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l 1. Introduction

E. Noether’s theorem [1] for invariant variational principle under continuous group
of transformations has established a correspondence between conservation laws and
arbitrary differential equations obtained from the principle. In the theorem, conservation
laws may be derived from equivalent differential equations to the original one. So that a
considerable problem is appeared in Lagrangian (or Hamiltonian) dynamics to determine
a class of equivalent Lagrangians (or Hamiltonians) which yields equivalent Euler-Lagrange
(or Hamilton) equations. Such a class which yields the same Euler-Lagrange equation
was first obtained as a sum of original Lagrangian for a given Euler-Lagrange equation
and a divergence term in particle mechanics or null term (class) in continuum mechanics
by E. Bessel-Hagen [2], E. L. Hill [3] or D. G. B. Edelen [4], T. Néno and F.
Mimura [5], respectively. Recently, a new class of Lagrangians which yields equivalent
(not exactly the same) Euler-Lagrange equations was obtained by D. G. Currie and
E. J. Saletan [6] in one-dimensional Lagrangian and Hamiltonian particle mechanics
and, more generally, by S. Hojman and H. Harleston [7] or F. Mimura and T. Néno
[8] in multi-dimensional Lagrangian or Hamiltonian particle mechanics respectively,
while there was no consideration for the symmetries (invariances) of EulerLagrange
equations. Moreover, M. Lutzky [9, 10, 11] obtained conservation laws in particle
Lagrangian mechanics under symmetries of Euler-Lagrange equations (dynamical symme-
tries) which do not leave invariant the action integral of Larangian in the consideration
(he called that non-Noether conservation laws). His conservation laws can be derived
from S. Hojman and H. Harleston’s ones [7] (this was shown in [8]; see also [11]),
but involved new consideration relating to dynamical symmetries.

Our program is to generalize these concepts into continuum mechanics (see F. Mimura
and T. Nono [12], which is a generalization of [6, 7]). Further, in this paper, we
generalize [11] under dynamical symmetries of generalized Lagrangian system in continuum
mechanics [13]. So in 2, a brief review of [13] is given for dynamical symmetries in terms
of generating differential form of generalized Lagrangian system. - In 3; linear transfor-
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mation laws of generalized Lagrangian systems are obtained by imposing some conditions
for dynamical symmetries. These linear transformation laws are discussed on a viewpoint
of conservation laws in continuum mechanics. - Finally in 4, the non-Noether conservation
laws in [11] are reviewed in a special case of our generalization. And, illustrative examples
are given for one-dimensional harmonic oscillator [9, p. 88] and a field of two-dimensional
space-time.

2. Dynamical symmetries of generalized Lagrangian systems

First of all, we shall review the differential geometric treatment for dynamical sym-
metries of generalized Lagrangian system in continuum mechanics [13].

On a setting for manifolds N and M, with local coordinates (xi) and (x‘, ye, z%)
respectively, the motion of continuums (fields) can be regarded as a (submanifold) mapping
¢, from N into M,:

910 = (¥4 (o, 256,

where i, j=1,...,n and a=1,..., m. For a given Lagrangian density L(x, y, z) or its
exterior derivative '

dL=Ldx'+L,dy*+ Lidz¢,

where L;=0L/0x!, L,=0L/0y* and L.=0L/0z}; the generalized Lagrangian system is
written as

¢f(L,>=fi~a%¢t(fL;)=o (f=f(x): volume density on N), (1)

(here and in the following, the asterisk * denotes the pull-back of considering map). Ex-
tending the manifold M, toward M, with local coordinates (x%, y*, z#, u%;), and using

ij/s
a (submanifold) mapping ¢, from N into M,: ’
| N b €O W i €9
¢2(x )— (x » Y (X), Ox? ’ axjaxi s
the generalized Lagrangian system (1) is rewritten as
$3([L1)=0, ‘ ()]

where [L], id defined as
[L]a_ La f ) dxi (fLa),

in which d/dx* denotes the total differentiation:
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d _ 8 ., 08 ... 0
dx = oxr T gy THE

