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ABSTRACT: An in-material reservoir computing (RC) device with
an Ag−Ag2S core−shell nanoparticle (NP) network is proposed.
Network-wide nonlinear sine-wave outputs of higher frequencies and
varying phases were produced from the different Ag+ ion diffusion
rates and filament formation caused by the heterogeneous NP size in
the thiol layer. Such emergent dynamics of multiple information
regimes enabled the reconstruction of Fourier waves, with a maximum
accuracy of 99% achieved only for trained outputs with mixed
spatiotemporal complexities. Additionally, the device showed stable
retrieval of past information with a two-times-step delay and
successfully computed a two-step time-series prediction task with
87% accuracy.

KEYWORDS: silver−silver sulfide nanoparticle, atomic switch network, volatile resistive switching, material intelligence,
neuromorphic AI hardware, physical reservoir

■ INTRODUCTION
Reservoir computing (RC) is a computing paradigm in which
artificial neural networks are used to process time-dependent
inputs efficiently.1 This approach was originally developed as
an altered version of a recurrent neural network (RNN).2,3 In
an RC system, the input and internal weights of a network are
kept fixed, and only the connection weights (readout) between
the reservoir and output are trained using a simple learning
algorithm, such as linear regression. Consequently, the
computational cost of training an RC system can be minimized
compared to that of a conventional RNN.1 RC can reduce
power consumption and has therefore recently attracted
increasing interest in hardware implementations as a way to
avoid the von Neumann bottleneck.4,5 In RC systems, the
reservoir serves to nonlinearly transform time-dependent
inputs into extractable high-feature outputs; therefore, many
physical systems (compared with their software counterparts)
with intrinsic nonlinear dynamics have been used as in-material
reservoirs. Materials such as ferromagnets,6−8 ferroelectrics,9,10

doped inorganic polyoxometalate,11 carbon nanotube/poly-
oxometalate networks,12,13 metal-oxide memristors,14−16

atomic switch networks (ASNs),17−19 and conductive polymer
networks20 have been proposed for realizing a physical
reservoir. A physical reservoir with ASNs is considered the
most promising platform for implementing hardware-based
RC; in such a platform, the emergent dynamics are generated
by the whole network system rather than by tuning individual

elements.17 For realizing such a platform, typically, a self-
assembled metallic nanowire network is coated with
memristive materials like Ag2S,

21 TiO2,
22 or poly-

(vinylpyrrolidone).18 As a result, each network junction acts
as an atomic switch that, like a biological synapse, processes
spatiotemporal input data nonlinearly via electrochemical
interaction to realize biologically plausible in-memory parallel
computing.
Our research group has previously used an ASN with Ag−

Ag2S core−shell nanoparticles (NPs) to realize a physical
reservoir in which nonlinear dynamics arise via the movement
of Ag ions between the Ag/Ag2S/Ag junction of two NPs.19

The NP network reservoir was used to perform classification
tasks that generate signals of different frequencies or shapes.
However, the effect of nonlinear complexity via Ag ion
migration on RC performance has not been investigated in
detail. In this study, we investigate the nonlinear forms of the
NP network reservoir and the influence of multiple non-
linearities on the RC performance. We experimentally
demonstrated a physical RC system by using Ag−Ag2S NP
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network-based 16-terminal devices. This device is operated as a
memristor and exhibits volatile resistive switching. In our RC
system, the outputs at different terminals were collected
simultaneously to investigate the complexity of the simulta-
neous dynamical responses. The benchmark tasks for RC, such
as waveform generation, short-term memory capacity (MC),
and second-order nonlinear autoregressive moving average
(NARMA2) tasks, were tested and verified. Different nonlinear
shapes were analyzed, and the results show that output signals
with intricate or multiple nonlinear forms yield a greater
testing accuracy. The significant increase in accuracy highlights
the potential of volatile Ag−Ag2S NP network-type memristors
in physical RC.

