the localization of neighboring points on a two-

dimensional image 1.

(c) Hilbert curves represent the localization of neighboring points on a two-

dimensional image 2.

Fig. 4.1. The two-dimensional shape of the Hilbert curve. Fig. 4.1(a) shows the orig-

inal shape of the Hilbert curve in dimensions 3, 4, 5, 6. Fig. 4.1(b) shows

how the Hilbert curve represents the localization of neighboring points on a

two-dimensional image. It can be observed from the figure that the higher the

dimension of the dimension of the Hilbert curve, the richer the data between

neighboring points, and the better the curve can describe the image.

In this study, two innovative proposals based on mapping and inverse mapping of Hilbert

curves are presented to achieve an efficient conversion of 1D time series to 2D images.

1. Conversion from one to two dimensions: In this study, an innovative one-

dimensional to two-dimensional upscaling method is proposed through the mapping

of Hilbert curves. The overall pipeline of conversion from one to two dimensions is
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(a) Waveforms of RGB image 1 of Hilbert curve projections.

(b) Waveforms of RGB image 2 of Hilbert curve projections.

Fig. 4.2. The Hilbert curve represents multidimensional data on a one-dimensional curve.

Fig. 4.2(a) corresponds to Fig. 4.1(b) and Fig. 4.2(b) corresponds to Fig. 4.1(c),

showing how the Hilbert curves can be transformed into each other in one or two

dimensions. For ease of understanding, the experiment split the two-dimensional

image according to the RGB three-color channel. Using the Hilbert curve, each

channel was separately mapped from the higher-dimensional space to the one-

dimensional space. The waveform in the projection shows the R, G, and B colors

of the two-dimensional image according to the colors. The horizontal coordinate

represents the number of sampling points and the vertical coordinate represents

the size of the color pixel value. The number of sampling points determined the

dimensions of the Hilbert curve. In this figure, every 20 pixel points was sampled

to obtain the final waveform image. Fig. 4.2(b) shows a Hilbert waveform graph

corresponding to a normal image.
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illustrated in Fig. 4.3. This experiment involves treating speech data as grayscale

pixel values in an image and plotting them according to the order of the Hilbert

curve, creating an ordered image, as shown in Fig. 4.4. The image dimensions are

set to (512, 512), determined by the minimum size required to encompass all speech

data with a dimension value of 9. For cases where the data is insufficient to fill

the entire image, two padding methods are employed: zero-padding and repetitive

data read for padding, with excess portions discarded. Ultimately, this process

provides an innovative approach, leveraging the ordered nature of the Hilbert curve,

to represent speech information in the form of an image. The flexible handling

of padding accommodates different image sizes without compromising information

integrity.

Fig. 4.3. Illustration of conversion from one to two dimensions. This experiment trans-

forms speech data into an ordered image by mapping grayscale pixel values

according to the Hilbert curve, with a fixed image size of (512, 512) determined

by the longest segment of speech data, utilizing different padding techniques to

handle incomplete regions.

2. Conversion from two to one dimension: In order to restore the information

effectively, this study also proposes an innovative 2D to 1D dimensionality reduc-

tion method based on the Hilbert curve. The dimensionality reduction process from

2D to 1D is realized by inverse mapping, i.e., rearranging the 2D image onto the

trajectory of the Hilbert curve. The images processed by the convolutional neural

network consist of a set of feature maps with multiple channels, exemplified here

with three channels as shown in Fig. 4.5(a). These feature maps are unfolded along

the path of the Hilbert curve and concatenated in channel order, forming a one-

dimensional array as illustrated in Fig. 4.5(b). This unfolding method better pre-

serves the temporal correlation of speech data, ensuring that the order of features in

the one-dimensional array aligns with their temporal positions in the original image.

This Hilbert curve-based transformation from two-dimensional to one-dimensional
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(a) One-dimensional

time series before con-

version.

(b) 2-dimensional im-

age after conversion.

Fig. 4.4. Illustrate the conversion of one-dimensional speech data into two-dimensional

images. This example illustrates a time series of length 16 as shown in Fig.

4.4(a), where the sequence values are arranged as grayscale pixel values in ac-

cordance with the Hilbert curve’s order, resulting in a two-dimensional image as

shown in Fig. 4.4(b). To provide a clearer representation of the image, study

annotates the pixel values at corresponding positions and depict the path of the

Hilbert curve. This process aims to articulate the mapping of speech data to an

image in a more academically nuanced and fluent manner.

effectively maintains the temporal structure while taking into account the temporal

correlation of the multi-channel feature maps produced by the convolutional neural

network. It provides a more accurate and ordered representation for further analysis

of speech data.

These two proposals aim to optimize the data representation and reduction process to

meet the high demands for accuracy and effectiveness in the field of emotion recognition.

By incorporating the unique mathematical properties of Hilbert curves, these proposals

aim to provide a more informative representation of speech signals, thus providing a more

reliable and powerful tool for emotion recognition tasks.

4.3 Experimentation and methodology

This subsection describes the specific experimental process of how to use Hilbert curves

for conversion. First, the research collected a batch of speech samples and pre-processed

them, including steps such as denoising, segmentation, and feature extraction. Then, con-

verted each speech sample into its corresponding Hilbert curve representation. This step

involves subjecting the speech signal to the Hilbert transform to obtain its Hilbert repre-

sentation in complex form. Next, the research perform further processing on the obtained

Hilbert curve, including smoothing, noise reduction, etc. This step aims to extract the

key information in the speech signal and remove unnecessary noise and interference. After

the Hilbert curve processing, input it as features into our model for training and testing.
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(a) One-dimensional time se-

ries before conversion.

(b) 2-dimensional image

after conversion.

Fig. 4.5. Illustrate the conversion of two-dimensional speech data into one-dimensional

images.

The research employ various machine learning or deep learning models for the emotion

recognition.

4.3.1 Dataset

This chapter utilized the CASIA Emotion Corpus, which features recordings from four

professional speakers reciting 50 unique sentences. Each sentence was associated with one

of six emotions: anger, happiness, fear, sadness, surprise, and neutrality. The corpus con-

tains 1200 sentences, offering a valuable resource for analyzing the acoustic and prosodic

attributes associated with various emotional states. These sentences vary in length, span-

ning five, six, and eight characters, respectively as shown in Table 4.1. To facilitate this

study, the corpus was randomly divided into a training set (80%) and a test set (20%), as

outlined in Table 4.2. Speech recordings were conducted within a controlled studio envi-

ronment, free from external noise, with a sampling frequency of 16000 Hz and a storage

format of PCM, 16-bit. The emotion labels were provided by the recording unit [200].

4.3.2 Experiment

The dataset and device information used in the experiment as shown in Table 4.3.

The entire experimental flow is shown in the Fig. 4.6, which helps us better understand

the method and steps of the experiment. This method fully utilizes the potential of
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Table 4.1. Attribute of the corpus.

Corpus CASIA

Language Chinese

Size 50 utterances × 4 actors × 6 emotions

Subject 4 professional actors

Emotions angle, fear, happy, neutral, sad, surprise

Table 4.2. Composition of the corpus.

Number of words 5 words 6 words 8 words Total

Sentences numbers 192 960 48 1200

Train set numbers 144 768 24 960

Test set numbers 48 192 24 240

Table 4.3. Experimental environment and parameter configuration.

configuration item Numeric/Descriptive

Programming Language and Version Python 3.11

Deep Learning Framework PyTorch

Libraries * cv2, hilbertcurve, matplotlib,

numpy, Scikit-image, torch, wave

Epochs 100

Training Rate 0.8

Optimizer Adam

* The libraries listed in the table follow Python’s naming conventions, are

sorted alphabetically, and can be installed using the -pip command.
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computer vision and deep learning techniques in one-dimensional time-series data analysis.

Fig. 4.6. The flowchart of the experiment.

In the preprocessing stage, the experiment first normalizes the speech signal between [0-

1], and then regularizes it to make its value range between [0-255] to meet the requirement

of an 8-bit image. Next, the one–dimensional data were converted to two–dimensional data

according to the properties of the Hilbert curve. The relationship between the dimensions

of the Hilbert curve and the length of the time series X is presented in Table 4.4. For

speech data of length 22n, the dimension of the Hilbert curve is typically (2n, 2n), which is

converted into a Hilbert curve 2n × 2n. For speech data with lengths between 22(n−1) and

22n, two different methods of data supplementation are used to ensure that the Hilbert

curve dimension requirement is satisfied. Method one was to use for 0–padding, while

method two was to iterate the data repeatedly to satisfy the dimensionality requirement.

The method of complementing zeros was chosen primarily because of the translation in-

variance characteristic of the convolution operation [201].

