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                             1. Introduction

   E. Noether's theorem [1] for invariant variational principle under continuous group

of transformations has established a correspondence between conservation laws and
arbitrary differential equations obtained from the principle. In the theorem, conservation

laws may be derived from equiyalent differential equations to the original one. So that,a

considerable problem is appeared in Lagrangian (or Hamiltonian) dynamics to determine
a class of equivalent Lagrangians (or Hamiltonians) which yields equivalent Euler-Lagrange

(or Hamilton) equations. Such q class which yields the same Euler-Lagrange equation
was first obtained as a sum of original Lagrangian for a given Euler-Lagrange equation

and a divergence term in particle mechanics or null term (class) in continuum mechanics

by E. Bessel-Hagen [2], E. L. Hill [3] or D. G. B. Edelen [4], T. N6no and F.
Mimura [5], respectively. Recently, a new class of Lagrangians which yields equivalent
(not exactly the same) Euler-Lagrange equations was dbtained by D. G. Currie and
E. J. Saletan [6] in one-dimensional Lagrangian and Hamiltonian particle mechanics
and, more generally, by'S. Hojman and H. Harleston [7] or F. Mimura and T; N6nd
[8] in multi-dimensional Lagrangian or Hamiltonian particle mechanics respectively,

while there was no consideration for the.symmetries (invariances) of EulerLagrange
equations. Moreover, M. Lutzky [9, 10, 11] obtained conservation laws in particle
Lagrangian mechanics under symmetries of Euler"Lagrange equations (dynamical symme-
tries) which do not leave invariant the action integral of Larangian in the consideration

(he called that non-Noether conservation laws). His conservation laws can be derived
from S. Hojman and H. Harleston's ones [7] .(this was shown in [8]; see also [11]),
but involved new consideration relating to dynamical symmetries.

    Our program is to generalize these concepts into continuum mechanics (see F. Mimura

and T. N6no [12], which is a generalization of [6, 7]). Further, in this paper, we
generalize [11] under dynamical symmetries of generalized Lagrangian system in continuum

mechanics [13]. So in 2, a brief review of [13] is given for dynamical symmetries in terms

of generating differential form of generalized Lagrangian system. - In 3i linear transfor-
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mation laws of generalized Lagrangian systems are obtained by imposing some conditions

for dynamical symmetries. These linear transformation laws are discussed on a viewpoint

of conservation laws in continuum mechanics. Finally in 4, the non-Noether conservation
laws in [11] are reviewed in a special case of our generalization. And, illustrative examples

are given for one-dimensional harmonic oscillator [9, p. 88] and a field of two-dimensional .

      .space-tlme.

            2. Dynamical symmetries of generalized Lagrangian systems

    First of all, we shall review the differential geometric treatment for dynamical sym-

metries of generalized Lagrangian system in continuum mechanics [13].

    On a setting for manifolds N and Mi with local coordinates (xi) and (xi, ya, zf•)
respectively, the motion ofcontinuums (fields) can be regarded as a (submanifold) mapping

ipi from N into Mi :

                        ip,(Xi)= (X`, Yct(X), OYO"iilil'!i) ),

where i,j---1,...,n and ct =1,...,m. For a given Lagrangian density L(x, y, z) or its
exterior derivative

                        dL = Lidx` + L.dyct + LidzS ,

where Li'--0LIOxi, L.=:0LlOyct and LS=0LIOzf; the generalized Lagrangian system is

wrltten as

          ipf(La)== ;i- e2i ipT(fLa)=O (f=f(x): volume density on N), (1)

(here and in the following, the asterisk * denotes the pull-back of considering map). Ex-

tending the manifold Mi toward M2 with local coordinates (xi, ya, zf, uf•j), and using

a (submanifold) mapping ip2 from N into M2:

                  ip,(.i)=(.i,ya(.), Oyoa.(,x), Oo2.yjctii,)• ),

the generalized Lagrangian system (1) is rewritten as

                               ip!([L].) =O, ' (2)
where [L]. id defined as

                         [L]ct=La-} dd.i (fLi),

in which d/dxi denotes the total differentiation:
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                      dO OO                     dxi == oxi-+Z? ayct +UZi oz,g'

