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ABSTRACT 
Frequent floods caused by monsoons and rainstorms have signifi-
cantly affected the resilience of human and natural ecosystems in 
the Nam Ngum River Basin, Lao PDR. A cost-efficient framework 
integrating advanced remote sensing and machine learning 
techniques is proposed to address this issue by enhancing flood 
susceptibility understanding and informed decision-making. This 
study utilizes remote sensing geo-datasets and machine learning 
algorithms (Random Forest, Support Vector Machine, Artificial 
Neural Networks, and Long Short-Term Memory) to generate 
comprehensive flood susceptibility maps. The results highlight 
Random Forest’s superior performance, achieving the highest 
train and test Area Under the Curve of Receiver Operating 
Characteristic (AUROC) (1.00 and 0.993), accuracy (0.957), F1-score 
(0.962), and kappa value (0.914), with the lowest mean squared 
error (0.207) and Root Mean Squared Error (0.043). Vulnerability is 
particularly pronounced in low-elevation and low-slope southern 
downstream areas (Central part of Lao PDR). The results reveal 
that 36%–53% of the basin’s total area is highly susceptible to 
flooding, emphasizing the dire need for coordinated floodplain 
management strategies. This research uses freely accessible 
remote sensing data, addresses data scarcity in flood studies, and 
provides valuable insights for disaster risk management and 
sustainable planning in Lao PDR.
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GRAPHICAL ABSTRACT

1. Introduction

A flood is a remarkable high-water flow that overflows the banks of a river, causing 
water to spread to the floodplain due to severe rains (Cirella and Iyalomhe 2018). 
Flood is a major devastating natural disaster regarding the number of people affected 
and economic loss (Di Baldassarre et al. 2010; FitzGerald et al. 2010; Rappaport 2014; 
Khalil and Khan 2017; Morrison et al. 2018). Large and damaging floods are increas-
ingly occurring every year around the world (Kundzewicz et al. 2014), particularly in 
low-economy countries (Li et al. 2012; Imamura 2022). For example, Lao PDR has 
faced several devastating floods, notably in 2009, 2011, 2013, 2018, and 2019. These 
disasters have significantly impacted the country’s socio-economic development. In 
2018, flood damages amounted to about 2.1% of the nation’s GDP, equivalent to 
around US$ 371 million (UN et al. 2018; Government of Lao PDR and Asian 
Development Bank 2022). The country experiences damage from natural disasters 
every year, with floods in the plains and frequent landslides in hilly areas. These inci-
dents endanger people’s lives and property and significantly impact the economy and 
agriculture sectors.

The Nam Ngum River Basin (NNRB) in Laos, a key food source and home to the 
country’s oldest hydropower station, faces recurring floods and droughts due to cli-
mate change, human interventions, and unpredictable monsoon rainfalls (Wei et al. 
2020). Despite numerous reservoirs for flood protection, the area still suffers signifi-
cant agricultural and infrastructural damage, leading to high economic losses 
(Keophila et al. 2019; Kimmany et al. 2020). Vientiane province, the major part of 
NNRB, experiences flooding in most of its districts. For example, the August 2018 
flooding affected five out of nine districts, with more than 16,000 people and thou-
sands of hectares of farmland affected (https://vientiantimes.org.la). Likewise, the 
2023 flooding affected ten provinces in Laos, including Xienkhoung, Saysomboun, 
and Vientiane provinces of NNRB. This flooding caused substantial damage to the 
agricultural area and infrastructures, such as roads, irrigation plants, hospitals, and 
schools; the single event took away six lives and affected around 69,000 people in 
14,000 families. Similarly, in 2022, Tropical Storm Mulan also affected this area 
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(https://reliefweb.int/country/lao). These examples signify the importance of NNRB’s 
flood susceptibility mapping. For proper disaster management, baseline data for haz-
ards, exposures, and vulnerabilities are crucial. In the case of Lao PDR, the availabil-
ity of data and information at the sub-national level hinders disaster management 
(UNDRR 2019). Accurate flood susceptibility prediction is crucial for effective flood-
plain management and socio-economic development (Fang et al. 2021).