The experimental results are shown in Fig. 4.7. Fig.4.7(a) represents the portion filled

using 0, whereas Fig. 4.7(b) represents the speech signal replicated iteratively to satisfy the

Hilbert curve dimensionality requirement. These generated images were feature-extracted

using a convolutional neural network and then classified using a fully connected layer.

For comparison, different neural networks were used in the experiments to extract the

feature values. One is the ResNet network model and the other is the experimentally

proposed Hilbert-CNN network model, as shown in Fig. 4.8. Fig. 4.8(a) shows a flowchart

of the network, using the Hilbert curve as the unfolding layer. The network was first

convolved thrice to obtain a feature map. The feature map is then unfolded using the

Hilbert curve. The flattened feature map passes through three fully connected layers to

extract feature values. Finally, classification results were obtained. The data related to

the convolution are shown in Fig. 4.8(b). The size of the convolution kernel was (4, 4),

and the step size was 4. The size of the input image was (1, 512, 512), and the size of
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Table 4.4. Hilbert Curve Dimension and Time Series Length Relationship.

Dimension
Length of

Time Series1
Image Size

((h, w))2
Speech Duration

(sec)3

5 1024 (32, 32) 0.064

6 4096 (64, 64) 0.256

7 16384 (128, 128) 1.024

8 65536 (256, 256) 4.096

9 262144 (512, 512) 16.384

1 Speech Duration (sec) = Number of Data Points
Sampling Frequency , the dataset was sampled

at 16,000Hz.
2 Image size =(2n, 2n),n is the dimension. h denotes the height of the

image, w denotes the width of the image
3 Legnth = H × W= (2n)2 Length of time series indicates the maximum

number of time series points that can be included.

(a) Hilbert imaging al-

gorithm with 0-filling.

(b) Hilbert imaging al-

gorithm with iterative

padding.

Fig. 4.7. The result of Hilbert imaging algorithm.

the convolved image was (256, 8, 8). Classification is performed by unfolding the Hilbert

curve and inputting the fully connected layer. Because of the specificity of Hilbert-CNN,

it is only used as a partial parameter for Hilbert imaging.

The entire experimental flow as shown in Fig. 4.6, which helps better understand the

methods and steps of the experiment. This method fully utilizes the potential of computer

vision and deep learning techniques for one-dimensional time-series data analysis.
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(a) Hilbert-CNN network flow chart.

(b) Hilbert-CNN network flow chart schematic.

Fig. 4.8. Hilbert-CNN network model structure.

4.4 Results and discussion

In this section, this study delve into different methods for converting one-dimensional data

into two-dimensional images, and the performance of these methods is compared and ana-

lyzed in detail. The method used in this study is primarily based on the properties of the

Hilbert curve, which can convert one-dimensional time-series data into a two-dimensional

image form with more information. By augmenting the training dataset with a 1.5x

acceleration and 0.5x deceleration, the aim is to enhance the model’s robustness and gen-

eralization to diverse speech features, encompassing varying speeds and speech rates. This

expansion seeks to more comprehensively capture and process the nuanced characteristics

present in real-world speech. To assess the effectiveness of this method, this study used

accuracy as the evaluation index, which is the ratio of the number of samples correctly pre-

dicted by the model to the total number of samples in the classification problem, as shown

in Eq. (4.1). Usually expressed as a percentage, it indicates the proportion of all samples

that the model correctly classified. Study conducted a comparative study using related
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methods. As shown in Table 4.5, the H-CNN means the network combined convolutional

neural network and Hilbert curve. Bold indicates the data with the highest accuracy for

each method. The tabulated results unmistakably reveal a significant enhancement in

accuracy attributed to the utilization of the images generated by the Hilbert curve.

Accuracy =
Number of Correctly Classified Samples

Total Number of Samples
× 100% (4.1)

Table 4.5. Accuracy comparison of different 1D data to 2D image conversion methods(%).

Algorithms
Network

Lr Resnet18 Resnet34 Resnet50 Resnet153 H-CNN

GAF

1e-03 67.47 73.02 63.25 73.10

-

1e-04 90.32 40.83 80.01 87.51

1e-05 90.00 34.58 81.32 90.01

1e-06 83.30 87.31 81.03 87.31

1e-07 74.37 92.38 81.73 82.13

CyTex

1e-03 64.11 65.74 67.37 68.37

-

1e-04 80.31 82.31 67.66 81.76

1e-05 82.94 84.53 85.34 86.31

1e-06 87.03 87.24 87.42 79.82

1e-07 75.22 73.01 70.28 73.50

Hilbert

1e-03 73.58 76.29 80.14 80.01 81.91

1e-04 80.09 81.14 81.79 80.13 84.08

1e-05 86.17 88.06 89.37 87.16 90.13

1e-06 94.16 95.21 95.19 92.13 95.95

1e-07 82.93 84.19 88.16 87.97 89.01

Hilbert(0-filled) 1e-03 76.35 82.43 83.39 73.12 88.01

1e-04 73.21 81.52 82.09 73.14 88.79

1e-05 85.12 92.31 93.35 94.04 98.73

1e-06 92.15 94.46 95.09 96.09 97.50

1e-07 83.24 82.76 85.31 83.19 83.27

As shown in Table 4.6, compared to emotion speech recognition methods on the same

dataset, the proposed approach in this study exhibits significant advantages. Bold indi-

cates the most accurate data. Based on the comparative analysis, this study proposed

emotional speech recognition method performs well on the same dataset and shows sig-

nificant advantages. The higher accuracy level reflects the robustness and effectiveness of

proposed method in capturing complex emotional nuances in speech signals.
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Table 4.6. Accuracy comparison of same dataset methods(%).

Method Description Accuracy

DBN & SVM [131]
Deep Belief Network combined with Support Vector

Machine for feature extraction and classification.
95.80%

ELM decision tree

[202]

Extreme Learning Machine decision tree approach

for emotion recognition in speech signals.
89.60%

GAF
GAF method transforming one-dimensional speech

signals into two-dimensional images.
95.95%

CyTex

CyTex method utilizing the inherent periodicity of

speech signals for conversion to two-dimensional

images.

87.42%

Hilbert Curve

Innovative Hilbert Curve-based method mapping

one-dimensional time series to two-dimensional

images for emotion recognition.

98.73%

First, this study introduced methods similar to those in this study, including GAF and

CyTex, which also transform one-dimensional data into two-dimensional images. The 2D

images generated by these methods exhibited different characteristics, as shown in Fig.

4.9(a), which represents a part of the image of the GAF method. Fig. 4.9(b) shows the

image generated by the CyTex algorithm. Fig. 4.9(c), represents the image obtained using

the Hilbert curve method, and the image is zero-filled, while Fig. 4.9(d) is transformed

using the Hilbert curve but not zero-filled.The advantages and disadvantages of the three

algorithms are shown in the Table 4.7. The GAF algorithm required significant memory

resources. For a time series of length L, the GAF algorithm generates an image of size

(L,L), whereas CyTex generates an image of a size greater than (C, L/C), where C is

the period. Hilbert generates an image of size (2n, 2n), where n is the smallest integer

that satisfing the condition that 22n is greater than or equal to L. The following is an

example of an integer that satisfies this requirement: The image generated using the

GAF algorithm retains the temporal correlation; hence, inverse mapping can be realized.

Whereas the image generated by the Cytex algorithm retains a portion of the temporal

correlation within each cycle, the temporal correlation between cycles is lost due to 0-

filling; hence, inverse mapping cannot be fully realized either. The image generated by

the Hilbert algorithm also retains the temporal correlation and performs better in terms

of accuracy than the other two algorithms. Thus, it can be concluded that the Hilbert

curve is theoretically feasible.
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(a) GAF algorithm imag-

ing.

(b) CytTex algorithm

imaging.

(c) Hilbert imaging algo-

rithm with 0 padding.

(d) Hilbert imaging al-

gorithm with iterative

padding.

Fig. 4.9. The result of Hilbert imaging algorithm.

Table 4.7. Comparison of GAF, Cytex, and Hilbert.

Method Size1 Temporal Relationship Inverse Mapping Accuracy2

GAF *** Preserve Feasible 2

Cytex ** Partially Preserve Partially Feasible 3

Hilbert * Preserve Feasible 1

1 Size: Use * to indicate the size, the more * the larger the size.
2 Accuracy: Positive ranking of accuracy expressed as a number, with

smaller numbers indicating higher accuracy.

By comparing these methods, some important conclusions can be drawn. In this study,

accuracy was used as the main evaluation metric and was compared with the results of

other studies. The results show that the algorithm proposed in this study performs better

in the same environment, particularly when the Hilbert method is used. In addition, from

the perspective of computational cost, this study is more efficient than the two methods

mentioned above, which provides more advantages for practical application.
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Overall, the method proposed in this study provides a more promising way to process

one-dimensional time series data. By presenting these data as 2D images, this study

not only increased the richness of the information but also improved the accuracy and

performance. The successful application of this method highlights the potential value

of deep learning and computer vision in emotion recognition and other fields, thereby

providing new directions for future research and applications.

