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Abstract We propose a novel optoelectronic deep neural network (OE-DNN)
hardware called the self-referential holographic deep neural network (SR-HDNN).
The SR-HDNN features a combination of an optical computing part utilizing
a volume hologram and an electronic part connecting the optical elements vir-
tually. Since the shape of a volume hologram, which is a 3-dimensional (3D)
refractive index distribution in this case, can be changed by its recording condi-
tions, it is expected to realize the flexible design of optical computing functions
by coupling between specific nodes. In addition, the electronic part enables the
construction of multi-layer networks without extending the optical system and
enabling arbitrary signal processing, including nonlinear operations. By inte-
grating flexible optical and electronic parts, the SR-HDNN consisting of both
flexible optical and electronic parts has the potential to maximize the perfor-
mance of OE-DNN. In this study, we numerically simulate image classification
tasks to investigate the feasibility and potential of the SR-HDNN.
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1 Introduction

An artificial neural network (ANN), one of the machine learning methods in-
spired by the biological neural networks of the brain, is widely known as a
powerful tool for solving complicated tasks with high accuracy. An ANN with
deep layers is referred to as a deep neural network (DNN), which has been
applied in various research and industrial fields to solve advanced tasks such
as natural language processing and self-driving cars. However, to achieve sus-
tainable development of artificial intelligence (AI) technologies such as ANN,
reducing the computational cost for training and inference is essential, which
consumes significant energy. In particular, reducing the inference cost is impor-
tant because it is continuously incurred in the operation of the ANN system.
The structure of the ANN is a network with many tunable weights, and most of
the computational cost in the inference process comes from large-scale parallel
operations to compute signal propagation through weighted edges. Therefore,
the effective implementation method of the parallel operation of the inference
process of the ANN is expected to be established.

An optical neural network (ONN) is one of the candidates to achieve par-
allel computation with lower power consumption compared to general-purpose
computers. The spatial light modulation of 2-dimensional (2D) patterns has re-
ceived much attention among the various types of ONN technology [1–11]. This
method enables an optical implementation of a large-scale ANN by regarding
each pixel of the modulated 2D pattern as an ANN node and inducing in-
teractions between them through diffraction and/or interference. A diffractive
deep neural network (D2NN) [1] is the representative method of the spatial-
modulation-based ONN. A typical D2NN consists of phase plates designed by
in-silico training and fabricated by a 3D printer. When the input light enters
these plates, the intensity distribution of the light is changed via diffraction.
The main purpose of the D2NN is to achieve the designed input-output conver-
sion by coupling between nodes through free-space propagation of the optical
wave weighted by modulation at each point of the phase plates. For example,
for an image classification task, the light modulated by the image to be clas-
sified is illuminated to the phase plates and focused onto a target area. Here,
the phase plates are designed through in-silico training to ensure that the light
modulated by an image is focused onto the area corresponding to the correct
label. Although the D2NN has great potential for being energy-effective AI
hardware, there is concern that the performance improvement based on the
deep-learning principle is limited by the lack of nonlinearity and the increasing
size associated with multilayer.

One solution to this challenge is fusion with electronic computing, which
is referred to as an optoelectronic deep neural network (OE-DNN). OE-DNN
aims to complement the advantages of energy-efficient parallel processing with
optical computing and high expressiveness with electronic computing. Several
OE-DNN methods have been proposed thus far. One of the convolution layers
in a convolutional neural network (CNN) is optically implemented based on
the optical Fourier transformation using lenses in the hybrid optical-electronic
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convolutional neural network, whereas the other layers are electronically im-
plemented [3]. In the optical convolution layer, the phase plate placed on the
focal plane of the lenses is designed and used such that multiple images re-
sulting from convolutional calculations with multiple kernels can be obtained
simultaneously. It is shown that this approach significantly reduces the com-
putational cost, even when the number of optically implemented convolutional
layers is only one. As another method, an optronic convolutional neural net-
work (OPCNN) in which both convolution and affine layers are optically imple-
mented and electronically connected to realize a CNN has been proposed [10].
The OPCNN can realize several optical computing functions by individual
optical systems and construct the DNN by combining these optical systems
electronically. In other words, The OPCNN connects various optical comput-
ing parts with simple electronic connections to implement various types of
ANNs. Furthermore, the method using a simple optical part referred to as the
diffractive processing unit (DPU) is widely known [11]. Various networks, such
as a CNN and a recurrent neural network (RNN) can be realized by electronic
connections of the simple optical units DPU. It is the opposite of OPCNN, a
simple optical computing part named DPU is connected by various ingenious
electronic connections to implement various types of ANNs. Consequently,
there is concern about the system enlargement in the hybrid optical-electronic
convolutional neural network and the OPCNN and increasing the burden of
electronic computing in DPU-based methods.