Flood susceptibility is the likelihood of future floods due to various factors 
(Nguyen 2022; Sharir and Roslee 2022). Flood susceptibility modeling involves vari-
ous methods, including physical, statistical, multi-criteria decision-making (MCDM), 
and machine learning approaches (Mehravar et al. 2023). MCDM techniques, while 
useful, can face challenges, such as uncertainty and potential bias (Broekhuizen et al. 
2015). Statistical methods evaluate the correlation between floods and their causes 
(Poudyal et al. 2010; Ozdemir and Altural 2013; Arabameri et al. 2019; Natarajan 
et al. 2021; Ramesh and Iqbal 2022; Sharir and Roslee 2022), but their effectiveness 
can be limited by the scale of datasets and the complex nature of flood occurrences 
(Liu et al. 2023). Hydrologic models like HEC-HMS and HEC-RAS are excellent for 
simulating flood scenarios (Zele�n�akov�a et al. 2019), but they require accurate data 
and deep hydrology knowledge (Costache and Tien Bui 2019). Machine learning 
models, including Artificial Neural Networks (ANN) (Andaryani et al. 2021; Priscillia 
et al. 2021; Ighile et al. 2022), Support Vector Machine (SVM) (Tehrany, Pradhan, 
Mansor, et al. 2015; Tehrany, Jones, et al. 2019; Costache et al. 2020; Liu et al. 2022; 
Duwal et al. 2023), Decision Trees (Khosravi et al. 2018), K-nearest neighbors 
(Al-Aizari et al. 2022), Naïve Bayes (Hasanuzzaman et al. 2022), Adaptive Neuro- 
Fuzzy Inference Systems (Wang et al. 2019), and decision tree–based models like ran-
dom forest (Shafizadeh-Moghadam et al. 2018; Hasanuzzaman et al. 2022; Kulithalai 
and Kundapura 2023; Razavi-Termeh, Sadeghi-Niaraki, et al. 2023), CatBoost, 
LightGBM (Saber et al. 2022; Kulithalai and Kundapura 2023), Extreme Gradient 
Boosting (Ma et al. 2021; Mirzaei et al. 2021; Hasanuzzaman et al. 2022; Razavi- 
Termeh, Seo, et al. 2023), and gradient boosting machines (Felix and Sasipraba 2019; 
Saravanan et al. 2023), have been introduced to analyze large complex datasets for 
flood susceptibility investigation efficiently. The availability of numerous satellite-based 
remote sensing data has enhanced flood susceptibility modeling to a new level, however, 
the issues related to clouds during the flooding events hindered the rapid and accurate 
floodwater mapping (Shahabi et al. 2020; Chen et al. 2021). This issue is largely solved 
with the development of synthetic aperture radar (SAR) images (Hansana et al. 2023). 
The pre-and post-flood Sentinel-1 SAR images for water detection paved the path for 
simple and efficient water detection for flood mapping (Shahabi et al. 2020; Elkhrachy 
et al. 2021). The availability of historical flood data, such as the Colorado Flood 
Observatory and the LAO Knowledge for Development (K4D), adds ease to flood inven-
tory preparation. This study uses machine learning, including ANN, SVM, LSTM, and 
RF, for flood susceptibility mapping in Laos. A review of flood studies in Lao PDR 
reveals a scarcity of machine learning applications in flood susceptibility mapping for 
river basins. Previous research by (Keophila et al. 2019; Phrakonkham et al. 2019; Du 
et al. 2020; Hansana et al. 2023) primarily employed methods like AHP, hydrological 
modeling, and flash flood potential indices. To address this gap, this study proposes a 
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simple and efficient data-driven machine-learning approach based on remote sensing 
data for effective flood susceptibility mapping in the NNRB. The findings of this study 
aid in informed decision-making for flood management and urban development. It 
aligns with the National Strategy on Disaster Risk Reduction (NSDRR) 2021–2030 
(Government of Lao PDR and Asian Development Bank 2022), Sendai Framework for 
Disaster Risk Reduction, and sustainable development goals (SDGs-11 –sustainable cit-
ies and communities, and SDG-13 Climate change), aiming to address climate change 
and ensure safety in flood-prone areas.

2. Study area

Lao PDR, situated in Southeast Asia, is rich in water resources, with the Mekong 
River Basin covering 90% of its territory. The Nam Ngum River, a key watercourse, 
extends about 420 km from the Xiengkhouang plateau to the Vientiane Plain (Meema 
et al. 2021). The NNRB, the country’s fourth-largest basin, spans 16,800 km2 and is 
located between longitudes 102� 250 E and 103� 300 E and latitudes 18� 300 N and 19�

300 N (Meema et al. 2021; Dhungana et al. 2023; Adams et al. 2018). It is character-
ized by hilly terrain with elevations ranging from 2569 to 114 masl at the Mekong 
River confluence (Figure 1). The basin, which includes 19 districts across six provin-
ces, contributes 4% to the Mekong’s mean annual flow. It has a tropical climate with 

Figure 1. The location of the Nam Ngum River Basin and photographs of flooded areas; (a,f) 
Thalat, (b) Tanpiao, (c) Thangon riverside, (d) Thangon, (e) Thasavang (Sources: a and f. photo 
credit: pilot bountem souphamixay, b. photo credit: pilot cap vanh mahayo, c. www.muan.sanook. 
com, d. www.vientianetimes.org.la, e. Photo credit: Ly vannaly).
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clear wet and dry seasons, influenced by East Asian and Indian monsoons. From 
June to October, the rainy season sees heavy rainfall of 1500 to 3000 mm annually, 
exacerbated by Southwest monsoons and Pacific Ocean typhoons causing floods 
almost every year (Bartlett et al. 2012; Meema et al. 2021; Dhungana et al. 2023).