4.5 Conclusions

Our research aims to explore how one-dimensional time-series data can be transformed

into a visual form to provide a clearer presentation of the data and more effective analysis

methods. In this process, the study face challenges such as high memory requirements and

computational complexity, and the study need to consider the efficiency of the algorithm

and the accuracy of data visualization. The Hilbert curve approach excels in this context

because it can transform 1D time-series data into rich 2D images. Our results show that

sentiment recognition using the Hilbert curve method is significantly better than that

of other methods, emphasizing the importance and practical application of this method

in the field of time-series visualization. This study not only provides new ideas for the

visualization of time-series data but also offers the possibility of performance improvement

of deep learning models. At the same time, the study emphasize the complexity of the

field of sentiment analysis as it must deal with a diversity of sound signals, which makes

sentiment recognition more challenging. Finally, the study argue that this research also

has a wide range of applications that can be extended to other domains, such as throat

condition detection for speech signals and basic brain detection based on brainwave signals,

thereby providing new opportunities for interdisciplinary research and applications.
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Chapter 5

Applications of the proposed

two-dimensionalization algorithm in

other fields

Epilepsy is a neurological disorder that seriously affects patients’ lives and health. The

accurate identification of epilepsy species is essential for developing effective treatment

and management plans. This study aimed to enhance the efficient recognition of epilepsy

types. Our methodology combines the CyTex algorithm with multichannel parallel con-

volution and RNNs neural networks for comprehensive analysis and classification. This

integrated approach yielded notable results, allowing for the accurate differentiation of di-

verse epileptic events and ultimately achieving a recognition accuracy of 76.84%. Although

these results are promising, it is acknowledged that there is still potential for further im-

provement in accuracy. This study provides valuable insights into epilepsy recognition

and lays the foundation for future research in medical diagnosis and disease classification,

although it does not represent a significant breakthrough in accuracy.

5.1 Introduction

Epilepsy is a neurological disorder caused by an abnormal discharge in the brain [203, 204].

It is one of the most common neurological diseases in the world. By 2023, the World

Health Organization (WHO) reported that epilepsy will affect approximately 50 million

individuals worldwide [205]. Seizures face potential dangers, such as falls, drowning, traf-

fic accidents, pregnancy complications, and mental health issues [206]. However, these

dangers should not be disregarded. If the patients fall during the seizure, they can injure

their head or spinal; if they have a seizure while swimming or bathing, they are at risk

of accidental drowning; seizures can lead to loss of control over the body or even loss of

consciousness, making it impossible for the person to control the vehicle and causing traffic
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accidents; seizures during pregnancy can endanger the pregnant woman and the fetus, and

anti-seizure medications increase the risk of physical defects in the fetus. The risk of peo-

ple with epilepsy is more likely to experience depression, anxiety, or other mental health

problems. The medications used to treat epilepsy can cause these mental health problems.

Therefore, prompt and accurate diagnosis of epilepsy is crucial for patients [207]. Cur-

rently, the diagnosis of epilepsy entails a comprehensive acquisition of medical history and

meticulous neurological assessments. Additionally, supplementary examinations such as

neuroimaging and electroencephalography (EEG) are employed in the diagnostic process.

The EEG identifies interictal (between seizures) and ictal (during seizures) epileptiform

abnormalities. A neurologist investigated epileptiform abnormalities by visual examina-

tion of EEG data, providing valuable information about the type of epilepsy and its cause

[208].

However, there are several problems with interpreting EEG signals through visual as-

sessment. First, different EEG readers can generate different types of EEG data. Second,

epileptic discharges are not constant; however, EEG captures only a snapshot of the brain

activity. Therefore, interpreting EEG signals by visual assessment is time consuming and

may even require a manual review of the hours or days of EEG data [209]. In addition,

epileptic EEG signals are more chaotic and variable than are normal EEG signals. Al-

though epileptiform abnormalities are always present, they are not observed on the scalp

surface electrodes. All of these factors can make diagnosis very difficult. Hence, the use

of computer-aided diagnosis (CAD) systems is crucial for achieving accurate, rapid, and

objective diagnosis [208].

In 1908, Neminsky discovered action currents in the central nervous system of frogs

and electrical fluctuations in the brain of dogs [210]. He was also the first to print an

electroencephalogram. In 1934, Penfield founded the Institute of Neurology in Montreal

to study brain function and to treat epilepsy [211]. In 1936, Harvard et al.. reported

the occurrence of slow waves in patients with seizures. This has led to progress in the

study of epileptic electroencephalograms (EEG) [212]. Adeli used wavelet transforms to

analyze epileptic EEGs in 2003 [213]. Rajendra Acharya summarized EEG signal-based

automated epilepsy detection techniques in 2013 [214]. In 2015, Oliver Faust summarized

epilepsy diagnosis based on wavelets, nonlinear dynamics, and the chaos theory [215]. In

the same year, Rajendra Acharya reviewed the application of entropy in the EEG-based

automatic diagnosis of epilepsy [216].

EEG signals are nonlinear and nonsmooth [217]. This complexity makes EEG sig-

nals too intricate for an intuitive interpretation. We implemented the CyTex transform

and recurrent neural networks (RNNs) to detect various types of epilepsy and overcome

this challenge. The CyTex transform was used to rationalize EEG signals into an image

representation, thus preserving both short- and long-term information in the time series

[218]. This transformation allows for a more thorough capture of EEG signal features,
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thereby providing more meaningful inputs for subsequent classification tasks. Based on

this premise, we implemented RNNs to process the altered EEG images [219]. RNNs were

used to process the EEG signals. RNNs can capture the temporal dependencies in se-

quential data and have inherent memory functions. Because of the quasi-periodic nature

of EEG signals, we calculated the fundamental period and organized the data as time

steps while extracting relevant input features. This processing helps classify epilepsy. By

combining the CyTex transform and RNN neural network, we were able to better capture

complex EEG signal features for the effective classification of different epilepsies. This

approach combines signal processing techniques and deep learning to provide a powerful

tool for research and medical diagnosis in the field of neuroscience. This method primarily

aids healthcare providers in understanding and interpreting patient data and ultimately

relies on the judgment and expertise of medical professionals for diagnosis.

The remainder of this paper is organized as follows. Section 5.2 briefly describes the

dataset and CyTex algorithm. Section 5.3 describes the extraction of EEG features. Sec-

tion 5.4 presents the experimental results and analysis. Finally, Section 5.5 concludes this

section.

5.2 Related work

This section describes the basic concepts of electroencephalography (EEG), the manifes-

tations of epilepsy on EEG, the EEG databases used and the network models employed.

EEG is a technique for recording the electrical activity of the brain by placing electrodes

on the scalp to detect the electrical activity of the cerebral cortex, thus reflecting the

state and changes in brain function. Epilepsy is a common neurological disorder, and

its manifestation on EEG usually includes different types of EEG waveforms, such as

sharp and slow waves, which reflect abnormalities in the electrical activity of the brain

during seizures. In this paper, a specific network model is used for seizure identification

and classification. By learning and extracting features from EEG data and performing

automatic recognition and classification of epileptic seizures. By introducing the basic

concepts of EEG, epilepsy manifestation on EEG, data models and network models, this

paper provides the necessary background and theoretical foundation for seizure detection

and recognition methods in the subsequent chapters.

5.2.1 EEG

Brain-computer interfaces (BCIs) are also known as brain-machine interfaces (BMIs). This

machine enables the human brain to communicate directly with external computers and

machines. In general, BCIs include four main areas: invasive brain-computer interfaces,

partially invasive brain-computer interfaces, non-invasive brain-computer interfaces, and

synthetic telepathy [220, 221, 222]. the advantages and disadvantages as shown in Table
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5.1.

Table 5.1. Transposed BCI Interface Advantages and Disadvantages.

Interface Advantages Disadvantages

Invasive BCIs

Precise signal acquisition. Invasive surgery risks.

High information transfer

rate.

Potential tissue damage.

Direct access to neural ac-

tivity.

Ethical concerns.

Partially Invasive BCIs

Enhanced signal quality. Still some surgical risks.

Moderate information

transfer rate.

Limited access to neural

data.

Reduced surgical risks. Ethical considerations.

Non-Invasive BCIs

No surgery or physical in-

trusion.

Lower signal quality.

Minimal health risks. Slower information trans-

fer.

Ethical acceptance. Limited access to neural

activity.

Synthetic Telepathy

Potential for direct com-

munication.