In this paper, we propose a self-referential holographic deep neural network
(SR-HDNN) which consists of an optical computing part using holograms and
an electronic part connecting the optical parts virtually. Since both computing
parts of SR-HDNN are flexible to design, it can be understood SR-HDNN
is OE-DNN with properties intermediate between the two types described
above. In other words, it is expected to maximize the potential of OE-DNN
by providing flexibility in both the optical and electronic computing parts.
Furthermore, the base technology of SR-HDNN, self-referential holography
(SRH), can be applied to holographic data storage (HDS), which is referred
to as self-referential holographic data storage (SR-HDS) [12], and SR-HDNN
is highly compatible with SR-HDS. Therefore, there is enough possibility to
realize SR-HDS systems, including AI-based signal detection using SR-HDNN,
for example. The purpose of this work is to investigate the feasibility of the
SR-HDNN as OE-DNN, which is a first step toward the concept. Specifically,
we numerically demonstrate an image classification task using SR-HDNN to
investigate its trainability and generalization ability. Finally, we discuss the
feasibility and potential of SR-HDNN.
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2 SR-HDNN

2.1 SRH

The SRH is a technology to control the spatial intensity distribution of a light
wave by a volume hologram recorded without using reference light. The SRH
has two processes: the writing and reading process. During the writing process,
a writing pattern (WP) is phase modulated into a light wave by a spatial light
modulator (SLM). Then, the light wave is referred to as the writing light. When
a lens focuses the writing light, self-interference between pixels of WP occurs
near the focal plane. The self-interference pattern is recorded as a hologram
by placing a recording medium near the focal plane, such as a photopolymer.
During the reading process, a reading light to which the reading pattern (RP)
is phase-modulated illuminates the hologram using the same optical system
as the writing process. When the reading light illuminates the hologram, the
energy coupling between the pixels of RP occurs. Specifically, when focusing
on a specific pair of pixels on the SLM, energy transfer is induced if the
phase difference of these two pixels is different in the writing and reading
processes. This energy interaction occurs among all pixels, even when there
are more than three pixels involved. As a result, the intensity distribution of the
reading light becomes non-uniform and is decided by the relationship between
WP and RP. In particular, when the difference pattern WP and RP satisfy
special conditions [12], the intensity pattern obtained in the reading process
corresponds to the difference between WP and RP. Then, the principle of SRH
can be applied to data storage, i.e., SR-HDS. The typical patterns used for SR-
HDS are shown in Fig.1. WP and RP are determined such that the recorded
signal pattern (SP) corresponds to the difference between WP and RP using
an additional pattern (AP) is an arbitrary pattern.

2.2 SR-HDNN

The SRH reflects the spatial intensity changes of the reading light, resulting
from the energy coupling between the pixels of the RP derived from the phase
difference between the writing and reading light. Based on the intensity change
principle of SRH, it is expected that the desired intensity distribution can
be achieved by changing the phase distribution of RP. Therefore, similar to
the principle of ANNs, there is a possibility of obtaining a versatile phase
distribution for a specific task by optimizing the phase distribution for multiple
inputs, such that the difference between the output and target distribution is
minimized. In other words, SR-HDNN is expected to be a feasible OE-DNN
based on SRH.