An l-parameter. (ÅíA : Z == 1,.. ,, l) group of transformations

T

xnyi : Xi( ,ci, yfi ; ea) : Xi (.x, y ; E),

y' ct ,. .pa(xi, yfi ; EZ) = Ya (x, y ; e),

z-cti =: 2cti (xj, yfi, ze• ; sZ) = 2ai (x, y, z; e),

il/ f•j •--= tl f,•(xj, yfi, z{, u{,; ea) = ti ctij(x, y, z, u; 6),

determi'ned by'the 2-prolongation into M2 from 'a group of transforMations To:
x-  i= x- i(xJ', yB ; ea) == xi(x, y; 6), y-a = y' a(xj, yfi ; eZ) =Yct(x, y; e), is said to ' be a dynamical

symmetry (invariance) group of the generalized Lagrangian system di2"([L].)==O if
ip2'([L].) = O implies

                             ip:(TS [L].) -= O. (3)
   We shall now pass on to the differential geometric reformulation of the above
stateMent, introducing the generatirig differential n-form'e on Mi of the generalized

Lagrangian system: • '
                           e = Lsea A coi+Lco,

where tu==f(x)dxiA•••Adxn (volume form on N), coi i's its contraction by O/Oxi, i.e.,
toi -- OIOxi J co and ea = dy" ---• z"i dxi. Since [13, p. 14]

                   de iE [L].ect A co (mod ea A efi's, ea A eg's) ,

where ea == dypt -zf• dxi, it follows for arbitrary vector fields Yon M2 :

                    yJ de s(yJ ea) [L].to (mod ecr 's, ef• 's) . (4)

So that the generalized Lagrangian system (1) or equivalently (2) is expressed as (note ,ip2"

vanishes ea and e;)

                  ip2"(YJde)=O for arbitrary vector fields Y, (5)

which can reformulate the dynamical symmetry (3) of the generalized Lagrangian system
[13, p. 13].

   DEFiNmoN. The generating form e is said to have dynamical symmetry under the
l••parameter (group of) transformations T2 if

                  ip2"(YJdO)==O for arbitrary vector fields Y (5)

implies
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               ip2"[T2"(YJde)] =O for arbitrary vector fields Y. (6)

    This definition yields the'f611owing versiion of dynamical symmetry in terms of the

Lie derivative of YJde by infinitesimal 'transformations'.XZ (2=1,..., l) gene'rating T2 : ' '

    xl=gefE(x, Jy) eO., +c;s(x, y) oill. +nsi(x, y, z) ogf +c;xi,•(x, y, z, u) o.e.,i ,

where the coeMcients norzi and Clii are given as [13, p. 13] t

               ops,= Slt4 -z,a ddut.kf, 4si,•--- ddn.:,•i -uf-k ddut.}• (7)

 - DEEiNr'rioN. iThe generating form 0 is- said to have dynamieal sytnmetry-under•the
infinitesimal l-parameter (group of) transformations Xft (Xz2 are said' to be infinitesimal

dynamical Symmetries of ip"2([L].)=O) if ' '' ' '
                 ip2"(YJde) =O for arbitrary vector fields Y ' (5)

implies (Xi(•) denotes the Lie derivative bY Xft)

                                                                   '                                    tt    , , 'ip:[Xz2(YJ, de)] :Q forarbitrary vector fields Y. (8)
  -lt t-.                             '
   REMARK. By the expansion for Åía:

           T'2( YJ de) = YJ de + eaXl( YJ de) + (higher order terms),

from (6) it follows both of (5) and (8). In [13], the dynamical symmetries were studied

by starting from the postulation of original generalized Lagrangian-system (5). So, (5)
vanished and only (6) (or also (8)) appeared in the definition for symmetries in [13, p. 13]
(see also [14, 15]). But in this paper, the Lagrangian 'system (5) is assumed after discussing

equivalent Lagrangian densities•under dynamical symmetries defined as the above. .-

          3.. Ge.neralized Lagrangian systems under dynarpical symmetries

  Before assuming the dynamical symmetries under Xft, we shall derive an identity for
generalized Lagrangian systems by virtue of the fundamental relation of differential form

de with respect to the vector fields XZ and Y:

                   YJX,2(de) ==[Y, Xl] Jde+Xft(YJ de). (9) '
In this relation, first note that [13, p. 17]

                  xft(de) ii! d:. , (mod ea A ep 's, ect A 4ep }s) ;

where, by using of the transformed Lagrangian density Na:

                    Nz : Xft(L) +L( S.Ui + I r Xi (f )) •
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and its derivatives NS. =ONalOzf•, the form :.A is defined as

                      - • :. a =NSdreat A coi+ NzcD.