Highly speculative.

Reduced physical involve-

ment.

Technical challenges.

Ethical and social implica-

tions.

Privacy concerns.

Although there are many BCI systems and techniques, non-invasive BCI via EEG has

been the most widely investigated. It is relatively inexpensive, easy to carry, and use. In

addition, it has an elaborate temporal resolution [223]. In this study, we use the 10–20

system principle to read electrical signals from the scalp [224]. In this study, we explored

and implemented a brain–computer interface (BCI)-based recognition of epilepsy types.

By combining neuroscience and machine learning techniques, the information embedded

in the EEG data can be utilized to develop an effective system that can accurately identify

82



different epileptic seizures.

5.2.2 Epilepsy

Seizures differ significantly on the EEG as shown in the Table 5.2, which describes sev-

eral common patterns and their characteristics in the EEG. These patterns include sharp

waves, sharp waves, sharp-slow wave complexes, sharp-slow wave complexes, polysharp

wave complexes, polysharp-slow wave complexes, and sharp wave rhythms. Each pattern

has unique features such as duration, frequency, and amplitude that can be used to accu-

rately identify and diagnose seizures. These features show significant changes on the EEG

during seizures, providing an important diagnostic basis for medical professionals, which

helps them to develop individualized treatment plans and to monitor and manage patients

effectively.

5.2.3 Dataset

This study used the Temple University Hospital (TUH) open-source database [225]. This

database contains the basic statistics for the TUH EEG seizure corpus (TUSZ). The

annotation file in TUSZ contained 13 different types of labels, as shown in Table 5.3, eleven

specific seizure labels are used in the multiclass annotations. In bi-class annotations, the

specific seizure is not annotated, only whether a seizure has occurred. This is referred to as

a seizure (SEIZ). Only non-seizure annotation within the TUSZ background (BCKG) was

used to identify the background. Therefore, the annotation files available within the TUSZ

contained 13 different labels that consisted of seizure events and background annotations.

In the two-category annotation, no specific seizures were annotated, only whether they

occurred. This was labeled as seizure (SEIZ). BCKG was the only non-epileptic annotation

in the TUSZ. In this study, we use the train section of the TUSZ dataset. It contains

4,664 brainwave data files stored in .edf format. The EEG data in each file were collected

through 33 channels, with a sampling frequency of 250 Hz. The details of the data are

presented in Table 5.4. In these data files, the channel numbers were labeled according

to the standard ACNS TCP montage definition for channel numbering. For example,

Channel 1 was obtained by calculating the voltage difference between electrodes F7 and

T3, denoted as (F7-REF)–(T3-REF), as shown in Fig. 5.1 [225]. In this manner, we

generated a data file of 22 channels for subsequent analysis. In this study, we accurately

identified different epilepsy species by utilizing these data files, data preprocessing, feature

extraction, and appropriate model construction for the pairs. In this study, 80% of the

data were used as the training set, and 20% of the were used as the validation set.
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Table 5.2. Description of EEG images during seizures

Waveform char-

acteristics
Description

Spike

The spikes are the most basic paroxysmal EEG ac-

tivity, with a duration of 20 70 ms. Amplitude varies

but is typically ¿50 uV (Kane et al., 2017).

Sharp

A sharp wave is similar to the spike, and its time

limit is 70 200 ms (5 14 Hz). Amplitude is between

100 and 200 uV, and the phase is usually negative.

Spike and slow

wave complex

An epileptiform pattern consisting of a spike and an

associated slow wave following the spike, which can

be clearly distinguished from the background activ-

ity; may be single or multiple (Kane et al., 2017).

Sharp and slow

wave complex

An epileptiform pattern consisting of a sharp wave

and an associated slow wave following the sharp

wave, which can be clearly distinguished from the

background activity; may be single or multiple (Kane

et al., 2017).

Polyspike complex A sequence of two or more spikes.

Polyspike and slow

wave complex

An epileptiform pattern consisting of two or more

spikes associated with one or more slow waves.

Spike rhythm

Refers to a widespread 10 25 Hz spike rhythm out-

break, with an amplitude of 100 200 uV and the high-

est voltage in the frontal area, lasting more than 1 s.

5.2.4 Networks

The recurrent neural network is a type of neural network specialized for processing data

sequences artificially [219]. This is suitable for tasks that involve sequential or time-related

information. Unlike traditional feedforward neural networks, RNNs maintain an internal

state and compute a new hidden state based on the input data of the current time step and

hidden state of the previous time step. This mechanism allows the RNN to capture the

context and patterns in a sequence, thereby enabling it to process sequence data of varying
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Table 5.3. Types of Seizures and Abbreviations.

Seizure

Type
Abbreviation Description

FNSZ Focal nonspecific seizures
A large category of seizures occurring

with specific focality.

GNSZ Generalized seizures
A large category of seizures occurring

in most, if not all, of the brain.

SPSZ Simple partial seizures

Brief seizures that start in one location

of the brain (and may spread) where

the patient is fully aware and able to

interact.

CPSZ Complex partial seizures
Same as simple partial seizures but with

impaired awareness.

ABSZ Absence seizures

Brief, sudden seizure involving lapses in

attention. It usually lasts for no more

than 5 s and is commonly observed in

children.

TNSZ Tonic seizures

A seizure involving stiffening of the

muscles. Usually associated with and

annotated as tonic-clonic seizures, but

not always (rarely, there is no clonic

phase).

CNSZ Clonic seizures

A seizure involving sustained rhythmic

jerking. This is not seen in our datasets,

as it is always associated with tonic-

clonic seizures and is annotated as such.

TCSZ Tonic-clonic seizures
A seizure involving loss of consciousness

and violent muscle contractions.

ATSZ Atonic seizures

A seizure involving loss of muscle tone

in the body. It has never been observed,

as it is always associated with an occa-

sionally occurring phase before a tonic-

clonic seizure.

MYSZ Myoclonic seizures
A seizure associated with brief involun-

tary twitching or myoclonus.

NESZ Nonepileptic seizures
Any non-epileptic seizure observed. No

electrographic signs were observed.
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Fig. 5.1. Schematic of the 10-20 system numbered according to the ACNS TCP montage

standard. A derivation is the voltage difference between electrodes: for example,

Fp1-F3 is the voltage difference between electrodes Fp1 and F3.

Table 5.4. Basic descriptive statistics of the data.

Metric Value

Number of files (edf/csv/csv bi) 4,664

Number of sessions 1,175

Number of patients 579

Number of files with seizures 872

Number of sessions with seizures 352

Number of patients with seizures 208

Total number of seizure events 2,474

Total duration 3,277,229.00 secs

Total duration of files with seizures 677,091.00 secs

Total background duration 3,262,167.00 secs

Total seizure duration 175,062.00 secs
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lengths. By continuously updating the hidden state at each time step, the information in

the sequence is passed and accumulated to process the sequence data and capture temporal

correlations in the sequence.

5.3 Experimentation 1 : Application of two-dimensionalization

algorithms in epilepsy recognition

The raw EEG signal must be pre-processed to obtain relatively pure EEG data. Common

EEG signal noise includes IF, ECG, EMG, and EEG noise [226]. The IF noise was mainly

caused by the power supply of the device, and its frequency was 50 Hz. An ECG is

generated by the rhythmic motion of the heart and has high amplitude. Because the

heart is far from the head, the effect of the ECG signal on the EEG signal is typically

ignored. EMG is generated by muscle contraction and its frequency is mainly concentrated

in the high-frequency band at 100 Hz. EOG is an electrooculographic signal with a

frequency between 0.1 and 100 Hz. The EOG noise is always measured when measuring

prefrontal EEG signals. An EEG signal is generated by the heart, and its frequency is

mainly in the high-frequency band of 100 Hz. The EEG spectrum has distinct waveforms

in the four frequency bands in which seizures occur, as shown in Table 5.5 [227]. The

clinical and physiological concerns range from 0.3 to 30 Hz. The frequency bands within

this range are primarily categorized as δ (below 4 Hz), θ (4-8 Hz), α (8-13 Hz), and

β (13-30 Hz) [228]. Therefore, we pre-processed the EEG signals. The EEG signals

were filtered using a bandpass filter of 0.3−30 Hz. We then used independent component

analysis to eliminate artifacts such as eye movements and EMG. With this well-established

preprocessing framework, the accuracy of EEG signals is significantly improved, providing

a solid foundation for subsequent in-depth analysis and research.

In this experiment, through data preprocessing, feature extraction, multi-channel con-

volution, and recurrent neural network operations, the original brainwave signals were

transformed into images and classified, which realized accurate recognition and analysis

for extracting useful information from complex brainwave data. The flow of the experiment

as shown in the Fig. 5.2.