3. Methodology

The proposed methodology comprises (a) preparation of flood inventory, (b) prepar-
ation of flood conditioning factors, (c) Selection of the suitable conditioning factors 
using multicollinearity test, (d) flood susceptibility modeling using machine learning 
approaches, (e) comparison and validation of the approaches, and (f) flood suscepti-
bility mapping. The detailed methodological framework is shown in Figure 2.

3.1. Data collection and preparation

The flood susceptibility mapping was initiated from data collection. One of the 
study’s main objectives was to use open-source remote sensing data for flood suscep-
tibility mapping. Since data scarcity is the major hindrance in developing countries 
like Lao PDR, publically available satellite-based remote sensing data are vital (Saha 
et al. 2021). Historical flood records were collected from online news portals for the 
tentative location of the flooded areas. Likewise, sentinel-1 SAR images were analyzed 
in the Google Earth Engine for flood area detection. These data, along with the infor-
mation from the Knowledge for Development (K4D) (https://apps.k4d.la/explorer) 
online portal (for years 2018, 2019, and 2020) and the historical flooded area (from 
1985 to 2010) from Colorado Flood Observatory (https://floodobservatory.colorado. 
edu) were initially analyzed to locate flooded areas. For further processing, we 

Figure 2. The methodology involved in the flood susceptibility modeling.
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acquired ALOS-PALSAR DEM (https://asf.alaska.edu/) to prepare conditioning 
factors. We extracted factors, such as slope, aspect, elevation, curvature, TWI, and 
SPI from ALOS-PALSAR DEM. The average rainfall data from 2010 to 2020 were 
acquired from ERA5 (https://cds.climate.copernicus.eu/), while NDVI was derived 
from Landsat 8 images (https://earthexplorer.usgs.gov/) using the Google Earth 
Engine. Land use/landcover(LULC) data were obtained from 10 m Sentinel 2 images 
(Figure 2).

3.2. Preparation of flood inventory data

Flood inventory is the foremost and essential step in flood susceptibility modeling 
(Khosravi et al. 2018; Ahmed et al. 2022; Hansana et al. 2023). The historically 
flooded areas were used to prepare the flood inventory. To locate the flood points, 
random points were generated in the flooded area detected using Sentinel-1 SAR 
images in the Google Earth Engine. Sentinel-1 SAR satellite data of 10 m resolution 
excels in capturing images regardless of time and weather (Twele et al. 2016; Martinis 
et al. 2018; Hamidi et al. 2023). We used Level 1 GRD data in IW Swath mode 
(Table 1), which has a 250 km swath width (Nagler et al. 2015; Askar et al. 2022). 
After visual inspection of the generated flood points and assessment of the change in 
accuracy of the modeling results, we selected only 390 past flood points. The non- 
flood locations were selected visually, where the probability of flooding is none—for 
example, the hilltops and ridges of the mountains. Equal numbers of flood and non- 
flood locations were used for the inventory for increased accuracy, as suggested by 
(Buitinck et al. 2013; Tang et al. 2020; Towfiqul Islam et al. 2021). Values of 1 as 
flood and 0 as non-flood points were assigned for model training and testing, using 
70% of the data for training and 30% for testing.

3.3. Flood conditioning factors

The flood conditioning factors are crucial in mapping flood susceptibility (Mojaddadi 
et al. 2017). Identification of the factors that play a vital role in flood susceptibility 
mapping. However, the selection of appropriate conditioning factors depends on the 
nature of the particular region (Amiri et al. 2024). Eleven flood conditioning includ-
ing elevation, slope, aspect, curvature, topographic wetness index (TWI), stream 
power index (SPI), distance to the river (DTR), normalized difference vegetation 
index (NDVI), land use/land cover (LULC), rainfall, and soil type were selected based 
on literature (Shafizadeh-Moghadam et al. 2018; Janizadeh et al. 2019; Khosravi et al. 
2019; Dodangeh et al. 2020). Parameters like slope, curvature, aspect, DTR, drainage 
density, SPI, and TWI were derived from the ALOS-PALSAR DEM of 12.5 m 
resolution, and other data were acquired from different sources, as shown in Table 2. 

Table 1. Description of Sentinel-1 data.
Sensors Sensor mode Polarization Pass direction Dates of acquisition

Sentinel-1A Interferometry wide swath (IW) VV, VH Ascending 3 August to 7 September 2018 
25 July to 7 September 2019
5 August to 22 October 2020
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The spatial and temporal resolution of the conditioning factors affects the precision 
of the underlying results (Saha et al. 2021). However, the study by Avand et al. 
(2022) states that spatial resolution alone does not affect the model’s prediction sig-
nificantly, but the type of model and local condition are affected remarkably. For this 
study, we focused on the publically available data with better spatial and temporal 
resolution for the analysis. Since most of the conditioning factors are derived from 
DEM data, other conditioning factors were resampled to the resolution of the DEM 
data, i.e. 12.5 m, to obtain the final results. The conditioning factors were reclassified 
to create class data. Based on previous studies (Chapi et al. 2017; Tien Bui et al. 
2018; Shahabi et al. 2020; Duwal et al. 2023) the natural break was used to reclassify 
elevation, slope, aspect, and rainfall. NDVI. TWI, SPI, and DTR were reclassified 
using quantile division, and LULC, soil, and curvature were reclassified manually.