This form has a similar relatio4 as (4)l

               yJ xft(de) !! yJ d:-, (mod ect 's, dect's)

                         :!E(YJect)[Nz].tu (modect"s, ef•'s), . ' (10)

and. so, ,is a generating differential form of new generalized Lagrangian system
ip2"([Nz].)==O. Since the infinitesimal transformations X3 satisfy [13, p. 13]

             xl(ect) Eo (mod eq 's, ef• 's), xft(e f• ) iiEi o (m od ect 's, es• 's) ,

from (4) it follows that

              XA2( YJ de) == Xft [( YJ ect) [L].tu] (mod eec 's, ef• 's) . (1 1)

Moreover, since
              [ y, xft] J de E([ y, x,2] J ecr) [L].tu (mod ect 's, ef• 's)

                =: [Y.J Xft(ea) --- Xft(YJect)] [L].co, (12)

by substituting (10), (11) arid (12) into (9), it is obfained:

          (Y.Ject).[N.,],cp. \.[YJXft(ect)] [L].co+(Y.Jea),[L],,X3(co). . . . .•,,

                       +(yJect)xx([L].)tu (mod ea's, dea's, ef•'s). (13)

So that, since Xft(tu)!Åëztu (mod ect's) and XA2(ect)=AlfieS [13, p. 16], where

               Åë,- ddut.l+Vfai eO.l7e.., Ai,=- glf, -zz Sut,S, (i4)

the following theorem is obtained by putting Yas Y.=O/Oya in (13) (note: Y.Jefi==6Åí)

and operating ip!.

   THEoREM 1. For arbitrary qb:, the following relations•are satisfied between the
original Lagrangian density L and its transformed Lagrangian densities Nz under
infinitesimal (group of) transformations Xl:

        ' di !([N a] .) :ip 2" (' Afi ct [L] fi + ÅëA[L]a 'f' Xl( [L] a)) '. .' .' '(15)

   REMARK. Let asslme the aynamical symmetry equation [12, b. 4] ip![X,2(YJde)]

=O of generalized Lagrangian sy$tem ip2"(YJde) =O, where Yis an arbitrarY -vector field.

Then, by putting Yas Y.==O/Oyct, it follows frorp gll) that [13, p..15].... ... .. . ,

                         ip,*(Åë,[L]. + XX([L].)) == O.

Therefore (15) takes more Simple form' ' '' :• "='"" `
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                         ip!([Na]a) = th!(!1Åía [L]B) ,

which is the linear transformation law of generalized Lagrangian system obtained in our

previous paper [12, p. 4].

    Now recall the derivatives ONzlazf• (= NS.) can be given as [13, p. 17]

a,2,Ve -AK. ,O.e. +Åë, g.t-E; +xi(g,`.,)- -:,l!4il."z` g,L,. + O,",i L• (i6)

By substituting the identities (note: utS=utS(x,y), CS==eK(x,y) and n:i=:d4"ldxi--
z,ordWk/dxi)

                     gÅë.;, - oie(Sut.;• + ut,Ai sf.,)- sy,s,

                    mÅql5efii.ct = -Se (-Oelii/ -zz S",ia ) == -6li SW,iA ,

            'oie.Xa2(ae.ti)=xl(,,O,i.,`.f)+'O,"./lk"-6,Oi,`,f.

                         =xl(-sSi., )+6w"-6li-z,ll35-gl ,

into the differentiation of (16) with respect to ze•, the relations are obtained :

                                          '  oa.2eg.A.,=AX"ao.Oe2.oL.r.'AXfie.O,72.eL.f"Åëz-EtiSlitslr.loL,,"Xl(--o-.Oe2o`.a,)

                     -dd"./i ,e,;.i,--dd".i` ,SE,L... +4SY[[tl ,O.3,l--• (i7)

where the brackets denote respectively the skew symmetric parts for the corresponding
indices i, j and ct, 6.

    VVe shall here assume that there exist some functions C{.(x, y, z) and the group of

infinitesimal transformations Xft satisfies the fo11owing linear relations for arbitrary ip::

                       diS(Xft([L]a))='ip!(C{cr[L]fi)• (18)

Under these Xi, the generating form de has a dynamical symmetry (of course, Xz2 are
infinitesimal dynamical symmetries of ip2"([L].)=O), because (4) leads

         xl( yJ de) =- xi[(y .j ea)co] +(y "ect)xl( [L] .)w (mod ea 's, ef. 's)] [.

