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Abstract—Ising machines are attracting attention for their
ability to solve large-scale combinatorial optimization problems
because these problems are difficult to solve. To accelerate the
computing of Ising machines, implementation of Ising machines
with digital circuits such as simulated annealing (SA) machines
is in progress. However, these Ising machines on digital circuits
require random number generators, which are implemented with
large circuit resources. This work focuses on chaotic Boltzmann
machines (CBMs), which imitate the stochastic behavior of
Boltzmann machines (BMs) with deterministic chaotic dynamics.
CBMs are one of the models that work as chaotic simulated
annealing (CSA) machines within Ising machines. Therefore,
we can implement the Ising machines without random number
generators by using CBMs. In conventional work, CSA machines
using CBMs (CBM-CSAs) are implemented with some hardware-
oriented algorithms, but the CBM-CSA circuit is not optimized
for these hardware-oriented algorithms. In the conventional
CBM-CSA circuit, memory circuits are implemented separately,
which prevents making the CBM-CSA from larger, and neuron
circuits require the reset of accumulated values, which causes
the increase in the calculation time. To solve these problems, we
implement only one large memory circuit to make the CBM-
CSA larger and improve the neuron circuits to allow dynamic
changes of inputs to arithmetic circuits to inhibit the increase in
the calculation time. As a result, we implement a CBM-CSA
with 4096 nodes on an FPGA (Alveo U250), and the CBM-
CSA can control 16-bit width weights and run at 100MHz. We
evaluate the implemented CBM-CSA by solving K4000, max-
cut problem, which is one of the combinatorial optimization
problems. The best solution of CBM-CSA is comparable to that
of the SA on the central processing unit (CPU). Moreover, the
CBM-CSA is approximately 600 times as fast as the SA on
the CPU and approximately twice as fast as the conventional
Ising machine on an FPGA based on the improvements in this
work. Furthermore, this work implements one of the highest-
performance Ising machines on a single FPGA.

Index Terms—Ising machine, field programmable gate array,
chaotic simulated annealing

I. INTRODUCTION

With the end of Moore’s law, the performance of conven-
tional computers is reaching its limits, and the development of
next-generation computers with different operating principles
from conventional computers such as central processing units
(CPUs) and graphics processing units (GPUs) is progressing.
One of the next-generation computers is annealing quan-
tum computers [1], which are one of the Ising machines
that are attracting attention for their ability to solve various
combinatorial optimization problems with high speed [2].

However, quantum annealing machines require large-scale
facilities because they operate at extremely low temperatures
[3]. Therefore, implementations of Ising machines on digital
circuits such as field programmable gate arrays (FPGAs)
[4] [5] or application-specific integrated circuits (ASICs) [6]
are progressing, and the commercial use of these machines
is being widely adopted. Currently, some different types of
Ising machines are proposed, such as simulated annealing
(SA) machines, chaotic simulated annealing (CSA) machines,
simulated bifurcation (SB) machines, and simulated quantum
annealing (SQA) machines [7] [8].

This work focuses on chaotic Boltzmann machines (CBMs)
[9], which are neural network models that are equivalent to the
Ising model. CBMs behave deterministically by imitating the
stochastic behavior of Boltzmann machines (BMs) by chaotic
dynamics and are one of the models, which work as CSA
machines. The optimization process of CSA does not require
random numbers, while that of SA requires random numbers.
Therefore, CSA machines are expected to be implemented
with smaller circuit resources than SA machines because
CSA machines can be implemented without random number
generators.

In a conventional work [10], CSA machines using CBMs
(CBM-CSAs) circuits are implemented with some hardware-
oriented algorithms, such as the simplification of the exponen-
tial function and the differential multiply-accumulation [10]
[11]. However, the conventional CBM-CSA is small-scale, and
the conventional circuit does not take full advantage of the
hardware-oriented algorithms.

We focus on memory circuits and neuron circuits, which
are not optimized for hardware-oriented algorithms. In the
conventional CBM-CSA, memory circuits are implemented
separately for each neuron. Thereafter, the number of CBM
neurons that can be implemented on an FPGA does not
depend solely on the total amount of memories but also on the
number of physical memory elements on an FPGA. To solve
this problem, we implement one large memory circuit whose
limitation depends solely on the total amount of memories. In
the conventional CBM-CSA, its calculation is time-consuming
because we have to reset accumulated values, which are used
in the process of the differential multiply-accumulation, in
neuron circuits. Therefore, we improve neuron circuits to
allow dynamic changes of inputs to prevent the increase in



calculation time and take full advantage. As a result of im-
provements, we implemented one of the highest-performance
Ising machines.