GETE
An IQiJarameter, (e*: A=1,..., 1) group of transformations

Xi=Xi(x4, yP; et)=X!(x, y; €),

ye(xt, yP; et)=y*(x, y; ¢),
p=z8(xt, P, 24, e})=28(x, y, z; &),
3 u?f;‘ii%j(xja yBsAZIlL ugs; 81)=a%j(x» Y, 2, u, 8)’

determined by ‘the 2-prolongation into M, from a group of transformations T,:
Xi=Xi(x/, yB; eP)=X¥(x, y; &), 7%= J(xI, yP; e*)=J%(x, y; €), is said to be a dynamical
symmetry (invariance) group of the generalized Lagrangian system ¢3%([L],)=0 if
#3([L),)=0 implies

¢3(T3[L1.)=0. 3

We shall now pass on to the differential geometric reformulation of the above
statement, introducing the generating differential n-form @ on M , of the generalized
Lagrangian system: -

O=Li0*Aw,+Lo,

where w=f(x)dx!A--- Adx" (volume form on N), w; is its contraction by 0/dx?, i.e.,
w;=0/0x* Jw and 6*=dy*—z¢dx'. Since [13, p. 14]

dO=[L1,0° Ao (mod 6% A 8P, 0= A 05’s),
where 6 =dy* — z¢dx', it follows for arbitrary vector fields Yon M,:
Y_1dO=(Y_16*)[L],0 (mod 6*’s, 0%’s). C))]

So that the generalized Lagrangian system (1) or equivalently (2) is expressed as (note ¢%
vanishes 6* and 6%)

¢¥(Y_1d@)=0 for arbitrary vector fields Y, )

which can reformulate the dynamical symmetry (3) of the generalized Lagrangian system
[13, p. 13].

DeriNITION.  The generating form @ is said to have dynamical symmetry under the
l-parameter (group of) transformations T, if

¢3(Y_1d@)=0 for arbitrary vector fields Y )

implies
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OE[THY d@)]‘=0 for arbitrary vector fields Y. 6)

This definition yields the .fdllowing version of dyhamical symmetry in terms of the
Lie derivative of Y_id@ by infinitesimal transformations X2 (1=1,..., ) generating T,:

—yt 0 e I — 0 e 9
l/’i.(x’ y) axi +C)~(x’ y) ayu +”ll(x’ Y Z) azai +C/11j(xa Y, z, u) au?j s
where the coefficients #3; and (§;; are given as [13, p. 13]

d&s dyt
= G =g Gu= g

—uz, WL )

DEFINITION. :The generating form @ is said to have dynamical symmetry under the
infinitesimal /-parameter (group of) transformations X2 (X? are said to be infinitesimal
dynamical symmetries of ¢%([L],)=0) if . o

¢*(Y_1d@)=0 for arbitrary vector fields ¥ (5)
implies (X%(-) denotes the Lie derivative by X?%)
’ 1LXX( Y4 d0)]=0 for arbitréfy vector _ﬁelds Y. ' .‘(8’)‘
| REMARK. By the expansion for &*: |
THY_1dO)=Y_1dO +&*X¥(Y_1d@)+(higher order terms),

from (6) it follows both of (5) and (8). In [13], the dynamical symmetries were studied
by starting from the postulation of original generalized Lagrangian-system (5). So, (5)
vanished and only (6) (or also (8)) appeared in the definition for symmetries in [13, p. 13]
(see also [14, 15]). But in this paper, the Lagrangian system (5) is assumed after discussing
equivalent Lagrangian densities under dynamical symmetries defined as the above.