Since the terms containing u2,• in g"Acrij of Xz2 are

               uf•;• s term in 4sij---- Alfiuej "- !dli!4-utxkz uker,• -- S/,kx ug•k, .
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by separating both sides of(18) into two independent terms according to ip2"(ug•i)=02yfi(x)/

exjexi (note ip2" is arbitrary), the relations are obtained:

      `P!(CKct oz9ioLzr., )=:di!(AXfi ez32.aLz-cr,ir 'Xft( oz9ioLzg. ;')

                             --ddut.`tl a.ee.2,Le.,.--{ut.pm`k'Zpo.OB,2oL.f.J'), (i9)

where the parenthesis denote the symmetric parts for the correspondjng indices. Thus
the follwing theorem is obtained by substituting (18) and (19) into (15) and the symmetric

part of (17) for i, J', respectively.

   THEoREM2. The l-parameter (group of) in,finitesimal dynamical symmetries Xi .
satisfying linear relations for arbitrary ip!:

                         di!(Xft[L]ct)' di!(C{a[L]fi) (18)

yield thefollowing linear relations: '
                         ip!([Ni]a) = ip!(Aact[L]p) ,

                    di!( o.Oito.Af., ) =: di!(`dl'ct o.ll;oL,7,, )'

where Afi. are deLfined as

                          AÅía == Afia or +6ÅíÅëz+ Cfi.• (20)

    Moreover the following theorem is obtained from (17) and (19) with some further

conditions for the Lagrangian density L.

    THEoREM 3. Let the Lagrangian density L satisLfies

                       0eW,[zi ,0.e,l=:o• ',.e;,`..,,=o• (2i)

Then the l-parameter (group of) infinitesimat dynamical symmetries Xl satisfying linear '

relations for arbitrary ip2* :

                         ip!(Xft([L].)) == ip!(CÅí.[L],) (18)

yield thefollowing linear relations:

                         (t':([NA]a) :ip2"(Aact[L]p),

                     ip2"( oO.2gto.af )=ip2" (AKct o.Oe2.oL.y )•

    By virtue of the theorem in [l2, Th+eorem 3], the theorem 3 yields immediately the
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   THEoREM 4. Let the Lagrangian density satisLfies '1' ''

                        Oouty: aOzlill=:O' az9ieLzct,,=O' (2')

Then the l-parameter (group of) infinitesimal dynamical symmetries Xft satisfying
tinear relations for arbitrary di2" :

                         di2"(Xft[L].)-ip;(Ca.[L],) (18)
yield thefoltowing relations:

   ( i ) if Aa. are sy mmetric .for ct, 6:

                  `t'! (Affi' SA.-S' ct-T wii o`.e. - '"i7 'Oa".l7.ct [`]fi)=:O•

   (ii) ifAfi. are symmetricfor ct, 6and nonsingutar:

               ip2"((A7')g ddA.Åí,ct o.0ioL,e. +(Aii)s -{]oA."/;a [L]fi)-o,

   (iii) ifAX.=4fi.4Xfi where 4fi. and 4fi. are both symmetricfor ct, 6:

                                              '
                 di:(4s7-!lftlE;g-"kct -bT.O,;.,L,e-+4s, Se'f, [L]fi)=:o• ,

                           4. Illustrativeexamples

    I. We shall first review the M. Lutzky's conservation laws ([11], see also [9]) as a

special case of our generalized formulationin continuum mechanics (field theory): dim•

N==1 (denote x'= t andf=1 for brevity). This is the case of particle mechanics and the

Lagrangian density L on Mi is given as L(t, y, z). Here is assumed the nonsingularity
of(VV.fi) =(D2LIOzctOzfi): det (VV.B)7EO, and (ZaP)=(VV.ll)-i. Then, by using of .