II. RELATED WORKS

A. Chaotic Simulated Annealing

SA is one of the optimization processes of the Ising ma-
chines and uses the Ising model in physics as a principle to
solve combinatorial optimization problems [2]. Combinatorial
optimization problems are mapped as the weights between
nodes of the Ising model. Then, a network state with the small-
est energy (good solution) for the combinatorial optimization
problem is searched. When searching network states, if net-
work states with decreasing energy are only accepted, network
states are trapped in local minimum solutions like Hopfield
neural networks (HNNs). Therefore, changes in network states
in the direction of increasing energy in stochastic manners are
necessary. Random numbers are required for such stochastic
behavior.

CSA is an optimization process based on deterministic
chaotic dynamics [8], unlike SA which operates in stochastic
manners. There are mainly two significant differences between
SA and CSA. The first is that SA is based on stochastic Monte
Carlo methods, while CSA is based on deterministic chaotic
dynamics. The second is that the convergence process of SA is
based on a control of thermal fluctuations, while that of CSA
is based on a control of bifurcation structures.

Because of the character of CSA, CSA machines can be im-
plemented without random number generators which require
large circuit resources. For example, Yamamoto implemented
Ising machines and reported that approximately 11% of the
total circuit resources were used for the random number gen-
erators in [6]. Therefore, CSA machines can be implemented
with smaller circuit resources than Ising machines that require
random number generators.

B. Chaotic Boltzmann Machines

One of the most famous models that work as SA machines
is BMs. BMs are neural network models that operate stochas-
tically by using random numbers. BMs use an input zi to the
i-th node as in Eq. (1), and the output of the i-th node will
be one with probability p(si = 1|zi) as represented in Eq. (2).
N , wij , si, and bi in Eq. (1) are the number of nodes, weights
between the i-th node and the j-th node, the output states of
the i-th node, and the bias value of the i-th node, respectively.
T in Eq. (2) is a temperature parameter, which represents how
acceptably the energy is changed in the direction of increase
when performing as SA machines. If T ≃ 0 without noise
effects, only the change of states in the direction of decreasing
the energy is accepted, hence it works like HNNs.

zi =

N∑
j ̸=i

wijsj + bi, (1)

p(si = 1|zi) =
1

1 + exp(−zi/T )
. (2)

Fig. 1. Temporal change of the internal state and the output of
i th neuron ©Ichiro Kawashima, 2020 (Licensed under CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/

One of the most famous models that work as CSA machines
is CBMs. CBMs are neural networks that behave determinis-
tically by imitating the stochastic behavior of BMs by the
chaotic dynamics [9]. CBMs are constructed by neurons that
have the internal state xi and the output state si, respectively,
and run in continuous time. The i-th internal state xi is
updated using Eq. (3) and the i-th output state si ∈ {0, 1}
deterministically changes when only when xi reaches 0 or 1
in Eq. (4).

dxi

dt
= (1− 2si)(1 + exp

(1− 2si)zi
T

), (3)

si =

{
1 (xi = 1),

0 (xi = 0).
(4)

If we focus on one node in CBMs, the internal state xi

and the output state si change because of these dynamics, as
shown in Fig. 1. The internal state xi of the i-th node change
chaotically in the range of [0,1], and the output state si also
changes according to xi.

Eqs. (2) and (3) indicate that the parameter T of BMs
controls thermal fluctuations, while that of CBMs controls
bifurcation structures. Therefore, BMs are one of the models
that work as SA machines and CBMs are one of the models
that work as CSA machines.

C. Hardware-oriented algorithms

The conventional CBM-CSA implementation [10]
uses some hardware-oriented algorithms to design high-
performance and efficient circuits.

1) Simplification of exp functions: The exponential opera-
tion in Eq. (3) is replaced with a shift operation, as shown
in Fig. 2. To implement functions such as sin, cos, and exp
into digital circuits, the table approximation and the coordinate
rotation digital computer (CORDIC) [12] methods are often
used. These methods can perform highly accurate approximate
calculations by storing the results of calculations as a table in
advance. However, they use large circuit resources. Therefore,
Kawashima [10] simplified the exponential function by using
the shift operation as shown in Eq. (5) with the floor function
⌊x⌋ and the ceiling function⌈x⌉, as shown in Fig. 2. There-
fore, the calculation accuracy declines, but the approximate
exponential functions in digital circuits are implemented with
simple shift operations and small circuit resources.