Figure 2 shows a conceptual diagram of SR-HDNN for image classification.
The RPs in the SR-HDNN are the summation of an input of layer and a
controlling pattern (CP). In the first layer, the light to which the image to
be recognized and CP1 is to be modulated is illuminated in the hologram.
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Fig. 1 Conceptual diagram of SR-HDS

Subsequently, pattern S1 is acquired from the intensity distribution of the
reading light on the camera plane and is normalized and converted to P1. In the
second layer, the light in which P1 and CP2 are phase-modulated illuminates
the hologram, and S2 is captured. Subsequently, these steps are repeated.
Consequently, the desired intensity distribution, in which the intensity of the
area indicates the image label, becomes the largest. To recognize arbitrary
images, the CP1, CP2, ..., CPn must be designed via the training process,
which is explained as follows.

In the training process of the SR-HDNN, CPs were designed using a dataset,
along with the procedure shown in Fig. 3. First, we prepared a dataset con-
sisting of pairs of the input and desired output images and defined a loss
function to quantitatively evaluate the difference between the system output
and desired output image. For example, the loss function is defined as the
intensity ratio of the desired area, indicating the correct label for other areas.
Subsequently, an optimization algorithm is applied to determine each pixel
value of the CPs to minimize loss. Among the optimization methods, the gra-
dient method is well known. In this method, the values of the parameters
are updated to a gradient direction calculated by the differential. According
to the general conversion rules extracted from the dataset, this optimization
process enables the optical system to infer various data, whether included in
the dataset or not. Consequently, the general CPs that can be used for the
classification of arbitrary images can be obtained. In this way, the features of
SR-HDNN are to design CPs such that the output intensity distribution be-
comes desired one, to use a hologram instead of the free space used in D2NN
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Fig. 3 Optimization of CPs in the training process

and DPU to change the wavefront shape, and to realize nonlinear functions
and multilayer using electronic computing and feedback.

3 Numerical simulations

We simulated a 4-class image classification using SR-HDNN to demonstrate its
feasibility. In Section 3.1, we describe the numerical simulation model. Section
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3.2, demonstrates the feasibility of an optical computing part based on SRH
by simulating a single-layer network. In Section 3.3, we demonstrated the
effectiveness of the electronic multi-layering through a simulation of a 3-layer
SR-HDNN model.

3.1 Numerical simulation method and conditions

We built a simulation environment for the SR-HDNN based on the fast Fourier
transform beam propagation method (FFT-BPM). Huge computational costs
and time are required because the calculations of the reading process of the
SRH must be repeated in the training process of the SR-HDNN. However, be-
cause the recorded hologram is fixed in the SR-HDNN, we can instantly obtain
the output complex amplitude distribution from the arbitrary input distribu-
tion using a transmission matrix and drastically reduce the computation cost
and time. Here, the transmission matrix is the matrix that links the complex
amplitude distributions of the two planes in a linear optical system [13, 14].
When the complex amplitude distribution is in vector form on the input and
output planes, vin and vout satisfy the condition vout = Mtmvin, where Mtm

is the transmission matrix of the system.
In this simulation, we derived the transmission matrix for a hologram

recording of the randomly generated WP using FFT-BPM. Here, WP plays a
crucial role in the distribution of holograms, which in terms determines how
RP pixels are coupled in the optical computing part. While one of the attrac-
tive features of SR-HDNN is the flexible design of the optical computing part
through the hologram recording conditions such as the distribution of WP, we
used a random WP for proof-of-principle of SR-HDNN which was generated
using a Mersenne twister and has the pixel number of (32,32) and the gra-
dation number of 8. The random WP is expected to reproduce the coupling
between all pixels of RP, i.e., the affine layer. The laser wavelength, inten-
sity, and recording time were 532 nm, 1.0 mW, and 1.0 s, respectively. The
thickness, maximum refractive index, and sensitivity of the recording medium
were 400.0 µm, 4.0×10−3, and 40.0 cm2/J, respectively. The pixel size and
pixel pitch of the imager and SLM were (128,128) and (22.5 µm, 22.5 µm),
respectively.