■ EXPERIMENTAL SECTION
Ag−Ag2S NPs were synthesized at 25 °C via the modified Brust-
Schiffrin procedure23,24 with Ag: thiol molar ratios of 0.25:1. Briefly, a
mixture of allylmercaptan (AM, 0.94% v/v in toluene), silver nitrate
(1% w/v in water), tetraoctylammonium bromide (0.93% w/v in
toluene), and sodium borohydride (1.8% w/v in water) was stirred
vigorously at 25 °C until the mixture changed from yellow to brown.
After removing the aqueous phase, the remaining brown solution was
diluted with ethanol (400 mL), refrigerated (4 h), and washed five
times with ethanol again to remove the residual organic AM by
centrifugation. The obtained NPs were then resuspended in ethanol
by sonication and subsequently used to produce the in-material RC
device. The device was initially patterned with a Ti/Pt (6:24 nm) 16-
electrode array on a SiO2/Si (500 nm thickness) substrate by optical
lithography, following which the NPs suspension was drop-casted on
the central electrode pads and dried at 100 °C for 5 min.
Transmission electron microscopy (TEM) and scanning electron
microscopy (SEM) were performed using JEOL JEM-2100Plus and
JEOL JSM-7800F, respectively. X-ray diffraction spectroscopy (XRD)
was performed using a Rigaku Smart Lab with a Cu−Kα source. I−V
measurements were performed by using a semiconductor parameter
analyzer (Agilent 4156 B).

In order to perform the RC tasks, a data acquisition system
(National Instruments PXIe-6363 and SCB-68A) and a custom
LabVIEW program were used to apply the input signals and record
the output responses (Figures S1 and 2a). An analogue output from

the PXIe-6363 (output impedance, Zout = 0.2 Ω) was applied to the
in-material RC device, which functioned as an input signal. The input
signal constituted an 11 Hz sine wave with an amplitude of ±4 V for
the waveform generation task, ±4 V random white noise for the
NARMA2 task, and ±4 V Boolean-like pulse sequence for the short-
term MC task. The output signals from the device were collected
through the SCB-68A multiterminal connector with load resistors (RL
= 2.7 MΩ) and then transmitted to the PXIe-6363 as input signals
(input impedance, Zin > 10 GΩ; input capacitance, Cin = 100 pF). A
total of 15 outputs were collected simultaneously over 60 s, with a
sampling rate of 1000 point/s. A total epoch of 1 s was used for
training and testing. Fast Fourier transformation (FFT) was
performed using Origin Pro software. Waveform generation, MC,
and NARMA2 were executed by using Python software. Electro-
chemical impedance spectroscopy (EIS) was conducted by using a
PC-based oscilloscope with an impedance analyzer (Digilent Analog
Discovery 2, 410−321). The EIS measurements were performed using
an ±50 mV AC amplitude with varying frequencies from 100 mHz to
1 MHz and a DC bias of 0 V with a resistance value of 10 kΩ.

■ RESULTS AND DISCUSSION
The morphology of Ag−Ag2S NPs was investigated using XRD
and TEM. The XRD pattern in Figure 1a shows two phases of
monoclinic Ag2S and metallic Ag. A comprehensive analysis of
the NP structure has been performed in ref 23 the NPs are
composed of an Ag core surrounded by Ag2S, making the
junction between two particles an atomic switch.24 The TEM
image (Figure 1b) shows NPs with nearly spherical shapes and
diameters of 38 ± 16 nm. The radius of the Ag core layer and
the Ag2S shell thickness were 18 ± 8 and 1.0 ± 0.4 nm,
respectively (see Supporting Information). As shown in Figure
1c, the SEM image of the Pt/Ag−Ag2S NPs/Pt devices reveals
the aggregated NPs and the networked distribution of NPs.
Assuming a two-dimensional network, our NP network
reservoir consists of ∼105 random synaptic switch junctions
in the central region (78.5 μm2) between radial electrodes (⌀
= 10 μm), making it analogous to a dense biological neural
network.25 The nonlinear behavior of the device was
investigated by applying a voltage sweep. Figure 1d shows