Fig. 2. Exponential and shift operations

Fig. 3. All-parallel implementation of si calculation circuit

shift(x) =

{
2⌊x⌋(x ≥ 0),

2⌈x⌉(x < 0).
(5)

2) Differential multiply-accumulation: A differential
multiply-accumulation is a scheme for time-domain neural
processing, which reduces hardware resources utilization of
multiply-accumulation with a small increase in computational
time [10] [11].

One of the approaches to speeding up the multiply-
accumulation operation is the calculation of zi in Eq. (1), by
implementing all multiply-accumulation operators in parallel
in Fig. 3.

However, the number of multiply-accumulation operators
increases in proportion to the square of the number of nodes
implemented in this way because CBMs are all-to-all con-
nected networks. Additionally, the weight data must be stored
in distributed random access memories (RAMs) not block
RAMs (BRAMs) despite the number of distributed RAMs in
an FPGA is limited because all of the weights data is required
to be accessed at the same time to compute the multiply-
accumulate operations in parallel. Therefore, implementing all
multiply-accumulate operations in parallel is difficult.

A technique that is often used is the time-division of the
operations. A circuit that introduces a time-division technique
is shown in Fig. 4. In the simple time-division calculations,
the input value of the i-th neuron zi is defined as Eqs. (6) and
(7) where τ ∈ [0, N − 1] and Aτ

i represent an iterator of the
time-division and an accumulated value at time τ , respectively.
The circuit in Fig. 4 holds the accumulated value in a register
and adds the input values to it.

zi = AN−1
i , (6)

Fig. 4. Time-division implementation of si calculation circuit

Aτ
i =

{
Aτ−1

i + bi (τ = i)

Aτ−1
i + sτwi,τ (τ ̸= i)

, A−1
i = 0. (7)

By using the simple time-division method, only N multiply-
accumulation operators are implemented as N digital signal
processors (DSPs) in an FPGA, and zi in Eq. (1) is calculated
by using them N times. Therefore, the number of multiply-
accumulation operators increases in proportion to the number
of nodes N , and the weights can be stored in BRAMs, whereas
in the aforementioned all-parallel implementation, all weights
data are stored in distributed RAMs.

However, for circuits that introduce the simple time-division
of the operations, the calculation time increases significantly.
For example, for N = 1000, the multiply-accumulation
operators must be used 1000 times to calculate zi in Eq. (1),
and the calculation time increases in proportion to the number
of nodes.

Because of these disadvantages, the conventional CBM-
CSA introduces a differential multiply-accumulation method
[10] [11], which is an improved hardware-oriented algorithm
of the conventional simple time-division method described
above. Furthermore, the increase in calculation time by time-
division calculations can be reduced by focusing on the
change of each neuron in a time-domain neural network. The
calculation is described by the following Eqs. (8), (9) and (10),
where t, zti , and dtj represent time, the input of the i-th neuron
at time t, and the difference between the former output of the
j-th neuron st−1

j and the present output for stj , respectively.

z0i = bi +

N∑
j ̸=i

s0jwij , (8)

zti = zt−1
i +

∑
j ̸= i

st−1
j ̸= stj

dtjwij , (9)

dj =

{
−1 (st−1

j = 1, stj = 0),

1 (st−1
j = 0, stj = 1).

(10)



Fig. 5. Overall of CBM circuit

When t = 0, the calculation time is equal to the conven-
tional simple time-division calculations to accurately calculate
z0i . However, after the second time of the calculations (t > 0),
the operation is performed according to Eqs. (9) and (10)
for only the neurons changed. Therefore, the calculation time
can be significantly reduced compared to the conventional
time division calculation. In [10], Kawashima reported that
by introducing the differential multiply-accumulation to CBM-
CSAs, the calculation time of a CBM-CSA with 300 nodes is
approximately one-twentieth of that of the conventional simple
time-division calculations.