3 Generallzed Lagrangian systems under dynamlca] symmetries

Before assuming the dynamical symmetries under X2, we shall derive an identity for
generalized Lagrangian systems by virtue of the fundamental relatlon of differential form
d® with respect to the vector fields X7 and Y:

Y_1X3(dO)=[Y, X?] 1dO+X¥(Y_1dO). o)
In this relation, first note that [13, p. 17]
X¥dO)=dE, (mod 6% A 0F’s, 6= A dOFs) ;

where, by using of the transformed Lagrangian density N;:

Ni=Xi0+L(44 + L ),
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and its derivatives N§,=0N,/0z¢, the form =, is defined as

t

2=NL0* Aw;+ N,o.
This form has a similar telation_ as (4): o
Y_1X3(de)=Y_1dE, (fnod 6=’s, df*’s)
=(YJ09)[N, Lo (mod6<s, 6s),  (10)

and so, is a generating differential form of new generalized Lagrangian system
*([N,].)=0. Since the infinitesimal transformations X? satisfy [13, p. 13]

X%(0%)=0 (mod 6*’s, 6%’s), X%0¥)=0 (mod 0*’s, 6%’s),
from (4) it follows that k

XAY_1dO)=X3[(Y_16%)[L],w] (mod 6*’s, 0%’s). (11
Moreover, since
[Y, X3] 1dO=([Y, X7] 16*)[L],0 (mod 6*’s, 67’s)

= [¥Y I X3(6%) - XY 1691 [L],, (12)
by substituting (10), (1) and (12) into (9), it is obtained:
(Y 165) [N;Jso = [Y 1 XH0")] [LL,+(Y 16%) [L]X (@)

v +(Y10)X([L]Dw ‘(mod 6’s, d6=’s, 07’s). (13)
So that, since X¥w)=®,w (mod v0°"s) and X3(6%)=A%,0" [13, p. 16], where
ayi vl of o 088 .. OYk
Pi= gyt f oxt’ A%= oy# 2k oyt ’ 4

the following theorem is obtained by putting Y as Y,=09/dy* in (13) (note Y, _108=§%)
and operating 4)2 :

THEOREM 1. For arbitrary ¢%, the following relations: are satisfied between the
original Lagrangian density L and its transformed Lagrangian densities N, under
infinitesimal (group of ) transformations X?%: :

K2 AREL G telLlp+ @i [LL+XHLL). ? as

REMARK. Let assume the dynamlcal symmetry equatlon [12 p 4] P3[XUY 1dO)]
=0 of generalized Lagrangian system ¢%(Y_jd®)=0, where Yis an arbitrary vector field.
Then, by putting Y as Y, =49/0y?, it follows ,fromv(ll_) thatv[13,,p. 157 .

¢2(¢1[L]4+X ([L]a)) 0.

Therefore (15) takes moré simple form
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$3([N 1) =93(A4.[L]y),

which is the linear transformation law of generalized Lagrangian system obtamed in our
previous paper [12, p. 4].
Now recall the derivatives dN,;/0z¢ (= N},) can be given as [13, p- 17]
oN, oL 6L

2(OL _ dvi 3L , 3vi
gz~ Mgy t gy T az‘}") dt oz T aye L (16)

By substituting the identities (note: yi=yi(x, y), &i=E&(x, y) and 5§ =dé/dxi—
zgdy*[dx?) ‘

00, _ 0 (duf , Vi ¢ >=a¢5
0z% 0z% \ dxt f ox oyb
043, _ 0 (9% _ , alh) _5 6!//1
oz% 0z8 \ 0yF " yP Foye

0 oL oL oy 0L
Lo x (Y= )= x2 ) k. -
02" ’1( 0z% ) 0z%0z3 * 0zf  0z}0z%

%L dyd
= X1 ?W)J"s'f‘“""az%f"

into the differentiation of (16) with respect to z” the relations are obtained:

PN, _ . PL . . 3L 2L
aozs M aan T e T, ﬂa ; a2 627)
_dyi eLdyl 2L, oyt oL

dx* oz dxt azfor T oy ey (17

where the brackets denote respectively the skew symmetric parts for the corresponding
indices i, j and a, f.