Figure 1. (a) XRD pattern and (b) TEM image of Ag−Ag2S NPs. (c) SEM image of the Pt/Ag−Ag2S NPs/Pt device. The inset shows an optical
image of 16-terminal electrodes with a 5 μm scale bar. (d) I−V characteristics were measured in the electrode pair indicated in inset (c). The inset
shows an illustration of conductive pathways forming through the Ag/Ag2S/Ag junction due to the redox reaction.
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the I−V characteristics of the device obtained from the
electrodes indicated in the inset of Figure 1c with a compliance
current (ICC) of 10 μA. The I−V curve shows volatile
switching with both positive and negative bias. As the voltage
increased (indicated as 2 and 4), the device remained in the
high-resistance state (HRS) and subsequently switched to the
low-resistance state (LRS) at a voltage of approximately ±3.5
V. When the voltage was removed (indicated as 1 and 3), the
current spontaneously returned to its initial state of HRS
before reaching zero bias, resulting in volatile resistive
switching behavior.26,27 This switching behavior of the Ag−
Ag2S NP-based ASN can be attributed to conductive pathways
between the electrodes. When a voltage bias (Vin) is applied to
the input electrode with respect to the output electrode (O),
the pathway with the lowest resistance is selected as the
conductive path of those electrode pairs, as illustrated in the
inset of Figure 1d. The conductive pathways are formed
through the formation of Ag filaments at the Ag/Ag2S/Ag
junctions owing to electrochemical reactions.17,28−30 This
creates a network of conductive junctions that link the NPs,
leading to the formation of a unique conductive pathway
between the electrodes. The connections persist for varying
durations depending on the programming voltage or
established conductive pathway,31,32 thus generating the

temporal component and complexity of the network. The I−
V characteristics of the device were examined by conducting
multiple sweeping cycles and varying the ICC levels, as shown
in Figure S3. The switching behavior remained volatile, while
the shape and switching voltage exhibited variation across
sweeping cycles. The variation indicates a variety of nonlinear
dynamics, which is suitable for constructing physical RC
systems.
A primitive feature of RC is the ability to classify the low-

dimensional states of an input and map the signals into higher-
dimensional states by generating signals of different
frequencies or shapes.21 The higher-dimensional mapping
ability of the device was investigated by performing a waveform
generation task, in which a sine wave was reconstructed into
various specific waveforms. We constructed the physical RC
system by using the nonlinearity of the device that results from
its memristive behavior, as shown schematically in Figure 2a. A
sine wave input (Vin; ± 4 V, 11 Hz) was applied to the NP
network reservoir, and 15 output responses (O1−O15) were
collected simultaneously. The output signals were linearly
combined, and the output weights (wi) were trained offline by
comparing the output with the target waveforms: cosine,
triangle, square, and sawtooth. A waveform was then
reconstructed using trained weights. To test the goodness of

Figure 2. (a) Schematics of physical RC system implemented on the Pt/Ag−Ag2S NPs/Pt device. (b) Testing performance of the waveform
generation task performed using 15 output readouts of Device A1. (c) Variation of test accuracy performed on Device A after one year of storage,
indicated by Device A2, and on a different device, identified as Device B.
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the model, the performance was evaluated by calculating the
normalized mean squared error (NMSE) using eq 1 between
the target z(t) and the output y(t), where accuracy is defined
as the difference between NMSE and unity.12

= z t y t
z t

NMSE
( ( ) ( ))

( ( )

2

2 (1)

Figure 2b shows the test accuracy of the generated
waveforms constructed using 15 outputs. The cosine and
triangle waveforms show a negligible mismatch between the
target and generated waveforms, with the accuracy being
∼99%. By contrast, the generated square and sawtooth
waveforms show a significant mismatch with the target, leading
to a decrease in accuracy. Figure 2c shows the variation of a
waveform generation task examined under two conditions: (1)
using the same device after one year of storage (Device A1 and
A2), and (2) using a different device (Device B). The mean
accuracy values of each waveform were highly consistent,
resulting in an insignificant variance. Compared to a previous
study using a single crossbar memristor,33 the operating power
of our Ag−Ag2S NP memristor-based RC system exhibited a
significant reduction (Supporting Information), which makes it
appropriate for future high-density device applications.