III. PROPOSED CIRCUIT DESIGN

The overall view of a circuit designed in this work is shown
in Fig. 5. There are four major circuits inside the CBM-CSA: a
controller, a memory, a bit slice, and a neuron. The controller is
a state machine that controls the operations of the CBM-CSA.
The controller determines temperature parameter changes and
controls calculations of the iterator τ in Fig. 4. The memory
stores the weights between neurons. The bit slice divides a
large bit string into small bit strings. The neuron is a circuit
that actually performs the operations. It updates the internal
state xi by the calculation Eq. (3) and returns the respective
output state si to the controller. In this way, the current output
state is compared with the past output state in the controller,
and we can use the differential multiply-accumulation.

A. Memory circuits

In the conventional CBM-CSA [10], the memory circuits
are shown in Fig. 6. Memory circuits are created separately
for each neuron. Therefore, the number of CBM-CSA neurons
that could be implemented on an FPGA does not depend solely
on the total amount of memories but also on the number of
physical memory elements on an FPGA.

This work improves and implements only one large memory
circuit, as shown in Fig. 7. It has an address from 0 to N −1,
and the data at each index has all the weights from that index
to the other neurons together. In addition, the memory usage is
reduced by storing bias bi in the wi,i location because CBMs
have no self-weights wi,i = 0, as shown in Fig. 7. Then,
the obtained weights are divided by the bit slice and sent to
individual neurons.

Creating one large memory circuit, rather than implement-
ing memory circuits for each neuron individually is efficient

Fig. 6. Conventional memory circuit

Fig. 7. Proposed memory circuit

for the following reasons. If memory circuits are installed
in each neuron, at least N physical memory elements are
required. Therefore, the number of nodes that can be imple-
mented is greatly affected by the number of memory elements,
and not by the total amount of memory in an FPGA. Further-
more, conventional memory circuits are more wasteful than
proposed memory circuits. Xilinx FPGAs include BRAMs and
ultra-RAMs (URAMs), with capacities of 36 kb and 288 kb,
respectively. If memory circuits are implemented separately
similar to conventional memory circuits, only half capacities
of a RAM are actually often used.

B. Neuron circuits

The conventional CBM-CSAs [10] have a problem with a
large increase in calculation time when the temperature is
changed. Fig. 8 shows the increase in the calculation time
when the temperature is changed every ten epochs, and the
graph shape of the conventional CBM-CSA looks similar to



a stair. This significant increase in calculation time is caused
by the reset of accumulated value in the conventional neuron
circuits.

Fig. 9 shows the conventional neuron circuit. In the circuit,
the DSP operation mode is multiply-accumulate (MACC). The
two inputs to the DSP are A and B, respectively, the DSP’s
internal register is C, and the output is Z. In the MACC mode,
Z = A ∗ B + C and C is updated by Z. In the conventional
CBM-CSAs, A and B are wi,τ or bi and 1/T , respectively.
The internal register C hold Cτ

i =
∑

τ wi,τ/T + bi/T and
the differential multiply-accumulation is realized by using
the ctrl signal to decide whether to add or subtract inputs
to Cτ

i . Furthermore, the conventional CBM-CSAs require
calculating Eq. (8) to reset the internal register C at the time
of temperature changes, so the calculation time becomes large.

This work proposes a novel neuron circuit to remove the
reset that increases the calculation time. We add a register rZi
to hold the previous input zi and the Stage signal that controls
the operation, as shown in Fig. 10. These changes in the neuron
circuit enable dynamically changing inputs to a DSP and
remove the reset. The calculation time of the proposed CBM-
CSAs increases purely depending on the number of nodes that
might have changed. Therefore, the increase in the calculation
time is inhibited to a smooth increase like Fig. 8.

Details of the proposed neuron circuits are described below.
The CBM-CSAs operation can be roughly divided into three
stages: Stage0, Stage1, and Stage2, which are the calculation
of zi, the calculation of zi/T , and the update of the internal
state by xi + dxi/dt, respectively. In Stage0 (Stage = 0), the
weights or bias and 1 are fed to A and B, respectively, and the
differential multiply-accumulation is implemented by a DSP
that operates in MACC mode. The internal register C hold
C ′τ

i =
∑

τ wi,τ +bi in the proposed neuron circuits. In Stage1
(Stage = 1), zi that is obtained by the differential multiply-
accumulation and stored in the register rZi and temperature
parameter 1/T are fed to A and B, respectively, and the
operation of zi/T was performed by setting C = 0. In Stage2
(Stage = 2), the internal state xi is updated by the adder that
is constructed by LUTs in the latter of the DSP. Meanwhile,
we feed rZi and 1 to A and B, respectively, and initialize
C to zi. As shown above, inputs are changed dynamically by
adding rZi and the Stage signal.