We shall here assume that there exist some functions C%,(x, y, z) and the group of
infinitesimal transformations X? satisfies the following linear relations for arbitrary ¢%:

$(X3([L1.)=¢3(CL[Lp) . (18)

Under these X3%, the generating form d© has a dynamical symmetry (of course, X? are
infinitesimal dynamical symmetries of ¢3([L],)=0), because (4) leads

XYY 1d0)=XI(Y 109w]+(Y J69XH[L1)o (mod6e's, 67s). -
Since the terms containing u{; in (;; of X% are | /

) : dyk dyk
u?j s term In C%U= Aiﬂufj-“ E%‘—u“ %u,k s
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by separating both sides of (18) into two independent terms according to ¢¥(uff;)=02y#(x)/
Oxiox' (note ¢% is arbitrary), the relations are obtained:

¢3 <C“ 0z, ) ¢2( s a <(3z(”8z
B dw(,{ PL dyd 2L
dxt aPan T d¥ azfer, ), a9

where the parenthesis denote the symmetric parts for the corresponding indices. Thus
the follwing theorem is obtained by substituting (18) and (19) into (15) and the symmetric
part of (17) for i, j, respectively.

THEOREM 2. The l-parameter (group of) infinitesimal dynamical symmetries X}
satisfying linear relations for arbitrary ¢3%:

¢3(X3[L1,)=3(CLILp) (18)

yield the following linear relations:

¢3([N 1) =93(45.[L]y),

¢ 2 ( [] o ) ¢2 < ia B ¥ > ’
62(_’62,") 62('_]'6zi) ;

A8, = A5, +85,+Ch, . (20)

Moreover the following theorem is obtained from (17) and (19) with some further
conditions for the Lagrangian density L.

THEOREM 3. Let the Lagrangian density L satisfies

oYty oL _ _L  _, 21
oyt* 0z%} 0, 0z50z%, ) @0

Then the I-parameter (group of ) infinitesimal dynamical symmetries X3 satisfying linear
relations for arbitrary ¢%:

$3(XH([L])=3(CLLLIp) (18)

yield the following linear relations:

¢g([N1]a) = ¢*(A a[L]ﬂ) s

¢2( 62”azi > 93 (A“ oz ﬂaﬂ

By virtue of the theorem in [12, Theorem 3], the theorem 3 yields 1mmed1ate1y the
following theorem.
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THEOREM 4. Let the Lagrangian density satisfies-

oyt AL _ PL '
"oyl 3281 =0, 0zh0z% 0 ‘ ‘(21)

Then the l-parameter (group of) infinitesimal dynamical symmetries X% satisfying
linear relations for arbitrary ¢%:

$(X3[L1)=93(CL.IL]p (18)
yield the following relations: |

(i) if 4%, are symmetric for a, f:

L dAl, &L . oA,
¢§< Ay dx/} 0230z + 45 52% [L]B>=

(ii) if A%, are symmetric for a, B and nonsingular:

e dAB &L g 048
¢;(<Am i e T4 G L,)=0,

(iii) if 43, AM where A . and 1215“ are both symmetric for a, B:

4o dAl, &L g
¢,2<2” dx‘ 027028 + 4% z} [L]ﬂ>

4. Ilustrative examples

L. We shall first review the M. Lutzky’s conservation laws ([11], see also [9]) as a
special case of our generalized formulationin continuum mechanics (field theory): dim-
N=1 (denote x!=t and f=1 for brevity). This is the case of particle mechanics and the
Lagrangian density L on M, is given as L(t, y, z). Here is assumed the nonsingularity
of (Wa,,) =(02L[0z*0zF): det (W,5)#0, and (Z2f)=(W,4)~'. Then, by using of

oL _ 2L PL
(L)“ oy* 0z°0t 0z%0zF =’
[L], is rewritten as
[LL=W,(Ff—uf) where Fe=Z®(L),. ()

So the Lagrangian system (Euler-Lagrange equafidn) ¢3([L]) =0 is equivalent to
3w =¢3(F%), ie, JAO=Ft y(1); }(1). (23)

M. Lutzky’s starting- point for deriving conservation laws is.that the one-parameter
infinitesimal group of transformations leaves invariant the equivalent form of Euler:
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Lagrange equation (23). In terms of Lutzky's notation I =0/0t+z%0/0y*+ F*0/0z*
[11, p. 88], the invariance condition is given as [9, p. 86]