3.3.1. Description of conditioning factors
Low-lying areas, subject to rapid drainage from high to low elevations, are particu-
larly vulnerable to flooding (Choubin et al. 2019). Similarly, the gradient of the slope 
significantly impacts flood risk (Khosravi et al. 2016), with lower gradients posing 
challenges for effective drainage after flooding (Tien Bui et al. 2018). Aspect, repre-
senting the orientations of the slope (Shafizadeh-Moghadam et al. 2018), affects soil 
moisture and weather conditions, influencing flood susceptibility (Rahmati et al. 
2016). SPI quantifies flow erosion power and runoff density (Florinsky 2017). 
Curvature, indicating surface shape, identifies regions prone to flooding (Tehrany, 
Pradhan, Mansor, et al. 2015; Khosravi et al. 2019), with negative values signifying 
convexity, positive values indicating concavity, and zero indicating flatness (Youssef 
et al. 2016). Elevated TWI values highlight areas prone to inundation (Sørensen et al. 
2006; Chen and Yu 2011). NDVI values represent vegetation vitality, with higher val-
ues indicative of denser vegetation cover (Askar et al. 2022), which is inversely related 
to flood susceptibility (Kumar and Acharya 2016). Rainfall is a primary driver of 
flooding (Tehrany, Jones, et al. 2019), The rainfall depth, intensity, and frequency 
majorly determine flooding. Annual average rainfall data was mapped using ERA5 
data from 2010 to 2020. DTR influences flood probabilities, with closer proximity 
increasing the likelihood (Shahabi et al. 2020). Soil type affects water absorption and 
accumulation during floods (Rahmati et al. 2016), while LULC delineates areas at risk 
(Khosravi et al. 2016), vegetated areas increase travel time and slow the runoff, and 
bare lands and built-up areas facilitate the flow (Figure 3).

Table 2. Description of data used in the study.
Primary data Original data format Data source Spatial resolution Derived data

DEM Raster ALOS PALSAR DEM 
(https://search.asf. 
alaska.edu/)

12.5� 12.5 m Elevation, Slope, 
Aspect, Curvature, 
TWI, SPI, DTR

Landsat8 Image Raster USGS 30� 30 m NDVI
Sentinel2 Image Raster ESA 10� 10 m LULC
ERA5 Raster www.cds.climate. 

copernicus.eu
30� 30 km Rainfall

Environmental map Vector FAO 1:500,000 Soil map
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3.4. Selection and evaluation of factors based on multicollinearity test and 
information gain ratio

In this study, we first identified correlations in the data using a multicollinearity test 
(Alin 2010). A high correlation between independent variables can lead to errors in 
machine learning models and affect the accuracy of the final flood susceptibility map. 
We used the variance inflation factor (VIF) and tolerance values to detect and elimin-
ate multicollinearity. Factors indicating multicollinearity (tolerance <0.10 and VIF 
>10) (Arabameri et al. 2019; Baig et al. 2022; Mehravar et al. 2023) should be 
removed. The VIF is calculated using Equation (1) as

VIFi ¼
1

1 − R2
i

(1) 

where R2
i is the coefficient of determination obtained by regressing the factor i on all 

other factors in the analysis (Miles 2014).

Figure 3. Flood conditioning factors.
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The Information Gain Ratio (IGR) (Ghorbanzadeh et al. 2019; Talukdar et al. 
2020; Towfiqul Islam et al. 2021) test, a widely used feature selection technique, eval-
uates the significance of factors in flood events. A higher IGR value indicates a more 
decisive influence of the factor on the target variable (Al-Abadi 2018; Saber et al. 
2023; Bhattarai et al. 2024).

3.5. Machine learning methods

3.5.1. Support vector machine (SVM)
SVM is widely used in flood susceptibility mapping (Tehrany, Pradhan, Mansor, et al. 
2015; Tehrany, Jones, et al. 2019; Nachappa et al. 2020). SVM is a supervised learning 
technique for classification, regression, and outlier detection (Tehrany et al. 2014). 
The SVM model relies on a kernel linear mathematical function for data transform-
ation and determination (Arabameri et al. 2022). It aims to find the optimal hyper-
plane that separates a dataset into two classes (Choubin et al. 2019).

3.5.2. Random forest (RF)
The RF method, an ensemble of decision trees, is used in classification and regression 
tasks. Its ability to deliver superior classification results and processing speed has gar-
nered increasing attention in recent studies (Talukdar et al. 2020; Dabija et al. 2021; 
Bhattarai et al. 2024). During prediction, a random set of features is selected at each 
step, and each outcome is weighted by the value derived from the votes it receives. 
The final categorization decision tree is determined by the majority vote based on the 
results of the evaluated decision trees. In flood susceptibility mapping, RF is recog-
nized as a significant non-parametric ensemble learning approach (Ghorbanzadeh 
et al. 2019; Towfiqul Islam et al. 2021).