IV. IMPLEMENTATION

A. Implemented systems

We implemented a system as shown in Fig. 11. We con-
trolled a CBM-CSA implemented on an FPGA by the host
program running on a CPU. The CBM-CSA on an FPGA
includes the proposed circuits described above. The host sends
data such as weights and some parameters through PCI-
Express (PCIe) to the CBM-CSA on the FPGA and receives
the calculated results from the FPGA. We use an open-source
library named PyQUBO for generating the weights [13] [14].
Furthermore, we can automatically generate weights that can
be mapped to the Ising model from an energy function E
such as representing a combinatorial optimization problem

Fig. 8. Change of calculation time (Conventional circuit vs Proposed circuit)

Fig. 9. Conventional neuron circuit

with PyQUBO. In addition, we use PYNQ, a library provided
by AMD Xilinx, for communication between the FPGA and
the CPU [15]. The software versions and a target board are
listed in Table I. Our target board is Alveo U250 which is one
of the high-end FPGAs provided by AMD Xilinx.

B. Implementation results

As a result of the implementation using the environment as
shown in Table I, we implemented a CBM-CSA with 4096
nodes on an FPGA board. The CBM-CSA controls 16-bit
width weights and bias and runs at 100MHz. The circuit
utilization including all circuits such as communication with
the CPU is shown in Table II, where LUT, LUTRAM, FF, are
look up table, LUT used as memory, and flip-flop, respectively.

V. EXPERIMENTS

We experimented with solving max-cut problems to verify
the performance of the implemented CBM-CSA. The max-cut
problem is one of the most famous combinatorial optimization
problems. Furthermore, it is to divide the nodes of a weighted
graph (wij = wji is the weight between the i-th node and
the j-th node) into two groups such that the result maximizes
the total weight of the edges. The total weight of the edges is
called the cut value Cut(s) and is represented in Eq. (11).

Cut(s) =

N−1∑
i=0

N−1∑
j=i

wi,j(2sisj − si − sj). (11)

K4000 is one of the max-cut problems for a complete
graph of 4000 nodes and is the benchmark problem used in
[4]. We created the K4000 max-cut problem with a pseudo-
random number algorithm called the Mersenne Twister [16]
with seed = 1 as the same as [4].

In addition, we made and solved the max-cut problem
with weights between nodes in the range of [−100, 100],



Fig. 10. Proposed neuron circuit

Fig. 11. Overall of the CBM-CSA system

R[−100, 100]4000 because the implemented CBM-CSA can
control 16-bit width weights and we wanted to test abilities to
control multi-bit weights, although there were not such prob-
lems. There are some max-cut problems such as Biq Mac [17],
G-set [18] and K4000, but those problems are small or have
only {−1, 1} weights; therefore, we created R[−100, 100]4000.
We created R[−100, 100]4000 whose weights were defined as:
wij = wji = ri, where ri is generated number by Mersenne
Twister with seed = 1 in the range of [−100, 100].

The hyperparameters of these experiments are shown in
Table III. In Table III, dt and the number of epochs refers to
the number of time divisions of the CBM operation in Eq. (3)
and the number of times calculate Eq. (3) and update xi per
one temperature, respectively.

The results of ten times averages of both our experiments are
shown in Tables IV and V. In this experiment, the calculation
time refers to the time required to reach the HNN energy,
because it is difficult to search for the globally optimal solution
on the scale of problems. This definition of calculation time
is the same as in the conventional work [4]. Averages of ten
times of the solution obtained by HNN run for long iterations
were -88,405 (K4000) and -5,119,074 (R[−100, 100]4000).

Additionally, in Tables IV and V, Optimized CPU-SA
and Unoptimized CPU-SA are the results of K4000

and R[−100, 100]4000 solved by SA run on a CPU.
Optimized CPU-SA is the result in [4], which is the result
of optimizing the cache usage and calculation method for the
CPU. The result of Optimized CPU-SA is not in Table V
because R4000[−100, 100] is the original max-cut problem.
Unoptimized CPU-SA is the result of [19], which we run on
AMD Ryzen Treadripper PRO 3995WX.