In this experiment, meticulous pre-processing was applied to the EEG signal data. Noise

from EEG noise from head and neck muscle activity, ECG noise and power frequency

mains noise was effectively eliminated by utilizing bandpass filtering techniques, leading

to significant enhancement in data quality. To further minimize the impact of measurement

noise, the differences between adjacent channels were calculated to improve data integrity.

Subsequently, the data were segmented based on the start and stop times, as specified in

.csv label files, ensuring alignment with the .csv file format, as shown in Table 5.6. The

segmented data were then normalized to fit within the range (0–1). Linear transformation
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Table 5.5. EEG Bands and Their Normal Manifestations

Band

Name

Frequency

Range
Normal Behavior

Alpha Waves 8-13 Hz

Normal adults exhibit alpha rhythms dur-

ing relaxed and mentally inactive wakefulness.

The amplitude is mostly below 50 µV and is

most prominent in the occipital region. The

alpha rhythm is blocked by eye opening (visual

attention) and other mental activities, such as

thinking.

Beta Waves 13-30 Hz

Beta activity primarily observed in the

anterior-central region with amplitudes

smaller than the alpha rhythm. It increases

during anticipation and tension states.

Theta Waves 4-8 Hz

Theta frequency is present in normal infants

and children, and during drowsiness and sleep

in adults. Only a minimal theta rhythm is

present in awake adults. A high theta activity

in awake adults indicates abnormalities and

pathological conditions.

Delta Waves 0.5-4 Hz

Delta rhythm is slow brain activity that ap-

pears only during the deep sleep stage of nor-

mal adults.

was applied to map the values to the interval (0, 255) to make the data suitable for an

8-bit image format.

The CyTex algorithm was employed to transform the EEG signals from each channel

into images, with each image exclusively representing information from a single channel.

Following the CyTex algorithm, data periodicity was determined using autocorrelation.

One–dimensional time series data were transformed into two–dimensional data based on

these periods. In this representation, the number of rows in the image corresponds to the

number of periods, whereas the number of columns represents the length of each period. To

create a dataset suitable for model training, the same filename data from the 22 channels

were merged into one image, forming a multichannel image dataset. Subsequently, these

image data were fed into a deep learning network to recognize different types of epileptic

seizures. Image data processing was performed using multichannel parallel convolution.
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Fig. 5.2. Flow chart of the experiment.

The images were generated using the CyTex algorithm and named following the format

filename channelnumber.png. A dictionary was established to bundle 22 channel images

with the same filename, resulting in channel–data fusion. Following this step, a data

format was obtained with filename matching of 22 images as shown Fig. 5.3.

The number of rows in the images represents the number of cycles, and the number of

columns represents the cycle length. To reduce the image dimensions, an image feature

extraction process was performed using convolution. To ensure the integrity of each chan-

nel’s data, a multichannel parallel convolution network was used, which was specifically

designed for processing multi-channel data. The convolution operation reduces the size of

the feature maps, extracts crucial features, and reduces the computational burden. After

the convolution process, the results from each channel were fed into Recurrent Neural Net-

works (RNNs) to establish a temporal relationship with the features. The neural recursive
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Table 5.6. Partial TUSZ database .CSV file

Channel Start time Stop time Label

FP1-F7 0.0000 36.8868 bckg

FP1-F7 36.8868 183.3055 cpsz

FP1-F7 183.3055 301.0000 bckg

F7-T3 0.0000 36.8868 bckg

F7-T3 36.8868 183.3055 cpsz

F7-T3 183.3055 301.0000 bckg

T3-T5 0.0000 36.8868 bckg

Fig. 5.3. EEG signal processing and conversion process.

network computes the feature values for each channel’s data. Eventually, the data pro-

cessed through the RNNs were transformed into one-dimensional vectors, with data from

all 22 channels merged. After applying three fully connected layers and a Softmax acti-

vation function, the data were classified. The network architecture of this deep-learning

model is depicted in the diagram. Through this sequence of processing steps, an accurate

classification of epileptic seizure types was achieved. The network model for deep learning

is shown in Fig. 5.4.

The design of this process allows us to extract useful information from raw brainwave

signals and gradually transform them into data suitable for classification, taking full ad-

vantage of convolutional and recurrent neural networks. Using this approach, we can

detect various patterns and characteristics in brainwave data, which supports research in
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Fig. 5.4. Network model diagram for deep learning. The input data for the image had 22

channels, each with dimensions of height (H) and width (W). We maintained a

single-channel output by performing a multichannel parallel convolution of the

image for each channel, where each channel passed through two convolutional

layers with a convolutional kernel size of 3 × 3. Next, we used a maximum

pooling layer to reduce the size of the output image to half of its original size

(H/2, W/2). We then utilized Recurrent Neural Networks (RNNs) to extract

the feature values. The output is spread as a vector and merged with the results

from the 22 channels. Finally, the classification task was accomplished using

three fully connected layers and a softmax function. This processing flow can

effectively extract and accurately classify key features from multichannel EEG

images.

neuroscience and human-computer interaction. The software and parameter settings for

the experiments are presented in Table 5.7.

5.3.1 Results and discussion

In this study, we employed a set of evaluation metrics to assess the performance of the

proposed multiclassification model, which included four crucial metrics: TP, TN, FP, and

FN. These metrics serve the following purposes.

1. Precision: precision measures the proportion of all samples classified into positive

categories that are truly positive. For each category, precision was computed to

determine the classification accuracy of the model. As shown in Eq. (5.1).

Precision =
TP

TP + FP
(5.1)
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Table 5.7. Experimental Setup.

Experiment Description Value/Parameter

Programming language and Vi-

sion

Python 3.11 and Pytorch

Operating System Windows10 and Ubuntu 20.04

Preprocessing process Matlib R2013a and EEGlab

libraries pandas, opencv, sklearn, iter-

tools, torch

Batch size 24

Epochs 100

Hiddern size 128

Train ratio 0.8

Learning rate 0.001

Loss fuction CrossEntropyLoss

Optimizer Adam

TP represents true positive cases (the number of samples correctly categorized as

positive categories by the model) and FP represents false positive cases (the number

of samples mistakenly categorized as positive categories by the model).

2. Recall: recall assesses the proportion of all truly positive category samples that

were correctly categorized as positive. Recall was used for each category to gauge

how effectively the model captured the positive categories. Recall is computed as

shown in Eq. (5.2).

Recall =
TP

TP + FN
(5.2)

Where TP represents true positive cases, and FN represents false negative cases

(the number of samples misclassified as negative categories by the model).

3. F1-score (F1 score): F1 score serves as a composite performance metric that

balances precision and recall. It evaluates the performance of the model across

different categories considering both classification accuracy and coverage. The F1-

score was calculated as shown in Eq. (5.3).

F1 score =
2 · Precision · Recall
Precision+ Recall

(5.3)
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4. F1-score (Accuracy): Accuracy is used to measure the overall performance of

a classification model, indicating the proportion of correctly categorized samples,

whether in positive or negative categories. Accuracy was calculated using Eq. (5.4).

F1 score =
TP+ TN

TP+ TN+ FP+ FN
(5.4)

In this equation, TP stands for True Positive Examples, TN is for True Negative

Examples (the number of samples correctly categorized as negative), FP represents

False Positive Examples, and FN denotes False Negative Examples.

These metrics collectively offer a comprehensive evaluation of the performance of the

model for multiclass classification.

The classification results are presented in Table 5.9. The classification report provided

precision, recall, F1 score, and number of supports for the samples. This provided a

detailed analysis of the performance of each category. Precision is the proportion of

samples that are actually positively categorized out of all samples predicted to be positively

categorized by the model. Recall is the proportion of samples that the model successfully

predicts as positive categories out of all samples that are actually positive. The F1 score is

a weighted average of the precision and recall that balances the trade-off between precision

and recall. It indicates the number of actual samples in each category. The micro Avg

is the result of summarizing the performance of all categories. The support indicates

the number of samples used in the experiment. In Table 5.8, the support value of 2533

indicates that 2533 data points were involved in this evaluation, and the same sample

and sample size were used for the three different evaluation methods.The Macro Avg is

the result obtained by averaging the performance metrics (Precision, Recall, F1-score)

for each category. The Weighted Avg is the result obtained using a weighted average of

the performance metrics for each category, where the weights are based on the number of

supports in each category. As shown in Table 5.9, compared with existing epilepsy-type

recognition methods [229], the accuracy rate was used as the evaluation metric. Accuracy

is the number of samples correctly categorized by the model as a percentage of the total

number of samples.

We conducted a comparative analysis of several classification studies based on the RNN

and CNN algorithms using the same database. For a more comprehensive comparison,

the histograms in Fig. 5.5. In the graph, distinct colors were used to represent different

studies. The y-axis represents the various networks used in the different studies. Fig.