3.5.3. Artificial neural network (ANN)
ANN models mimic the interconnected structure of a biological brain, responding to 
sensory inputs. ANN consists of artificial neurons or nodes organized in layers. The 
input layer connects to a hidden layer, with assigned weights for each connection. 
The output emerges from the hidden layer, influenced by these weights. Researchers 
favor ANN due to its nonlinear modeling capabilities and adaptability to complex 
frameworks (Priscillia et al. 2021). It is commonly used to analyze and predict natural 
disasters like landslides and floods (Ghorbanzadeh et al. 2019). The goal is to find an 
optimal model reflecting the relationship between flood inventory maps (dependent 
variables) and flood-influencing factors (independent variables) (Ighile et al. 2022). 
The input data feeds into the network, while the hidden layer processes operations 
and stores the resulting weights. The model’s output reveals how parameters interact.

3.5.4. Long-short-term-memory (LSTM)
LSTM (Sepp and J€urgen 1997) is an advanced type of recurrent neural network 
(RNN) designed to handle long data sequences by selectively remembering and 
forgetting information over time, making it effective for predicting hydrological 
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variables and flood susceptibility mapping (Tripathy 2019; Fang et al. 2021; Bhattarai 
et al. 2024).

3.6. Evaluation metrics for flood susceptibility models

Generating a flood susceptibility map with a machine-learning algorithm involves a 
binary classification technique. In this approach, a chosen pixel from the study area 
is categorized as either flood pixels (P) as 1 or non-flood (N) as 0 (Tehrany, Pradhan, 
Mansor, et al. 2015; Towfiqul Islam et al. 2021). The selected machine-learning algo-
rithm may not always yield accurate predictions during the classification process. 
The model’s performance is assessed using evaluation metrics, such as the area under 
the Receiver Operating Characteristics (AUROC) (Equation 5), Kappa Score, and 
Accuracy.

Accuracy ¼
TPþ TN

TP þ TN þ FP þ FM
(2) 

Sensitivity ¼
TP

TP þ FN
(3) 

Specificity ¼
TP

FP þ TN
(4) 

AUROC ¼
X

TP þ
P

TN
P
þ N (5) 

In flood susceptibility mapping, correctly classified flood pixels and non-flood pix-
els are termed True Positives (TP) and True Negatives (TN). Conversely, inaccurately 
identified flood pixels and non-flood pixels are labeled as False Positives (FP) and 
False Negatives (FN) (Chapi et al. 2017; Janizadeh et al. 2019; Costache et al. 2020; 
Duwal et al. 2023). AUROC is a major evaluation criterion for classification model 
performance (Tien Bui et al. 2018). It represents the degree or measure of separability 
(Davis and Goadrich 2006; Towfiqul Islam et al. 2021). The AUROC is a tool for 
evaluating model performance, with the y-axis representing the true positive rate 
(sensitivity) (Equation 3) and the x-axis representing the false positive rate 
(1 − specificity) (Equation 4) (Hanley 1989). It is a quantitative statistic to assess the 
model’s performance; a value closer to 1 indicates superior model performance, and 
0.5 represents an inaccurate model.

4. Results

4.1. Feature selection and influence of conditioning factors on flood

For the feature selection multicollinearity and Information gain ratio values are con-
sidered (Arora et al. 2021; Bhattarai et al. 2024). In this study, VIF and Tolerance 
were used to evaluate multicollinearity. Likewise, Pearson’s correlation test results 
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provide insight into the correlation between flooding and conditioning factors. The 
high correlation among the factors affects the prediction result in flood susceptibility 
mapping. The VIF values were <10, and tolerance values were >0.1 for all the 
selected 11 factors, so no multicollinearity exists. For further analysis, none of the 
conditioning factors were removed (Figures 4(a–c)). The highest VIF was obtained 
for slope (6.46), followed by TWI (3.11), elevation (2.62), and SPI (2.57). The toler-
ance values were highest for Aspect (0.95), followed by curvature (0.90), DTR(0.87), 
Soil(0.83), and Rainfall (0.81), and lowest values for Slope (0.15), TWI (0.32) and ele-
vation (0.38). These results indicated that slope and elevation are the critical factors 
in flooding, followed by TWI, SPI, LULC, NDVI, DTR, Soil, Rainfall, Aspect, and 
Curvature.

Based on IGR values, slope (0.49) and elevation (0.49) are highly influencing 
factors in the NNRB compared to other factors. Likewise, SPI (0.30), LULC (0.28), 
TWI (0.27), NDVI (0.14), and soil (0.12) demonstrated a slightly strong influence on 
the flood prediction compared to rainfall (0.08), DTR (0.06), Aspect (0.04), and 
Curvature (0.02) showed less influence on flood susceptibility. The Pearson 

Figure 4. Assessment of flood conditioning factors based on (a) Variance inflation factor, (b) 
Tolerance, (c) Pearson correlation, and (d) Information gain ratio.
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correlation was highest for slope (0.85), then elevation (0.73), TWI(0.67), and 
SPI(0.60) signifying that these factors are more correlated to flooding in NNRB 
(Figure 4(d)). Based on the values of VIF, tolerance, Pearson Correlation, and IGR, it 
can be observed that the topographic factors like elevation, slope SPI, and TWI fol-
lowed by landcover factors like LULC and NDVI are influential in flooding in NNRB 
compared to meteorological, geological, and location factors, such as rainfall, DTR, 
soil, and aspect.