To clarify the higher-dimensional mapping ability, we further
investigated the output responses, as shown in Figure 3a. It is
worth noting that the output values are the apparent values
with respect to the load resistance (Figure 2a). The output
signals exhibited a variation in their similarity of amplitudes
and phases compared to the input, indicating the ability to
produce a diverse class of dynamical output responses.34 The
outputs were also converted in a frequency domain by using
FFT, as shown in Figure 3b. The frequency profiles show that
the output signals contain a higher harmonic of the input
frequency, thus enabling the generation of signals of different
frequencies or shapes. Such higher harmonic generation is a
common phenomenon observed in various nonlinear systems
based on physical reservoirs.9,12,20,35 The variation of output
responses were again investigated based on the Lissajous plot
(LP), where the output was plotted against the input signal
(Vin vs Vout).

36 Interestingly, the LP profiles can be separated
into two distinct nonlinear forms, as shown in Figure 3c,d.
Figure 3c shows a distorted ellipse with a large phase shift and
attenuated amplitude. By contrast, Figure 3d shows the shape
of a twisted-eight with an in-phase LP and a slight decrease in
amplitude. The impedance analysis was conducted to under-
stand the underlying cause of such distinct nonlinear forms.
The Nyquist plot of electrodes with a distorted ellipse shape

Figure 3. (a) 15 output responses were obtained simultaneously. (b) FFT results indicate higher harmonics of the input frequency 22 Hz, 33 Hz,
44 Hz, etc. The index “i” indicates electrode pad numbers 2−6 and 12−15, and the index “j” indicates pad numbers 1 and 7−11. The LP of the
output responses exhibited multiple nonlinear forms with a distorted ellipse (c) and a twisted-eight (d). (e) Variation of test accuracy performed
with different numbers of tested outputs (15 and six) and different nonlinearity forms (ellipse, twisted-eight, and mixed). Six outputs were used for
the ellipse and twisted-eight cases, and three outputs of both the ellipse and twisted-eight forms were used for the mixed case.

ACS Applied Electronic Materials pubs.acs.org/acsaelm Article

https://doi.org/10.1021/acsaelm.3c01046
ACS Appl. Electron. Mater. 2024, 6, 688−695

691

https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c01046/suppl_file/el3c01046_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsaelm.3c01046?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaelm.3c01046?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaelm.3c01046?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaelm.3c01046?fig=fig3&ref=pdf
pubs.acs.org/acsaelm?ref=pdf
https://doi.org/10.1021/acsaelm.3c01046?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


exhibited a well-defined semicircular arc, as shown in Figure
4a,c. The equivalent circuits in the inset demonstrated a
resistance−capacitance (RC) circuit component corresponding
to the NP-electrode interface. Conversely, the Nyquist plot of
electrodes correlated with a twisted-eight shape exhibited two
semicircular arcs (Figure 4b,d), and their equivalent circuits
show the existence of two RC circuits. The second semicircle
can be attributed to mass transfer phenomena owing to the
formation of filaments or the behavior of the electrical double
layer at the interface of the Ag−Ag2S NP network. This
behavior is a consequence of the established Ag filament and is
consistent with findings from a previous study.37 The presence
of different nonlinear forms further highlights the NP
reservoir’s ability to produce multiple dynamics and non-
linearity.38