Figure 4 shows the measurement process for deriving the transmission ma-
trix using the input matrix Min and output matrix Mout. The input matrix
Min is a Hadamard matrix, where each column is used as an input vector
vin. Each column vout of the output matrix represents the response of the
optical system to the input vector vin, corresponding to the same column of
the input matrix. Because the Hadamard matrix is an orthogonal matrix with
elements 1 and -1, its transpose matrix can be used as its inverse and can
be represented in the optical system of the SR-HDNN as a phase modulation
pattern of 0 and π. The input matrix Min and output matrix Mout are re-
lated as: Mout = MtmMin. By taking the transpose of Min on both sides, the
transmission matrix can be derived as Mtm = MoutM

T
in.
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Fig. 4 Procedure of the measurement process for the derivation of the transmission matrix

In the image classification simulation, we used input images and CPs
of size (32,32). The input images were processed using normalization and
zero-padding. The Modified National Institute of Standards and Technology
database (MNIST) dataset [15] consists of grayscale images of handwritten
digits with a size of (28,28). These images were normalized to 0–π and zero-
padded to expand the size to (32,32). For the camera plane of the output
layer, we prepared four identification areas that corresponded to each class.
Subsequently, we chose the class corresponding to the area with the highest
intensity signal as the inference result. The CPs were trained using a search-
based optimization algorithm that minimized the loss by selecting each pixel
value with a lower loss than the current loss from a predefined set of discrete
values and raster scanning each pixel. Although the optimization algorithm
requires many iterations, it can be implemented with a small number of com-
putational resources to control the SLM and camera in future experiments.
The CPs were uniformly discretized into eight levels in the range 0 to 2π. The
loss function used the light-focusing ratio for the correct area among the four
identification areas. In particular, the ratio Ic/Ii is used, where Ic is the aver-
age intensity of the correct area and Ii is the average intensity of the incorrect
area. We randomly selected 50 and 500 images from each class as the training
and test datasets, respectively.

3.2 Optical computing unit based on SRH

In this section, we present the results of the image classification simulation
with a single layer of SR-HDNN to investigate the feasibility of the optical
computing part based on SRH. We trained a single layer of the SR-HDNN.
The system configuration and information-processing procedure are shown in
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Fig. 5 System configuration and procedure of information processing of a single layer of
SR-HDNN.

Input pattern

Output intensity

Masked pattern

Identification area

Fig. 6 Output of a single layer of SR-HDNN for part of the test dataset image.

Fig. 5. The reading pattern was phase-modulated into the reading light on
the SLM. Subsequently, the output intensity distribution was measured and
masked to obtain the output signal intensity of each identification area.

Figure 6 shows an example of the input–output pairs and outputs of the
system from the part of the test dataset with the correct prediction. Masked
patterns were created to show this result clearly and were not used in the cal-
culation process of this simulation. The white and black areas in the image of
the identification area correspond to the correct and incorrect labels, respec-
tively. The confusion matrix is presented in Fig. 7. Most of the outputs are on
the diagonal, where the true and predicted labels correspond to this matrix.
These results demonstrate that the optical system learns the characteristics
required to realize the desired function from the dataset during the training
process.
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label 0 label 1 label 2 label 3 total accuracy

label 0 298 180 12 10 500 59.60%

label 1 0 385 2 113 500 77.00%

label 2 53 148 215 84 500 43.00%

label 3 4 123 23 350 500 70.00%

total 355 836 252 557 2000 62.40%

Predicted label

True label

Fig. 7 Confusion matrix of a single layer of SR-HDNN.

3.3 Multi-layering using electrical feedback

In this section, we investigate the feasibility and effectiveness of the imple-
mentation method of DNNs using an electronic computing part connecting
each optical computing part. We trained a 3-layer SR-HDNN model using an
optoelectronic multi-layering method.

Figure 8 shows the system configuration and information-processing proce-
dure. Handwritten digit images were used as the input images for the first layer.
The output of the previous layer was normalized to 0–π and used as the input
image for the second and subsequent layers. The nonlinear activation function
is defined as the squared absolute value of the complex amplitude distribution
with intensity measurement. Finally, in the output layer, the output intensity
distribution was measured and masked to obtain the output signal intensity
of each identification area. Additionally, we used the same hologram in all the
layers in this simulation.