4.2. Evaluation of model and validation

The machine learning models in this study were developed and validated using train-
ing and test datasets. Previous studies (Wang et al. 2020; Fang et al. 2021; Wubalem 
et al. 2021; Bera et al. 2022; Bhattarai et al. 2024) have suggested AUROC for model 
validation. The AUROC value indicates the performance of the model in detecting 
flood-prone areas. A higher AUROC value suggests better model performance. 
Sensitivity measures how accurately the model predicts positive instances, while speci-
ficity indicates the accuracy of predicting negative instances. The results revealed that 
all the models performed with higher precision with values >0.90. Based on AUROC, 
the RF performed the best (Figure 5), evidenced by the train and test AUROC 1.00 
and 0.993, respectively, followed by SVM (0.996 and 0.989), ANN (0.991 and 0.977), 
and LSTM (0.97 and 0.983). F1-score, precision, recall, kappa, MSE, and RMSE were 

Figure 5. AUROCs For all models, (a) random forest, (b) artificial neural network, (c) long 
short-term memory, and (d) support vector machine.
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employed for detailed evaluation accuracy. The F1-Score offers an equilibrium 
between precision and recall, where a high F1-Score reflects effective identification of 
flood-prone regions while minimizing false positives. (Zhang et al. 2022). A high level 
of sensitivity ensures that most flood-prone areas are correctly identified (Chapi et al. 
2017). RF exhibits superior performance for other parameters also; with the highest 
Sensitivity (0.969), Accuracy (0.957), F1 Score (0.962), and Recall (0.969), indicating 
its robustness in correctly classifying flood-prone areas. In the case of accuracy, RF 
and SVM have the highest value (0.957) and Kappa scores (0.913 and 0.914, 
respectively), suggesting a strong agreement between the predicted and observed 
classifications. Specificity (True Negative Rate) is essential to avoid false alarms in 
non-flood-prone areas (Pourghasemi et al. 2020). The SVM model stands out with 
the highest specificity (0.962) and precision (0.969), highlighting its capability to cor-
rectly predict negative cases, i.e. non-flood points, and the proportion of correct posi-
tive predictions, i.e. flood points. LSTM lags in all metrics, with notably lower 
Accuracy (0.915) and higher MSE (0.292) and RMSE (0.085). Overall, RF emerges as 
the most reliable model for this application, effectively balancing accuracy and error 
metrics (Figures 5 and 6). However, it should be noted that all the models performed 
well, and their results should be considered for flood susceptibility mapping.

4.3. Flood susceptibility mapping

After the validation of the models, the flood susceptibility maps were prepared using 
each model. The flood susceptibility map obtained from the different models was 

Figure 6. Performance of the models: (a) confusion matrix; (b) MSE and RMSE, and (c) precision 
and accuracy assessment parameters.
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reclassified into five classes: very less, less, medium, high, and very high. Various 
techniques, such as natural break, quantile, equal interval, and standard deviations 
are used for reclassifying flood susceptibility maps. We opted for the natural break 
reclassifying technique because it is well known for its superior performance com-
pared to other methods and has been frequently used to reclassify flood-susceptible 
maps (Tehrany, Pradhan, Mansor, et al. 2015; Chapi et al. 2017; Choubin et al. 2019; 
Dodangeh et al. 2020; Towfiqul Islam et al. 2021; Wubalem et al. 2021; Sharir and 
Roslee 2022).

The results obtained from the four machine learning models are presented in 
Figures 7 and 8. The study revealed that for the LSTM model, 38% (6368 km2) of the 
area lies in a very high flood susceptibility zone, followed by 15% (2561 km2) in 
highly susceptible, 13% (2219 km2) in medium, 14% (2399 km2) in less and 

Figure 7. Flood susceptible areas in percentage and sq. km obtained from support vector machine, 
random forest, artificial neural network, and long short-term memory.

Figure 8. Flood susceptibility maps generated from machine learning models.
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20%(3385 km2) in very less flood susceptible zone. Similarly, SVM shows that 31% 
(5183 km2) of the area lies under very high susceptibility area, 14% (2378) in high, 
13% (2182 km2) in medium, 14% (2366 km2) in less, and 28% (4822 km2) in very less 
flood susceptible area. The ANN model shows 27% (4582 km2) in very high, 9% 
(1634 km2) in high, 8%(1338 km2) medium, 12%(1981 km2) less, and 44% (7397 km2) 
in a very less susceptible area. Lastly, RF shows that 25% (4215 km2) lies in very high, 
12% (2063 km2) in high, 18% (3022 km2) in medium, 28% (4729 km2) in less, and 
17% (2902 km2) in very less susceptible areas. The spatial patterns of flood suscepti-
bility of the RF and ANN are similar. For the downstream part of the basin, the very 
and high flood susceptibility patterns are similar for RF, ANN, and SVM compared 
to LSTM. The pattern for the upstream part of the basin is similar for SVM and RF, 
whereas ANN showed less area in the very high and high susceptible areas. In con-
trast, LSTM showed more area under the very high and high susceptibility zone 
(Figure 8). Most of the vulnerable zones were in the lower portion of the basin (areas 
denoted as ‘very high’ in Figures 7 and 8).