To verify the effect of complex nonlinearity on the reservoir
performance, we performed waveform generation by using six
outputs with different forms of nonlinearity: ellipse, twisted-
eight, and mixed. The test performances of all waveforms are
shown in Figure 3e. The twisted-eight form surpasses the
ellipse in terms of accuracy with triangle, square, and sawtooth
waveforms because of the lower levels of odd harmonics in the
output (as shown in Figure 3b), which can interfere with the
replication of a triangular waveform. However, the twisted-
eight form does contain higher harmonics with varying

amplitudes (Figure 3a), resulting in improved accuracy for
square and sawtooth waveforms. A cosine waveform requires
phase-shifted sine wave outputs; therefore, the ellipse showed
greater accuracy than the twisted-eight. In the mixed form, the
output signals contained multiple forms of nonlinearity with
various amplitudes, phases, and frequencies; this resulted in the
highest testing accuracy.12 Moreover, the testing accuracy of
the mixed case showed a slight decrease when compared to the
15 signals case. Prior studies have shown that higher accuracy
can be achieved by increasing the number of outputs.19 The
above analysis thus emphasizes the fact that output signals with
more complex or multiple nonlinear responses also offer higher
testing accuracy.
Owing to the typical application of the reservoir system in

spatiotemporal information processing, the ability of the NP
network reservoir to analyze time-series data and tackle
nonlinear dynamic problems was also investigated. In keeping
with the methodology of a previous study,39,40 we conducted a
NARMA2 task. Our RC system was trained using a random
white noise signal with voltage fluctuation. A total epoch of 1 s
was used for training and testing with a training ratio of 0.8.
The output signals were linearly combined and trained with a
ridge regression training algorithm. The target signal was
constructed by the following equation:

Figure 4. Nyquist plot of electrodes correlated with a distorted ellipse shape (a, c), and a twisted-eight shape (b, d). Insets display the correlated
equivalent circuits, where R is a resistor and CPE is a constant phase element that represents a nonideal capacitor.

Figure 5. Time-series data prediction and echo-state property, demonstrated by our physical RC system. (a) Training and testing performance of
NARMA2 task. (b) Correlation between the target and the predicted signals MCk and time-step delay k.
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= + +

+

y t y t y t y t u t( ) 0.4 ( 1) 0.4 ( 1) ( 2) 0.6 ( )

0.1

3

(2)

where y(t) and u(t) are the given input and output at time
frame t, respectively. Figure 5a shows the training and testing
performances of the NARMA2 task. After training, the
reconstructed output (blue line) closely followed the target
signal (gray line) with a calculated NMSE of 0.131; this is
almost the same value as that of other systems using a physical
RC-based random network.40,41 To interpret this ability, we
performed a short-term MC task that can be determined by
calculating the number of precise recalls of an input signal
delayed by a time step (k).20,40 In this task, the input signal was
randomly generated as a Boolean-like pulse sequence in which
the positive (negative) pulse (4/−4 V) was used to indicate
“1” (“0”). MCk represents the correlation between the target
and output signals and is expressed as follows

=
[ ]

[ ] [ ]
p k p k

p k p k
MC

cov ( ), ( )

var ( ) var ( )k

2
train out

train out (3)

=
=

MC MC
k

k

k
1

max

(4)

where cov, var., ptrain, and pout are the covariance, variance,
training pulse, and output pulse, respectively. Figure 5b shows
that MCk remains high until k = 2, following which it gradually
decreases with the calculated MC of 12.15. This suggests that
the NP network reservoir can accurately reconstruct the signal
for an input delayed by up to two timesteps. Therefore, our RC
system has a low prediction error for the NARMA2 task.40

■ CONCLUSIONS
In summary, we demonstrated that the form of nonlinearity
strongly impacts the performance of an RC system based on
the Ag−Ag2S NPs network device. Our results indicate that the
presence of multiple nonlinear forms in the output signals can
significantly enhance the accuracy of the RC waveform
generation task. The LP profiles showed various nonlinearities
that arise from the memristive behavior throughout the ASNs.
Furthermore, benchmark RC tasks for time-series data
prediction (NARMA2) and MC were also performed, and
the calculated prediction error was 0.131. The volatile
switching behavior permits the device to store information
for a short-term period, thus allowing it to learn the input
signal and potentially solve a second-order nonlinear problem.
This study primarily explains the importance of utilizing an NP
network reservoir with the capability of generating diverse
nonlinear dynamics in a physical RC system. In the future, this
device will be integrated with an electrical circuit to implement
the in-material RC and potentially enhance the efficiency of the
computing system.
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