Figure 9 shows the input images, output intensity, output intensity masked
with the identification area, and mask for the identification areas from the part
of the test dataset with the correct predictions. These results indicate that the
trained optical system identifies the input images by focusing on the energy in
the correct area. Figure 10 shows the confusion matrix for the simulation. The
accuracy increased by 18.45% with the introduction of electronic multi-layering
from the single-layer SR-HDNN. These results demonstrate the adaptability
of the optoelectronic DNN implementation method for SR-HDNN.

4 Discussions

We have proposed the SR-HDNN, which combines an optical computing part
using holograms with an electronic part. The flexible design of optical com-
puting functions will be achieved because the pixel-to-pixel coupling charac-
teristics of holograms can be controlled by the recording conditions, i.e., the
pattern of WP. For example, the optical computing part possibly allows the
realization of the coupling of all of the pixels and only neighboring pixels,
which mimic the affine and convolution layers, respectively. In addition, by
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Fig. 8 System configuration and procedure of information processing of a three-layered
SR-HDNN.

Input pattern

Output intensity

Masked pattern

Identification area

Fig. 9 Output of a three-layer SR-HDNN for part of the dataset image.

label 0 label 1 label 2 label 3 total accuracy

label 0 392 32 55 21 500 78.40%

label 1 0 479 16 5 500 95.80%

label 2 28 46 395 31 500 79.00%

label 3 15 58 76 351 500 70.20%

total 435 615 542 408 2000 80.85%

Predicted label

True label

Fig. 10 Confusion matrix of a three-layer SR-HDNN with nonlinear function.
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recording different holograms achieving various functions on a disc, it is ex-
pected to realize a DNN which requires different computations for each layer,
such as a CNN. In this way, SR-HDNNs, which can design both the optical
and electronic computing parts, are expected to utilize the potential of the
OE-DNN by appropriately combining each other. This study demonstrates
the feasibility of SR-HDNN, then paves the way approach, which enables OE-
DNN to balance the burden between optical and electronic computing. The
result of this study enables researchers to realize various computing functions
with a hologram disc.

Another advantage of SR-HDNN is its high compatibility with SR-HDS,
which share the same optical system. In this case, holograms recorded for
SR-HDNN, which are different from holograms recorded with information,
are used. For instance, when a signal is read out, the recording medium is
rotated or shifted to change the hologram to one for SR-HDNN while the
read-out pattern is fed back to the SLM. This enables the application of SR-
HDNN processes to readout signals, as demonstrated in this paper. Specific
processing enabled by SR-HDNN in SR-HDS includes denoising of the readout
patterns [16] and decoding the block-coded signals [17–19]. In the denoising
application, CPs are trained to make the SR-HDS readout image closer to the
ground truth signal pattern. Using the versatile phase pattern obtained in the
training phase, an arbitrary readout signal is expected to be denoised [20,21].
On the other hand, in the block-coded signal decoding application, the block
codes, such as the 3/16 code, are classified in the same way as the handwritten
digit image classification demonstrated in this study. However, the method for
block-coded signal decoding requires local detection of the page data read by
HDS and is a topic for our future works. Thus, SR-HDNN is expected to realize
SR-HDS including AI-like processing with a small computational cost by an
electronic computer.

In addition, scaling the training parameters can improve the performance
of SR-HDNN. In Section 3, the SR-HDNN model has 1024 training parameters
in the optical-connection layer, which is only one-third of the 3136 parameters
in the minimum configuration of the software-based fully-connected layer for
the 4-class MNIST image classification task, with a 784-nodes input layer and
4-nodes output layer, as shown in Fig. 11. In regards to DPU [11], software-
based DNNs are surpassed using approximately 2.2 million training parameters
in each layer, which is the total number of pixels in the SLM. Therefore, the
performance can be improved by using all the pixels in the SLM as training
parameters in the SR-HDNN.

Scaling of the training dataset can also improve the performance of the
SR-HDNN. In Section 3, we limited the dataset size because of the compu-
tational time required for training. To investigate the effect of the size of the
dataset, we tested it with the simple software-based network shown in Fig.
11. Consequently, the accuracies of the network trained by the entire MNIST
and limited datasets, as presented in Section 3, were 97.65% and 84.82%, re-
spectively. This result shows that there is room for improvement regarding the
performance of the SR-HDNN in terms of the dataset size. Therefore, it is nec-
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essary to modify the training environment to overcome the limitations with
respect to the limited number of training parameters and dataset size. The
main issue in overcoming these limitations is the computational time derived
from the computational cost for simulating the optical propagation process
and the inefficiency of the training algorithm. There are two approaches that
can address these issues: utilizing a fast propagation process on the physical
optical system and changing the training algorithm.