5.5(a) displays the results based on accuracy as an evaluation metric, the x-axis represents

accuracy, indicated as a percentage. While Fig. 5.5(b) illustrates results based on the F1

score as an evaluation metric, the y-axis represents the F1 score with a maximum value

of 1. Within the images, instances without color filling indicated that the respective

authors did not provide data for that particular evaluation metric. Among the notable

findings, Shankar et al. [230] employed the CNN algorithm for three-, four-, and five-
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Table 5.8. Classification report of the experiment.

Precision Recall F1 score

Micro Avg 0.77 0.77 0.77

Macro Avg 0.06 0.08 0.07

Weighted Avg 0.59 0.77 0.67

class classifications, achieving accuracy rates of 89.91%, 84.19%, and 84.20%, respectively.

Similarly, Thundiyil et al. [231] utilized CC images, MI images, and Stacked images

for epilepsy species recognition based on the Resnet18 network. Their results revealed

accuracy and F1 scores of 93.45%, 0.936; 97.89%, 0.98; 95.50%, 0.956.

The experimental results showed that the model achieved 76.84% accuracy in an epilepsy

category recognition task. Despite the fair performance in terms of accuracy, there is a

need for further improvements in the model performance. This suggests that the new

model can recognize different types of epileptic events. However, further optimization is

required to provide higher reliability and stronger support for diagnosis and treatment in

the medical field.

Fig. 5.5. Histogram of the results of epilepsy species identification based on the TUSZ

database.
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Table 5.9. Comparison of epilepsy species identification results based on TUSZ database.

Publications Classifier Accuracy
F1

score

Raghu et al. (2019)

[232]
AlexNet 84.06% N/A

VGG16 79.71% N/A

VGG19 76.81% N/A

CNN 82.1% N/A

ResNet50 N/A 0.722

Raghu et al. (2020)

[233]
Googlenet 82.85% N/A

Inceptionv3 88.30% N/A

Tang et al. (2021)

[234]
DCRNN N/A 0.749

Shankar et al. (2021b)

[235]
CNN 89.91% N/A

84.19% N/A

84.20% N/A

Shankar et al. (2021a)

[230]
ANN N/A 0.997

Thundiyil et al. (2021)

[236]
AlexNet 97.15% 0.975

Resnet18 93.45% 0.936

97.89% 0.98

95.50% 0.956

Jia et al. (2022) [231] VWCNNs N/A 0.94

Shankar et al. (2022)

[237]
CNN & LSTM 98.82% 0.988

Dang et al. (2022)

[238]
Transfer 98.48% 0.976

Our CNN & RNNs 76.84% 0.67
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5.4 Experimentation 2 : Improved Epilepsy Recognition

Experiment

The method of obtaining the period depends on the type and characteristics of the data

being processed. The following are some commonly used methods for obtaining the period

of a signal.

- Fourier Transform: Used to convert a time domain signal into a frequency domain

signal. Periodic signals usually show clear periodic characteristics in the spectrum

[239].

- Autocorrelation Analysis: Autocorrelation analysis is a method used to deter-

mine the periodicity of a signal. It involves calculating the correlation between a

signal and itself at different time lags. When a signal is periodic, the autocorrela-

tion function will show clear periodic peaks. With autocorrelation analysis, you can

estimate the major period of a signal. By calculating the correlation at different

lag orders in a time series, you can find recurring patterns. In periodic data, ACF

usually shows high autocorrelation for specific lags [240].

- Moving Window Analysis (MWA): Using sliding windows to look at local

features of the data and identify recurring patterns in the data [241].

- Lomb-Scargle Periodogram Analysis: Lomb-Scargle Periodogram is a method

used to analyze the periodicity of non-uniform time series. It is a frequency domain

analysis method that takes into account measurement intervals at different points

in time. Lomb-Scargle periodograms can help you estimate the major periodic

components of a signal [242].

The advantages and disadvantages are shown in the Table 5.10.

The experiments were conducted using the Train section of the TUSZ database. The

specific description and data content of the database is shown in Table 5.11. It contains

EEGs of 8 different epileptic events from 579 patients (men, women, and children), which

is rich and sufficient data. The procedure of the experiment is shown in Figure 5.6.

The experiment reconstructs the morphology of the data by segmenting the preprocessed

EEG data according to the period feed line. The reconstructed data is fed into a neural

network to learn, which enables the recognition of epilepsy species. The configuration of

the experiment is shown in the Table 5.12.

5.4.1 Preprocessing

Preprocessing of EEG data based on the frequency characteristics of EEG waves is a com-

mon method. EEG waveforms have different symbols depending on the frequency band.
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Table 5.10. Comparison of the advantages and disadvantages of signal period detection

Methods Advantage Disadvantage

Fourier Trans-

form

• Reveals frequency domain

features

• Suitable for periodic sig-

nals

• Insensitive to non-periodic

signals

• Requires signal stability

Autocorrelation

Analysis

• Reveals signal periodicity

• Does not require signal

model assumptions

• Sensitive to noise

• High computational com-

plexity

Moving Window

Analysis

• Suitable for detecting local

features

• No need for prior assump-

tions

• Window selection affects

results

• Not suitable for global pe-

riodicity

Lomb-Scargle

Periodogram

Analysis

• Suitable for non-uniform

time series

• Considers time interval

variations

• Sensitive to noise

• Requires parameter ad-

justments

The main frequency bands of the brain waves obtained from the patient’s measurements

contain the states and pathologies that the patient himself is in [243]. The band sym-

bols and states of the EEG are shown in the Table 5.13. Since the range of clinical and

physiological interest is between 0.3 and 30 Hz [244], in this experiment, the EEG data

were retained in the range of 0.5-30 Hz by means of a filter. In order to reduce the effects

produced by outliers and noise in the experimental data [245], to increase the convergence

speed of the model, and to prevent the ccurrence of overfitting phenomenon [246], the

experiments performed regularization operations on the filtered EEG data. The EEG

data amplitude was adjusted to the range of 0-255. The experiment used the longitudinal

montage configuration of the International 10-20 system. The electrodes were arranged

longitudinally to cover the prefrontal region to the parietal region, as shown in Fig. 5.7.

The electrode pairs are shown in the Table 5.14. The distance between neighboring elec-

trode pairs was kept consistent in the montage configuration and was selected according to

the experimental purpose [247]. In this experiment, eight electrode pairs were selected ac-
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Table 5.11. Number of documents per seizure category in the TUSZ training dataset

Seizure Type Decription File Count

GNSZ Generalized seizures. A large category of seizures

occurring in most, if not all, of the brain.

203

FNSZ Focal nonspecific seizures. A large category of

seizures occurring with specific focality.

516

SPSZ Simple partial seizures. Brief seizures that start in

one location of the brain (and may spread) where the

patient is fully aware and able to interact.

1

CPSZ Complex partial seizures. Same as simple partial

seizures but with impaired awareness.

26

MYSZ Myoclonic seizures. A seizure associated with brief

involuntary twitching or myoclonus.

5

ABSZ Absence seizures. Brief, sudden seizure involving

lapses in attention. It usually lasts for no more than

5 s and is commonly observed in children.

56

TNSZ Tonic seizures. A seizure involving stiffening of the

muscles. Usually associated with and annotated as

tonic-clonic seizures, but not always (rarely, there is

no clonic phase).

11

TCSZ Tonic-clonic seizures. A seizure involving loss of con-

sciousness and violent muscle contractions.

37

BCKG Background. non-seizure annotation within the

TUSZ background (BCKG) was used to identify the

background.

1784

cording to the region of seizure [246], namely, FP1-F7,FP1-F3,F7-T3,T3-T5,FP2-F8,FP2-

F4,F8-T4,T4-T6, which covered prefrontal and temporal lobe regions [247], as shown in

Fig. 5.8.
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Table 5.12. Programming Environment Settings

Setting Value

Operating System Ubuntu/Windows 10

Programming Language Python 3.11

Deep Learning Framework PyTorch

Libraries csv, matplotlib, numpy,

pandas, pyedflib, scipy,

sklearn, torch

Table 5.13. EEG Bands and Their Normal Manifestations

Band Name Frequency Range Normal Behavior

Alpha Waves 8-13 Hz
Normal adults exhibit alpha rhythms during relaxed

and mentally inactive wakefulness. The amplitude is

mostly below 50 µV and is most prominent in the

occipital region. The alpha rhythm is blocked by eye

opening (visual attention) and other mental activi-

ties, such as thinking.

Beta Waves 13-30 Hz
Beta activity primarily observed in the anterior-

central region with amplitudes smaller than the al-

pha rhythm. It increases during anticipation and

tension states.