PR XA(F)]= 3T (&) -z T (Y) 2T (Y)F*], - : (2‘}) '
where X2 is of the form (assume /=1 and put X?=X2 in (11)) »

x2=y(t,y) O vt y) o 4w O
ot Oy 0z Ju

Since n* =dé*/dt — z*d\y/dt and {*=dn*/dt—u*dy/dt, further calculation of (24) leads

B = o3| (G — 2t Sl —205- ) o=ty 1.
which yields the relation by (22):
PF[X2(F*)— (] =5 [(A5—2650) ZF7[L],],
where @ =dy/dt and A§=0*/0yP —z20[Oy# [see (23)]. Therefore, sinpe
XX([L1,) = X2[W,y(F —ub)]
= X2 (W,p) (FF —uf)+ W [ X*(FF)— (7],
the invariance condition (24) is rewritten as.
¢3[XA([L1)]=93(CI[L]p), where
Cl=X2W,)Z"8 + W, (A} —20)P)ZF
which yields the same identiﬁes in [11, p. 88] [see (20)]:
A=NE+ 680+ CE
=N+ W, AL Z7P+ XH(W,,) 27 -8,

Now in the theorem 3, since the conditions of (21) are always satisfied (note i and j
take only one value 1), the following relations are verified:

PF(N)=D3(ALW,p), ie. FAD=PHNLZ),

where N,5=02N|0z*0z* correspond to 4£ in the theorem 4 [case (iii)]. Thus the theorem
yields the following conservation law derived by Lutzky in [11] (see also [9]):

o1 4 w,) =34 =

ExampLE 1. Letm=1,i.e., « takes only one value 1 (sodenote y'=y, z!=z, u'=u)
and in this case consider the Lagrangian density for one-dimensional harmonic oscillator
[9, p. 88]: oo
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=-—:12—(y2—-22) ((L]1=y+u).

From given y(z, y) and &(t, y), the (one-parameter) infinitesimal transformation X2 is
determined by [see (7)]

_4d4f _dy | Y oy
= ar T dr “aﬁ( "a“) + 3y o

dn _dy  _ % 2 oy 2 _, 2y
dt T dr T e +<2 9y0z ax2> +< ayat)

oGt (§ 2 e

So the condition: ¢%5(X2[L])=¢3(C(t, y, 2)[L]), i.e., d%(E+)=%(C(y +u)) is satisfied
for arbitrary ¢, if and only if

(6 55)+ (k- 30 (55 -258) o+ Gt o-on 09

0 _ 0% 30y ,_
a2 gy e=C. (26)

The equation (26) is substituted into (25) to obtain

( aé —7 gi +2y 6t> ( ggt ‘332;/2/ +3y6 >

-2 gy(?wt %zykz =0,
which leads the equations:
—2p Qe 28y @n
aﬁzrlg =3 5?» aa;gz ’ (28)
‘gzv_'/; —o0. | (30)

Equation (30) gives the form of y:
- Y=a(t)y+pB(),

which rewrites (29) as
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and determine the form of &:

= 5 Y2+ @@y +3(0).

So that, by substituting these ¥ and ¢, (28) becomes

aip - )4

)r=o
dp _ O*B 0% _
ie., 25 2 " =0, 2 +a=0,

Hence ¢ and « are of the form:

- 108 -
P= 57 +b 1 (b: const.),

a=o, sint+o,cost  (ay, ay: const.),
and so .

¥ =(a, sin t + &2 cos t)j) + ﬂ(i) ,

= (e, COS { — 2, sin £)y? +<; %’: +b)y+v(t)

By substituting these ¥ and ¢ into (27), it is obtained:

(8 )

So, y is determined as

y=7,sint+7y,cost (yq, y,: const.),
and moreover the f’s equation: k

2B rapma e, PC5D 4h-a=0 (o const)

determines f as

B=p,sin 2tv+ﬁz cos2t (B, B, cdnét.). |

Therefore the complete forms of Y and ¢ are given as
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¥ = (o, sint+a, cos t)y + B, sin 2t + B, cos 2t +a,
& =(a, cos t—ay, sin 1)y? + (B, cos 2t— B, sin 2t+b)y+y,sint+7y,cost,
(a, b:ay, ay; By, ¥25 715 72: CONst.). . i
Now, since [see (14) and (26)] ‘
Wb 4B oo B 0 o

= Yy o 3y "oy > dy <ot ay ©
the conserved quantity (constant of motion) 4= A+ &+ C [see (20)] is derived:
A=3a,(ycost—zsint)—3ay(ysint+z cos t)+2b.
Here note that Lutzky obtained only the non-Noether conserved quantity: 4=3(y cos t—

z sin ¢) in his method [9, p. 88].