The first approach uses a physical optical system for the propagation pro-
cess rather than employing a numerical simulation. This approach enables the
use of larger datasets and parameters by the time reduction of each forward-
propagation process by utilizing the high speed of light. The second approach
is to introduce a back-propagation algorithm, which is a fast optimization
algorithm that updates all parameters through one forward and backward
propagation process. Although this algorithm requires large-scale numerical
differentiation using an electrical computer for the back-propagation process,
indicating that high computing power is required for the training process, it
allows the SR-HDNN models to use larger datasets and parameters by fast
optimization. However, as the accuracy decreases because of errors from dis-
turbance and device construction, it is necessary to find methods, such as
adaptive training methods, that can eliminate errors [11].

In addition, improving the representation of a single optical-connection
layer is also a valid approach. Specifically, there are two approaches in this re-
gard: designing a hologram and utilizing complex amplitude fields in the SLM
and camera plane. The first approach is to design a propagation medium (i.e., a
hologram) as previously stated. The second approach uses complex amplitude
fields. It has been shown that extending the modulation pattern to complex
amplitude fields improves the performance of diffractive neural networks [11].
As shown in Fig. 12, we verified the improvement in accuracy by 5.95% by in-
troducing complex amplitude modulation on the three-layer model under the
same conditions, as described in Section 3.2, where an amplitude pattern was
used as the input information and a phase pattern was used as CPs. We plan
to investigate the implementation of complex amplitude modulation methods,
such as using two SLMs or holography. Furthermore, using interferometry in-
stead of intensity measurement in the camera plane with complex electrical
activation functions also enables the implementation of complex-valued neural
networks that excel in periodic signal processing.
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Fig. 11 The minimum configuration of the fully-connected layer for the 4-class MNIST
image classification task.

label 0 label 1 label 2 label 3 total accuracy

label 0 445 7 44 4 500 89.00%

label 1 0 494 2 4 500 98.80%

label 2 40 53 380 27 500 76.00%

label 3 8 43 32 417 500 83.40%

total 493 597 458 452 2000 86.80%

Predicted label

True label

Fig. 12 Confusion matrix of a three-layer SR-HDNN with complex amplitude modulation.

5 Conclusion

We proposed the SR-HDNN as a novel OE-DNN based on the principle of
SRH. The SR-HDNN has an optical computing part using holograms and
an electronic computing part for multi-layering and nonlinear processing. By
using the method of HDS to change propagation features, it is possible to
bring flexibility to node-to-node couplings, such as by connecting only specific
nodes. Furthermore, the electronic computing part enables the representation
of various networks without changing the size of the optical system. The SR-
HDNN is exacted to enable more efficient network design than the conventional
methods by providing flexibility in both optical and electronic computing. We
numerically simulated of image classification task using SR-HDNNs to show
its feasibility. First, we demonstrated a single-layer SR-HDNN model to in-
vestigate the behavior of the optical computing part based on SRH. As a
result, the single-layer model achieved an accuracy of 62.40% for test data.
By this, we confirmed that the optical system of SRH trained with RP could
behave as a layer of an ANN. Next, we demonstrated a 3-layer SR-HDNN
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model to investigate the behavior of a multi-layered model using both optical
and electronic computing parts. As a result, the image classification accuracy
improved, achieving 80.85%. This confirms the effectiveness of the DNN imple-
mentation with an electronic computing part and the feasibility of SR-HDNN.

The results obtained in this study are expected to pave the way for a novel
OE-DNN framework with flexible optical and electronic computing parts and
high compatibility with SR-HDS. In the future, we will investigate methods
for designing holograms for various optical computing. In addition, we plan to
scale up the training process and utilize the complex amplitude fields to the
maximum potential of SR-HDNNs. Furthermore, the applicability to SR-HDS
will also be investigated.
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