Theta Waves 4-8 Hz
Theta frequency is present in normal infants and

children, and during drowsiness and sleep in adults.

Only a minimal theta rhythm is present in awake

adults. A high theta activity in awake adults indi-

cates abnormalities and pathological conditions.

Delta Waves 0.5-4 Hz Delta rhythm is slow brain activity that appears only

during the deep sleep stage of normal adults.
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Fig. 5.6. Flow chart of the experimental process. The input EEG signal is first passed

through a filter that retains the frequency range of 0.5-30 Hz band. Through reg-

ularization, it is compressed to between 0-255, which conforms to the 8-bit map

standard. The pre-processed signals were used to calculate the signal difference

at the corresponding location according to the ACNS TCP montage standard.

Appropriate electrodes are selected according to the site of the seizure and the

signal is reconstructed using the cycle recognition method. The reconstructed

signal is transformed from a one-dimensional time series of length m × n into

a two-dimensional array of (m,n). The number of rows of the array m denotes

the number of cycles; the number of columns of the array n denotes the length

of each cycle. The two-dimensional array is put into the deep learning neural

network as an input signal to learn and finally complete the classification to

realize the recognition of epilepsy species.

5.4.2 Segmentation by period

Research [248] pointed out that the periodicity of the data can be preserved by segmenting

the time series signal according to the period. The preprocessed and filtered matched

brain signal data is segmented by period, and the principle of segmentation is shown in

Figure 5.9. The reconstructed data is learned using multi-channel parallel convolution

and LSTM neural network respectively. There are two reasons for segmenting brainwave

signals by period. One is because brainwaves are quasi-periodic signals, and the other

is that in epileptic seizures, the waveforms of the brainwaves have typical characteristic
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Fig. 5.7. Vertical standard montage schematic.

Table 5.14. EEG Electrode Layout

Fp1-F7 Fp1-F3 Fp2-F4 Fp2-F8

F7-T3 F3-C3 F4-C4 F8-T4

T3-T5 C3-F1 C4-F2 T4-T6

T5-O1 F1-O1 F2-O2 T6-O2

A1-T3 T3-C3 C4-T4 T4-A2

C3-Cz Cz-C4

Fig. 5.8. Electrode pairs and coverage locations relevant to epilepsy.
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Fig. 5.9. Cycle methods

Fig. 5.10. DEEP CHART

patterns[249], as shown in the Table 5.15. Based on the quasi-periodic nature of brainwave

signals, different methods (fft, autocorrelation, sliding window) are utilized to identify the

period of the signals. The recognition results are shown in Fig. The signal is segmented

according to the obtained period and the morphology of the data is reconstructed. In this

study, the segmentation of brainwave data is based on 8Hz as the period corresponding

to the frequency. 8Hz frequency is the minimum frequency of the alpha band [248], and

its corresponding period is the maximum period of the band, as shown in Table. Thus

it is a multiple of the period of the other bands, which preserves the periodicity of the

period of the other bands. The data reconstructed according to the period is put into the

neural network. Two different neural network methods are used for learning in this study.

Multi-channel parallel convolution and RNN and LSTM neural network respectively, as

shown in Fig. 5.10.

In order to preserve the temporal information in the brainwave signals and better un-

derstand and utilize the temporal dependencies in the signals, the experiments also used

the neural network of LSTM to recognize the reconstructed brainwave signals. As shown

in Fig. 5.11, the reconstructed brainwave signals were arranged in cycles. Each cycle was

put into the LSTM network model as a time step.

5.5 Results and discussion

In previous studies, there are various methods for epilepsy species identification based on

TUSZ database. We also worked on epilepsy species identification and made new contribu-

tions in this field. The brainwave data are segmented according to cycles, and each cycle
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Table 5.15. Description of EEG Patterns

Pattern Description

Spike

The spikes are the most basic paroxysmal EEG activity, with a

duration of 20–70 ms. Amplitude varies but is typically more than

50uV (Kane et al., 2017).

Sharp

A sharp wave is similar to the spike, and its time limit is 70–200

ms (5–14 Hz). Amplitude is between 100 and 200 uV, and the

phase is usually negative.

Spike and slow

wave complex

An epileptiform pattern consisting of a spike and an associated

slow wave following the spike, which can be clearly distinguished

from the background activity; may be single or multiple (Kane et

al., 2017).

Sharp and slow

wave complex

An epileptiform pattern consisting of a sharp wave and an asso-

ciated slow wave following the sharp wave, which can be clearly

distinguished from the background activity; may be single or mul-

tiple (Kane et al., 2017).

Polyspike complex A sequence of two or more spikes.

Polyspike and slow

wave complex

An epileptiform pattern consisting of two or more spikes associ-

ated with one or more slow waves.

Spike rhythm

Refers to a widespread 10–25 Hz spike rhythm outbreak, with an

amplitude of 100–200 uV and the highest voltage in the frontal

area, lasting more than 1s.

preserves the temporal correlation of the brainwave signal. The commonly used meth-

ods for period recognition are Fourier transform, autocorrelation, moving windowing and

lomb-scargle. As shown in the Fig. 5.12, experiments have been conducted to validate

the ability of the above four algorithms to recognize the periods using multi-frequency

filtering and multi-frequency superimposed waves. As can be seen from the figure, the

four algorithms show different results in terms of period delineation. In Fig. 5.12(a) and

Fig. 5.12(b), the identification of cycles using the Fourier variation analysis method is rela-

tively poor, and the cycles cannot be accurately identified either for simple multifrequency

waves or complex multifrequency superposition waves. Fig. 5.12(c) shows that for simple

multifrequency waves, the autocorrelation function analysis method is more effective in

identifying the period, on average, half of the period can be identified and segmented more
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Fig. 5.11. Schematic diagram of the LSTM network. Each row of the reconstructed data

represents one cycle. A cycle is put into the LSTM neural network as a time

step. The number of steps is equal to the number of cycles.The LSTM contains

128 hidden layers, two LSTM operations are performed, the output feature

values are expanded and tiled in chronological order, and the resulting one-

dimensional array is operated by the fully connected layers to complete the

recognition task. The final realization of epilepsy species recognition

accurately; however, for complex multifrequency superimposed waves Fig. 5.12(d), the au-

tocorrelation function analysis method is generally effective in identifying the period, and

the superimposed frequency cannot be identified completely. Compared with Fig. 5.12(c),

Fig. 5.12(e) shows that the period identification of the sliding window analysis method

is much finer, and on average, it can identify 1/4 period, but it also fails to accurately

identify the complex multi-frequency superimposed waves, as in Fig. 5.12(f). While Fig.

5.12(g) and Fig. 5.12(h) indicate that the lgmb-scargle analysis method performs better

in cycle identification and the results are more specific for the two waveforms. Periods

of different frequencies are not recognized, but at the same time a complete cycle is not

destroyed.

However, several methods are not ideal for segmentation of cycles. Therefore, the ex-

periment was conducted to slice the brainwave signal based on the epileptic wave’s per-

formance on the alpha band (8Hz-13Hz) by calculating the brainwave period based on the

frequency 8Hz. The experiments were compared with previous recognition results using

accuracy rate and F1 score as the main evaluation indexes, as shown in the Table 5.16.

Accuracy is the ratio of the number of samples correctly predicted by the model to the

total number of samples in a classification problem. It is an important measure of the per-

formance of a classification model and is usually expressed as a percentage. The F1 score
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(a) Fourier Transform - Multi Frequency Peri-

odic Waveform

(b) Fourier Transform - Multi Frequency Super-

position Periodic Waveform

(c) Autocorrelation Function-Multiple Fre-

quency Cycle Waveform

(d) Autocorrelation Function-Multiple Fre-

quency Superposition Cycle Waveform

(e) Sliding Window Analysis-Multiple Fre-

quency Periodogram

(f) Sliding Window Analysis-Multiple Fre-

quency Superposition Periodogram

(g) Lomb Scargle Periodogram - Multi-

Frequency Periodogram

(h) Lomb Scargle Periodogram - Multi-

Frequency Superposition Periodogram

Fig. 5.12. The results of the four cycle recognition methods are shown. The first col-

umn shows the recognition results of a simple multi-frequency period waveform

graph and the second column shows the recognition results of a complex multi-

frequency superimposed period waveform graph. The recognized cycles are

divided by dashed lines.
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is an evaluation metric that combines model Precision and Recall. The F1 score provides

a more comprehensive performance metric when dealing with unbalanced datasets or with

category skew. In order to show more intuitively, the experiment plotted the accuracy

rate notation over as a histogram, as shown in Fig. 5.13. From the figure, it can be seen

that the experimentally proposed method gives excellent results for the classification of

epilepsy. The experiment used both ROC curve and confusion matrix for further evalu-

ation using LSTM method for evaluation. As shown in the Fig. 5.14, it can be seen in

the ROC curve Fig. 5.14(a) and the confusion matrix Fig. 5.14(b). A problem in the

results was mentioned and quantitative language was used to narrow down its significance.