II. Finally we can give an example for a field of two-dimensional space-time in our
formulation.

EXAMPLE 2. Let n=2 (i, dimN=2), m=1 and denote (x!)=(x!, x2)=({, x);
Y=y, zl=z;, ul;=u;; (i, j=1, 2). In this case, consider the Lagrangian density

L= 5 (x*y?>=z3) ([L1=x%y+uy,),

l\)‘-—

which satisfies the condition of (21). First, n, and {,, are determined from y* (k=1, 2)
and &:

_dé _dy*  _ oL | o9& oyt oyt
T dr T dr T e T ey ST Tar BT gy S

_ dny _ dy* _ 0% 0% ok g,
S T L TEI A 17 IR Rl F Sl b 2
62 k 2,/ k
“‘2—})—‘1572121‘4" a 5 Z1Zy

2
98 L0 50y 2 oy?

+(6y ot 3%, 12 0y zZ)““
oy . o2 | |

2(“@7‘+Ty )

Uz,

where u;, =u,, is assumed for ‘brevity, since ¢3(u,,)=¢3 (u21). So that from the condition
FXPLD=¢3(C(t, x, y, zy, 23) [L]), ie., ¢5‘(2xy'/l"+x2é+C11)=¢§(C(x2y+uu)) it
follows: TR R T



Equivalent Lagrangian Densities

oy oy oy _
o Ty =0 le, =

i
e

at

and so (Y?=c=const.) it follows moreover:

(vt 28)4 (225 - 58 ) (252280

Dyor 212 Oyor
2 2./, 1 24,1
(85 258 o o
gf} ) 6(;/:‘ -3 6 =C. (32),

The equation (32) is substituted into (31) to obtain -

66 92¢ 61#1‘)
2f _ 42 2
<2c'xy+x§ xy 52 6y a2 +2x2y =

625 _ 62.111 2 6!//1 ) aZé 62|/l1~ 2 62.//1 3.
+<2—6y6t T +3x%y + 3y? 26y6t 22+ ay? z3=0,

which leads the equations:

-"2x2y.—a‘—;-p-tl =2cxy +x3E—x2y gf, afz : (33)
R = e
%’%ﬁ . (36)

Equation (36) gives the form of y!: ‘
Yr=olt, x)y+B(, x),

and hence (35) becomes

which determines the form of ¢:

oo

E= >~ Y2 +o(t, X)y+u(t, x).

By substituting these ' and ¢ into (34), the following equation is obtained:
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(2%’:’— 8t2 +3( ,+x2a)y 0,

. do _ *p _ 0 2
ie., 2—&— i =0, 2 + x2a=0,

and ¢, o are determined as

o=at,(x) sin tx + a5(x) cos tx,
and so

=(a, sin tx +a, cos tx)y + f,

¢=(0ry cOs tx —aj, sin tx)xy2+(é g’f +t>y+v

By substituting these ' and ¢ into (33), it is reduced:

1 J%x 2 Oa )
(a 3 +x '}’) —i- —a;T +2x '—a—t“ +2c¢x y= 0
. 0%y 2 _ 03 p 2 0B
Le., 5 +x y=0, TE +4x ar +4cx=0.

So, y is determined as
y="7;(x) sin £x +y,(x) cos tx;

and moreover, since the f’s equation is rewritten as

OB 1 ax2p+dext=b(x), i
72 +4x2B+4dext=b(x), i.e.,

(b k) van(pe st b )

B is determined as (put b/x2=0)

B =p:(x)sin 2tx + f,(x) cos 2tx — ~—Cxi +a(x).