Regarding the result of K4000 in Table IV, the best solution
of this work was comparable to that of Unoptimized CPU-SA.
This work was approximately twice as fast as the conventional
SB machine on an FPGA (FPGA-SB) [4]. The median result

TABLE I
IMPLEMENTATION ENVIRONMENT

Target board Alveo U250
Vitis, Vivado, VitisHLS v2021.2
Python v3.8.10
PyQUBO [13] [14] v1.2.0
PYNQ [15] v2.7.0

TABLE II
RESOURCE UTILIZATION

Elements Used Available Utilization[%]
LUT 1,114,049 1,726,216 64.54

LUTRAM 20,479 790,200 2.59
FF 719,766 3,456,000 20.83

BRAM 655 2,688 24.37
URAM 911 1,280 71.17

DSP 4,116 12,288 33.50

of experiments is shown in Fig. 12. Furthermore, the number
of epochs and calculation time were 185 and 0.110 [ms],
respectively. In addition, the best solution was obtained at 448
epochs and 0.175 [ms].

Regarding the result of R[−100, 100]4000 in Table V, the
best solution of the implemented CBM-CSA was compa-
rable to that of Unoptimized CPU-SA similar to the re-
sult of K4000. Furthermore, it was dramatically faster than
Unoptimized CPU-SA as well.

VI. DISCUSSION

A. Implementations

The implementation result is compared with the conven-
tional implementations on an FPGA, as shown in Table VI.

Regarding SA and SQA, when compared to sparsely con-
nected Ising machines such as chimera graphs and king graphs,
the number of nodes is equal to or more. However, when
solving actual problems, to represent dense connections with
sparse connections, graph embedding must be performed,
which greatly reduces the number of nodes that can actually
be used. For example, it is difficult to solve K4000, an all-
connected optimization problem by using [5] or [20].

Regarding other algorithms of Ising machines, the number
of nodes for SQA is 32768, which is very large compared
with other conventional Ising machines. This is caused by
the repeated time-division of operations to reduce the num-
ber of arithmetic units and to store the weights in external
RAMs. Such repeated time-division and storage of weights in
external RAMs can be implemented, and we can implement
approximately 100000 nodes CBM-CSAs by using these.
However, using these techniques cause a significant increase
in calculation time, and from the results of [4] and [21], this
SQA machine could be slower than the GPU.

Moreover, the proposed circuit allows for further scaling of
CBM-CSAs. The proposed circuit requires at least one DSP
for each neuron. Therefore, we can implement a CBM-CSA
with more than 10000 nodes by reducing the bit width of the
weights and the internal state xi to reduce the use of LUTs,
BRAMs, and URAMs.



TABLE III
PARAMETERS FOR THIS WORK IN THE EXPERIMENTS

K4000 R[−100, 100]4000

dt 1024 1024
Initial temperature 300 1000
Temperature rate 0.90 0.95

The number of epochs 15 20
The number of temperatures 30 50

TABLE IV
EXPERIMENTAL RESULTS FOR K4000

This work FPGA-
SB [4]

Optimized
CPU-SA [4]

Unoptimized
CPU-SA [19]

Calculation time
Best [ms] 0.105 0.185 63.5 8320
Avg [ms] 0.110 0.211 66.0 8320

(vs. this work) (x1) (x2) (x600) (x75636)
Best solution

Best -93102 - - -97736
Avg -92015 - - -97736

(vs. Unoptimized
CPU-SA) (x0.94) (-) (-) (x1.00)

B. Experiments

The best solution of the implemented CBM-CSA was
comparable to that of Unoptimized CPU-SA. This is caused
by the simplification of the exp function to the shift function
as the hardware-oriented algorithm and the implementation of
CBM-CSAs to operate in discrete time by using the Euler
method, although CBMs run in continuous time in the model.
However, the performance degradation was insignificantly and
Kawashima reported that CBM-CSA obtained solutions com-
parable to the optimal solution of Biq Mac [17] in [10], so we
conclude that the effects of the hardware-oriented algorithm
and the discretization were very insignificant. Additionally, the
worsening rate of the best solution of R[−100, 100]4000 was
similar to that of K4000, indicating that the bit width of the
weights that this work can handle is wide and has large width
of the representation. Therefore, the implemented CBM-CSAs
can solve not only simple combinatorial optimization problems
such as the existence of a relationship or not but also complex
problems such as traveling salesman problems (TSPs).