5. Discussion

Flood susceptibility mapping is a major step in flood disaster management and vulner-
ability assessment. The location of the probable flooding area is crucial for disaster 
management and future developments. Flood modeling based on remotely sensed sat-
ellite data has become a prominent and efficient method. Applying machine learning 
techniques enhances and makes the process much easier and more efficient. The appli-
cation is advantageous in developing countries like the Lao PDR, where data scarcity 
is a major hindrance to studies. The coverage of satellite data to almost all over the 
world, enhanced quality of satellite remote sensing data, increased computational cap-
acity, and development of easy-to-use and efficient machine learning approaches have 
become game changers in flood susceptibility mapping (Liu et al. 2017; Mehravar 
et al. 2023). This research in Lao PDR addresses the data scarcity issue in flood studies 
by developing a simple yet robust model for flood studies using publically available 
remote sensing data. In the case of flooding, the cloud cover during the flooding 
period has been a major drawback when using optical remote sensing techniques. This 
issue has been addressed with the development of synthetic aperture radar (SAR), 
which is less interfered with by cloud (Shahabi et al. 2020; Chen et al. 2021; Elkhrachy 
et al. 2021). This study thus analyzed the sentinel-1 SAR image for flood area detec-
tion along with available historical images to prepare the flood inventory. This study 
assessed the applicability of flood conditioning factors and their effects on flooding 
using multicollinearity and information gain ratio. The results from flood susceptibility 
mapping were validated statistically using different evaluation parameters and visually 
validated using the analysis results from SAR images and historical flood data.

5.1. Influence of the conditioning factors in flood modeling

A suitable flood conditioning factor selection is essential. Suitability analysis was car-
ried out using the IGR method and multicollinearity test. In NNRB, the topographic 
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factors dominated flood modeling. The higher values of IGR and VIF for slope, eleva-
tion, TWI, and SPI evidenced that DEM-generated factors are important factors in 
flood susceptibility mapping. Similar results have been observed from the studies car-
ried out by previous researchers (Tehrany, Pradhan, et al. 2015; Tehrany, Jones, et al. 
2019; Tehrany, Kumar, et al. 2019; Towfiqul Islam et al. 2021) in different parts of 
the world. When floods occur, low-lying places can act as natural basins that hold 
and collect water, prolonging the flooding and increasing the potential damage 
(Al-Kindi and Alabri 2024). The decreased flow velocity and increased flow path and 
infiltration rate can reduce the impact of the floods. The NNRB has a flat region 
characterized by low elevation and slopes in the downstream southern part of the 
basin before joining the Mekong River. It is relatively narrow; the bed slope is very 
mild, and the influence of the Mekong River level causes difficulty in draining the 
flooded area (Kimmany et al. 2020). In addition, there are also many low-lying areas 
in the Vientiane Plain, which are inundated by small floods. Even though many 
hydropower dams were constructed upstream of the flat plain, the downstream area 
is flooded almost yearly (Vilandone Keophila 2018; Keophila et al. 2019). Historical 
data indicates that central and southern regions are prone to floods due to their geo-
graphical position and terrain features (Hansana et al. 2023). These facts highlight the 
results of this study, which show that elevation, slope, SPI, and such topographic 
factors are major drivers of flooding in NNRB. Likewise, TWI, SPI, and LULC also 
significantly influence the NNRB. The high values of IGR for LULC and NDVI sig-
nify that vegetation is a vital causation factor in flooding. Some researchers (Yariyan 
et al. 2020; Al-Kindi and Alabri 2024; Maharjan et al. 2024) have demonstrated the 
importance of distance to the river, Rainfall, and curvature of the river basin for flood 
susceptibility detection. In our study, these factors contribute less to flood susceptibil-
ity. Predicting flooding events becomes challenging when considering aspects with a 
flat and smooth slope, as the distribution of flooding points lacks predictive signifi-
cance in such cases (Towfiqul Islam et al. 2021). However, in this study aspect and 
curvature were observed to be the least influencing factors.