Therefore !, Y2 and ¢ are determined completely:
Y2 =c=const.,

Yt =[oy(x) sin tx +o5(x) cos tx]y + B,(x) sin 2tx + B,(x) cos 2tx — —CJ}L +a(x),

=[a,(x) cos tx +at5(x) sin txJxy2 + [ B,(x) cos 2tx — B,(x) sin 2tx]xy -



Equivalent Lagrangian Densities

c .
- [7}7 - t(x)] y+71(x) sin tx +7,(x) cos tx.
Thus, in terms of [see (14) and (32)]

_ oyt oyt = 95 _ oy! = 06 L0y 5oyt
b=ty v A=y T ey i =gy T2 T3

the quantity A=A+ @+ C is derived:

A=30(x) (xycos tx—z, sin tx)+ 3ot,(x) (xy sin tx + z, cos tx) + 21(x).
From the Lagrangian density L=(x2y?—z%)/2 if follows

d4 o*L _ _ d4 .
dx* 0z,0z; dt°

and so we conclude that the quantity 4 is conserved, in the case of (i) of theorem 4.

course, this is observed by direct calculation:

- —déf (xycostx—z, sin tx)=(x2y +u,,)sin tx=[L] sin tx,

—gt— (xysin tx —z, cos tx) =(x2y +u;y)costx=[L]costx.

Acknowledgements

One of the authors (F. Mimura) is indebted the Meisen Scholarship 1980.

References

29

Oof

[1] E.Noether, Invariante Variationsprobleme, Nachr. Kgl. Ges. Wiss. Géttingen Math.-Phys.

KI. II 1918 (1918), 235-257.

[2] E. Bessel-Hagen, Uber die Erhaltungssitze der Electrodynamik, Math. Ann. 84 (1921), 258-276.
[3] E.L.Hill, Hamilton’s principle and the conservation theorems of mathematical physics, Rev.

Modern Phys. 23 (1951), 253-260.

[4] D.G.B. Edelen, Nonlocal variations and local invariance of fields, American Elsevier, New

York, (1969).

[5] T.Néno and F. Mimura, Null class of the generalized system in mechanics, Tensor, N. S. 29

(1975), 69-81.

[6] D.G.Currie and E. J. Saletan, g-Equivalent particle Hamiltonians, I. The classical one-

dimensional case, J. Mathematical Phys. 7 (1966), 967-974.

[7] S.Hojman and H. Hareston, Equivalent Lagrangians: Multidimensional case, J. Mathematical

Phys. 22 (1981), 1414-1419.

[81 F.Mimura and T.No6no, Conservation laws derived from equivalent Lagrangians and

Hamiltonians in particle dynamics, Bull. Kyushu Inst. Tech. Natur. Sci. 31 (1984), 27-37.



30

[91

[10]
f11]

2]

(13]
[14]

[15)

Fumitake MiMURA and Takayuki NoNo

M. Lutzky, Non-invariance symmetries and constants of the motion, Phy. Lett. 72A (1979),
86-88. ) ’

M. Lutzky, Origin of non-Noether invariants, Phys. Lett. 72A (1979), 8-10.

M. Lutzky, New class of conserved quantities associated with non-Noether symmetries, J. Phys.
A15 (1982), L87-L91.

F. Mimura and T. Nono, Equivalent Lagrangian densities in continuum mechanics, Bull. Fukuoka
Univ. Ed. HI 32 (1982), 1-11. '

T. N6no and F. Mimura, Dynamical symmetries I, Bull. Fukuoka Univ. Ed. III 25 (1975), 9-26.
T. Néno and F. Mimura, Dynamical symmetries II, Bull. Kyushu Inst. Tech. Natur. Sci. 23
(1976), 17-30. ) . :

T. Nono and F. Mimura, Dynamical symmetries [V, Bull. Fukuoka Univ. Ed. III 27 (1977), 5-13.

- Department of Mathematics
Kyushu Institute of Technology
and
Department of Mathematics
Fukuyama University