Regarding the calculation time of K4000, this work was ap-
proximately twice as fast as the conventional work [4], because
of the introduction of the differential multiply-accumulation.
Furthermore, we significantly reduce the calculation time of
the time division calculation by using the differential multiply-
accumulation. For example, we estimated the calculation time
by using parameters of K4000. From Fig. 12, the total epochs
to reach HNN energy was 185 which means that temperatures
were changed 11 times from Table III. Furthermore, the
estimated calculation times of a CBM-CSA without differ-
ential multiply-accumulation (Without DMACC CBM-CSA)
and the conventional CBM-CSA (Conventional CBM-CSA)
[10] were 7.578 [ms] and 0.561 [ms], respectively as shown
in Fig. 12. From these results of estimation, the CBM-CSA
implemented in this work is 69 times and five times as fast as
Without DMACC CBM-CSA and Conventional CBM-CSA,
respectively. In addition, by introducing the improvements of

TABLE V
EXPERIMENTAL RESULTS FOR R[−100, 100]4000

This work Unoptimized CPU-SA [19]
Calculation time

Best [ms] 0.100 8520
Avg [ms] 0.105 8520

(vs. this work) (x1) (x81143)
Best solution

Best -5464497 -5662692
Avg -5426268 -5662692

(vs. Unoptimized CPU-SA) (x0.96) (x1.00)

Fig. 12. Change of K4000 cut value
( ) means the estimated calculation time

this work, CBM-CSA becomes faster than the conventional
Ising machine, FPGA-SB [4].

Although the calculation time when introducing the differ-
ential multiply-accumulation depends on the problem to be
solved and the number of node flips that have occurred, the
hardware-oriented algorithm was very powerful and useful
because the calculation time was greatly reduced, despite the
calculation accuracy has not changed with the introduction of
the hardware-oriented algorithm. Furthermore, as the number
of nodes increased, the effect of the differential multiply-
accumulation is expected to increase. Therefore, by introduc-
ing the proposed architecture when implementing a large-scale
time-domain neural network such as spiking neural networks
[23] and chaotic neural networks [24], we expect a significant
reduction in calculation time without any side effects.

Finally, we conclude that this work implements one of
the highest-performance Ising machines on a single FPGA
board based on the results of the FPGA implementation and
experiments and the above discussion. In addition, CBMs are
not only used to solve combinatorial optimization problems but
also for reservoir computing [25] [26]. The speedup and scale-
up of CBMs in this work will contribute to the development
of reservoir computing using CBMs.

VII. CONCLUSION

This work improved the conventional CBM-CSA [10] to
make it larger and faster. Memory circuits in the conventional
CBM-CSA are implemented separately for each neuron. How-
ever, this work implemented only one large memory circuit.



TABLE VI
IMPLEMENTED ISING MACHINES ON A SINGLE FPGA BOARD

This work Kawashima [10] Tsukamoto [22] Yoshimura [5] Tatsumura [4] Waidyasooriya [21] Okuyama [20]
Algorithm CSA SA SB SQA
Topology complete graph chimera graph complete graph king graph

Size 4,096 300 1,024 4,096 4,096 32,768 9,216
Precision 16 16 16 1 1 32* 8

Target
board

Alveo
U250

Virtex-6 FPGA
ML605

Arria 10
GX 1150 Virtex-7 Arria 10

GX 1150
Arria 10

10AX
Virtex UltraScale

XCVU905
Precision : default is a fixed point, * is a floating point

Therefore, the implementable scale of CBM-CSA only de-
pends on the total amount of memories, and we can implement
a larger CBM-CSA than the conventional CBM-CSA. In ad-
dition, we improved the conventional neuron circuits required
to reset accumulated values to change temperatures. The reset
of the accumulated value causes a significant increase in the
calculation time. Furthermore, we enabled dynamic changes
of inputs to the neuron circuits and inhibited the increase in
the calculation time.

We implemented a CBM-CSA with 4096 nodes on an
FPGA. The CBM-CSA can control 16-bit width weights and
runs at 100MHz. We evaluate the proposed CBM-CSA by
solving max-cut problems. The best solution of the CBM-
CSA is comparable to that of the CPU-SA, but the calculation
time is approximately one-fifth of the conventional CBM-CSA.
Moreover, with the improvements of this work, the CBM-
CSAs become 600 times as fast as a CPU-SA, and twice as fast
as the conventional Ising machine on an FPGA [4]. Then, we
conclude that one of the highest-performance Ising machines
is implemented for a single FPGA board in this work.
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