5.2. Model performances and validation

Based on the values of model evaluation parameters, it was observed that all models 
predicted well. The comparative analysis showed small differences in the parameter 
values whereas their spatial prediction was different, influencing the flood susceptibil-
ity mapping. AUROC is vital for assessing the model’s ability to discriminate between 
flood-prone and non-flood-prone areas (Khosravi et al. 2019). RF has the highest 
AUROC values on the training and test sets, suggesting better discrimination of flood 
and non-flood points. Considering these factors and the specific requirements of 
flood susceptibility mapping, RF remains the best model. It provides a good balance 
between sensitivity, specificity, and discrimination ability, as indicated by high 
F1-Score and AUROC values. RF is a popular machine-learning technique in hydrol-
ogy that uses tree-based models. It is known for preventing overfitting, a common 
problem in individual decision trees while maintaining prediction accuracy (Schoppa 
et al., 2020). This study, in line with (Avand et al. 2021; Aldiansyah and Wardani 
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2023; Bhattarai et al. 2024), shows RF is better for flood susceptibility mapping. 
Besides RF, the performances of other models are also high; however, the spatial dis-
tribution of the flood susceptibility is different. The results from the RF, SVM, and 
ANN models align with historical flood observations from the Knowledge for 
Development (K4D), data from the Colorado Flood Observatory (DFO), and damage 
assessment using Sentinel-1 data. However, the areas shown as very high and highly 
susceptible in the northern part of NNRB are not well classified by LSTM. While all 
models are deemed suitable based on evaluation parameters, field observations and 
comparisons with historical data indicate that RF, ANN, and SVM outperform 
LSTM. The RF model, in particular, provides the most reliable results.

5.3. Flood susceptibility interpretation

The prediction from all models depicts that the southern part of the NNRB is highly 
susceptible to flooding. Figure 8 clearly shows the southern area of the basin below, 
and nearby Nam Ngum Reservoir 1, i.e. the central part of Lao PDR is a flood-prone 
zone. The areas near the Nam Ngum and Mekong Rivers are highly vulnerable to 
flooding due to topography and geographical location (Hansana et al. 2023). The 
reasons behind this area’s vulnerability to flooding are its flat terrain and the high 
velocity of the Nam Ngum River after flowing from high elevation to flat low eleva-
tion area. The quantification of the flood-susceptible area in NNRB shows the impor-
tance of flood management. More than one-third (38%) of the basin lies in very 
highly susceptible areas, and more than half (53%) of the total area lies in high and 
very highly susceptible areas (Figures 7 and 8).

Most of the low-elevation, low-slope areas near rivers are agricultural and built-up 
areas. Due to the availability of water for agriculture and livelihood, as well as the 
availability of fertile soil deposited from floods, people prefer these areas to live in 
even though the areas are highly vulnerable to flooding. For the sustainability of the 
infrastructure development, evaluating the resilience of the NNRB region to recurring 
natural disasters like floods is imperative. These events endanger lives and property, 
causing both short-term and long-term impacts on the economy and agriculture sec-
tors. To mitigate these impacts, integrating satellite observations and open-sourced 
databases in flood management can offer an economical and efficient solution. As 
accuracy and time are vital factors in flood management (Tehrany, Pradhan, et al. 
2015; Tehrany, Pradhan, Mansor, et al. 2015), testing different models and evaluating 
their performance is essential. Though improvements are being made for the 
enhancement of flood management, leveraging machine learning techniques is very 
limited or almost has not started for flood susceptibility mapping in the river basins 
of Lao PDR (Phrakonkham et al. 2019; Du et al. 2020; Hansana et al. 2023). 
Therefore, assessing machine learning approaches paves a path to simple and low- 
cost yet robust and reliable flood susceptibility mapping in river basins where data is 
scarce, and establishing traditional hydrological and hydraulic models proves chal-
lenging (Saber et al. 2022).

Our study has identified critical factors influencing flood occurrences in NNRB. 
This data is essential for developing precise flood forecasting models, implementing 
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advanced flood warning systems, and guiding infrastructure and urban planning proj-
ects. According to the results, policymakers could concisely reconsider disaster risk 
reduction and flood management strategies. Land-use planners could determine the 
settlement zones, dams, and other structures in highly susceptible areas. Furthermore, 
the results could be utilized to inform the residents about evacuation actions, flood 
prevention, and preparedness.

6. Conclusion

Flood susceptibility maps are crucial in floodplain management relating to disasters, 
and integrating various models offers critical insights for flood risk management. 
This study used four machine-learning models (SVM, RF, ANN, and LSTM) to pre-
dict flood susceptibility in NNRB, an area annually affected by typhoons and heavy 
rainfall. The models were trained and tested using eleven flood conditioning variables 
and 390 locations. The RF model outperformed the others, indicating that 36% to 
53% of NNRB, particularly the downstream southern region, is highly vulnerable to 
flooding. Despite constructing numerous reservoirs for hydropower and flood protec-
tion, downstream areas continue to flood yearly (Kimmany et al. 2020), challenging 
flood management (Vilandone Keophila 2018; Keophila et al. 2019). Effective flood-
plain management is needed to protect lives and property. The study’s results offer 
valuable insights for flood risk assessment and developing effective flood control 
plans. As floods threaten infrastructure, agriculture, and the economy worldwide, 
these machine-learning insights using remote sensing data can aid local authorities, 
planners, policymakers, and stakeholders in disaster management and climate change 
mitigation for sustainable development.
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