However, these results show that more temporal information can be retained while obtain-

ing higher accuracy using period segmentation and LSTM network modeling compared to

traditional epilepsy recognition.

Fig. 5.13. Figure of the results of epilepsy species identification based on the TUSZ

database.

In previous studies, some methods have focused primarily on analyzing brainwave signals

in the frequency domain, for example, using the Fourier transform or wavelet transform.

These methods are able to reveal the characteristics of the signal in the frequency domain,

but may ignore the information in the time domain. Other methods focus more on time-

domain analysis, using various statistical and time-domain feature extraction methods.

These methods are capable of capturing signal variations over short periods of time, but

may be relatively inadequate for modeling long-term temporal dependencies. In recent

years, with the rise of deep learning, some researchers have begun to experiment with deep

learning methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural
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Table 5.16. Comparison of epilepsy species identification results based on TUSZ database.

Publications Classifier Accuracy
F1

score

Raghu et al. (2019)

[232]
AlexNet 84.06% N/A

VGG16 79.71% N/A

VGG19 76.81% N/A

CNN 82.1% N/A

ResNet50 N/A 0.722

Raghu et al. (2020)

[233]
Googlenet 82.85% N/A

Inceptionv3 88.30% N/A

Tang et al. (2021)

[234]
DCRNN N/A 0.749

Shankar et al. (2021b)

[235]
CNN 89.91% N/A

84.19% N/A

84.20% N/A

Shankar et al. (2021a)

[230]
ANN N/A 0.997

Thundiyil et al. (2021)

[236]
AlexNet 97.15% 0.975

Resnet18 93.45% 0.936

97.89% 0.98

95.50% 0.956

Jia et al. (2022) [231] VWCNNs N/A 0.94

Shankar et al. (2022)

[237]
CNN & LSTM 98.82% 0.988

Dang et al. (2022)

[238]
Transfer 98.48% 0.976

Our CNN & LSTM 97.89% 0.98
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(a) ROC of epilepsy species identification based on the

TUSZ database.

(b) Confusion matrix of epilepsy

species identification based on the

TUSZ database.

Fig. 5.14. ROC and confusion matrix of epilepsy species identification based on the TUSZ

database.

Networks (RNNs, including LSTMs). These methods are usually better able to learn

complex spatio-temporal features of signals, but they also require a large amount of labeled

data and computational resources. Compared to the above methods, the innovation of this

study is the cycle-based brainwave signal reconstruction method with a combination of

multi-channel parallel convolutional neural networks and LSTM neural networks. Such a

combination helps to fully utilize the time-frequency domain information and capture the

temporal features in brainwave signals more comprehensively. In addition, we pay special

attention to the diversity of epilepsy types and introduce the labeling process for multi-

epilepsy signals, which enables the model to better adapt to multiple seizure situations in

real clinical scenarios. These innovative approaches are expected to improve the accuracy

and robustness of epilepsy species recognition.

5.6 Conclusions

In this study, an innovative method was used to convert EEG signals into image data.

Convolutional neural networks (CNNs) and RNNs were utilized for processing, and accu-

rate classification of different seizure types was successfully achieved. However, it is worth

noting that the accuracy rate of 76.84% is not satisfactory. This result highlights the

potential of this method in differentiating between various seizure types and also indicates

room for improvement. The study built on that foundation and optimized it by using

fewer channels for epilepsy analysis. This made the results more accurate, obtaining an

accuracy of 97.89%.

It is important to note that the model cannot replace the expertise of a healthcare

professional, especially when it comes to final diagnosis. Although it can assist in data
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monitoring, it cannot replace the diagnostic ability of a physician. This limitation stems

mainly from the possible interference caused by the large amount of irrelevant data. In

the future, further data refinement is planned to minimize the impact of extraneous infor-

mation. In addition, it is worth noting that EEG signals exhibit a time sequence during

seizures, with different channels responding at different times. This phenomenon provides

clues for early seizure detection and will be studied in depth in future studies to develop

appropriate diagnostic methods.

In conclusion, this study introduces new perspectives and methods for recognizing

epileptic seizure types, highlighting the great potential of deep learning and multichan-

nel processing in the field of medical diagnosis. This study provides an opportunity to

enhance the management and care of patients with epilepsy and has the potential to

positively impact clinical practice.
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Chapter 6

Summary and discussion

6.1 Conclusions and remarks

My journey through the realms of data analysis, computational techniques, and interdis-

ciplinary collaboration has illuminated pathways towards innovation and progress across

various domains. As I reflect on the methodologies explored and the insights gained, it

becomes evident that each step taken has contributed to a broader understanding of com-

plex challenges and potential solutions. In this concluding section, I delve deeper into the

significance of my findings, discuss the implications for future research.

The exploration of GAF methodology marked the beginning of my quest for enhanced

data presentation and analysis techniques. While navigating through challenges such

as high memory requirements and computational complexity, I discovered the potential

of downsampling methods and the SDM algorithm in speech emotion recognition. The

superiority of the SDM model over traditional convolutional neural networks not only

underscores its significance but also hints at the broader implications for data analysis

methodologies. By embracing innovative algorithms and techniques, we can unlock new

possibilities for understanding complex datasets and extracting meaningful insights.

Building upon the foundation laid by GAF methodology, my investigation into speech

emotion recognition introduced a novel approach centered around short-time features and

speech rate analysis. Through meticulous data preprocessing and model tuning, I achieved

remarkable improvements in sentiment classification across multiple databases. The adop-

tion of speech rate as a key parameter not only enhanced the accuracy and robustness of

emotion recognition but also highlighted the importance of feature engineering in machine

learning tasks. However, the limitations posed by dataset size underscore the need for

larger and more diverse datasets to train and validate models effectively. Future research

endeavors should focus on expanding datasets and exploring advanced feature engineering

techniques to further improve model performance and generalization.

In the realm of data visualization, my exploration of transforming one-dimensional time-

series data into visual representations opened new avenues for understanding and inter-
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preting complex datasets. The efficacy of the Hilbert curve method in sentiment recog-

nition showcases the potential of visual analytics in enhancing data interpretation and

decision-making processes. By leveraging advanced visualization techniques, we can un-

cover hidden patterns and insights that may not be apparent through traditional analysis

methods. Moreover, the interdisciplinary applications of data visualization extend beyond

sentiment analysis to domains such as speech and brainwave signal analysis, offering new

opportunities for cross-disciplinary collaboration and innovation.

Lastly, my endeavor to classify epileptic seizure types using deep learning techniques

underscored the potential of multichannel processing in medical diagnosis. Despite ini-

tial challenges, I successfully optimized the classification process, achieving a remarkable

accuracy rate. While recognizing the limitations of machine learning models in replacing

healthcare professionals, my study emphasizes their potential to assist in early detection

and improve patient care. Moving forward, further research efforts should focus on refining

models and exploring novel diagnostic methods to enhance the management and care of

patients with epilepsy.

6.2 Future works

In my future research, I will further delve into exploring the potential research directions

of applying the time series binarization method to different areas. One of them is the use

of this method on brainwave data to enable the identification of mental health problems

such as depression. Research in this direction could provide new perspectives and tools for

the mental health field and is expected to help improve the early diagnosis and treatment

of depression.

Depression is a serious mental health disorder that is usually characterized by persistent

low mood, loss of interest in daily activities, and multiple impairments in physical and

cognitive functioning. Currently, the diagnosis of depression relies heavily on clinicians’

experience and patients’ self-reports. However, there are limitations in this subjective

diagnostic approach; therefore, with the help of time-series binarization, we are expected

to develop more objective and accurate diagnostic tools for depression.

In this line of research, I plan to process brainwave data into two-dimensional images

using the time series two-dimensionalization method. This transformation is expected to

capture important features in brainwave data, including information related to emotions

and mental states. By designing neural network models applicable to brainwave images,

I will attempt to extract and learn these features to enable accurate identification of

depression.

In addition, I will explore the application of time series binarization methods to brain-

wave emotion recognition. Understanding an individual’s emotional state is crucial for

improving mental health, and brainwave data may contain information about emotional
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experiences. By transforming time series into images, I will attempt to design feature

extraction and classification models suitable for emotion recognition to achieve accurate

judgments of an individual’s emotional state.

The exploration of these research directions will introduce innovative methods and tools

in the field of mental health and provide new possibilities for precision medicine and per-

sonalized treatment. By pushing time series dichotomization methods into new application

areas, we expect to bring a positive impact on mental health research and clinical practice.
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