                         - oL - a2L -- e2L-mr.ll                     (L).                         - oya ozctot ozctezfi "'

[L]. is rewritten as

                                                            '                    [L].== W.fi(Ffi -- ufi) where Fa == Zat 6(L)fi . (22)

                                  'So the Lagrangian system (Euler-Lagrange equath'6n)" ip!([L].) :o is equivalent to

                          .l .J                            t/                        tt                  ip2*(uct)=ip2"(Fa), i.e,, ya(t)=Fct(t,y(t),p(t)). (23)

M. Lutzky's s,tarting-•point for deriving -conservatiop laws •is,.•that the one,parameter

infinitesimal group of transformations leaves invariant the equivalent fQ.r..m, of,.Euler;
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                                                            ,
Lagrange equation (23). In terms of Lutzky?s notatign r=:O/Ot+zct010y"+Fctelazct
[11, p. 88], the invariance condition is given as [9, p.'86]

          ' - 'ip ,*•[X2(Fa)] :ip ,* [r(4 ct)-zct r(ut) -- 2r(ut)Fct] ,) (24)

where X2 is of the form (assume l== 1 and put X?=X2 in (11))

             X2-ut(t, y) eO, +4ct(t• y) aS. +nct oe.. +4ct oO.. •

Since n" :dg"aldt--zctdWldt and Cct ==dnaldt-uatdutldt, further calculation of.(24) leads

         ip2*[X2(Fa)]= ip2" [( SS",- -zct -oOSf,r- -- 26s ddW, )(Ffi -- ufi) + ga] ,

which yields the reiation by (22):

                 ip ![x2 (Fa) - gct] : ip ,* [(As - 26sÅë) Zfi 7 [L] ,] ,

where Åë==dut/dt and !ls=Oectleyfi ---z"OWIeyS [see (23)]. Therefore, since

                X2([L].) = X2[ W.fi(FP -- uP)]

                       = X2( W.fi) (Ffi -- uP) + W.s[X2(Ffi) - gfi] ,

the invariance condition (24) is rewritten as, . , .-• , .".•
                    di![X2([L].)] =di,"(CÅí[L],), where

                    c6. •--- X2( W.)Z7fi + W.,(AX - 26XÅë)Zafi ,

which yields the same identities in [11, p, 88] [see (20)]:

                   AÅí-Ag+6gÅë+CÅí

                     == AÅí+ PV.,AXZaP+ X2( PV.,)Z7fi -6gÅë.

    Now in the theorem 3, since the conditions of (21) are always satisfied (note i and J'

take only one value 1), the following relations are verified:

                ip:(N.B)=qe)s(AivJxr,fi), i.e., (bs(Ag)=:th,*(N.,zvll),

where IV.fi=:02NIOzctOzfi correspond to 4.' in the theorem 4 [case (iii)]. Thus the theorem

yields the following conservation law derived by Lutzky in [11] (see also [9]):

                     ip,* (zctv ditÅí w,fi) == ip,* (ddAtg ) == o.

    ExAMpLE 1. Let m= 1, i.e., ct take.s. ,Qnly one value 1 (so denote yi=y, zi =z, ui=:u)

and in this case consider the Lagrangian 'density for one-dimensional harmonic oscillator

[9, p. 88]: •L '"; .i .N,.
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           .

                         L = 11" (y2 -•- z2) ([L] = y+u) .

From given ut(t, y) and 4(t, y), the (one-parameter) infinitesimal transformation X2 is

determined by [see (7)]

        ny- fiigi -- fliiy,`f z:-eli--+(s,-- -o,y-).+ gi,fr .2, .

        q"- == -LS"9+ -- td-Y- u=: -S-G,S' +(2-EO,!S.----2-t,"2-)z+(-i;S- --2 oOioW, )z2

                            + S}y,`' ,3+(g,e --2O,ut, -3 Sl3 z)u.

So the condition: ip"2(X2[L])=ip:(C(t, y, z) [L]), i.e., ip:(e+4)=ip:(C(y+u)) is satisfied

for arbitrary ip2 if and only if

    (4+ O,2iS-)+ (2 -,O-,2i -- !ZIV, -)z+(,OiS- -2-oO-:,ut-,-) z2+ S2,ig- z3-cy, (2s)

                          SS --'2O,Y,e --3O,i,P' z-c. (26)

The equation (26) is substituted into (25) to obtain

            (e+ e,2,i -y gi +2y O,ut,)+(2 ,O,2i -- S2,4 +3y O,ut,)z

                           +(oOy2i 'm2 eOioutt )z2+ 0o2yut, z3=o,

which leads the equations:

                         -2y OpmeOt = (+ -21$-- --y Si • (27)

                    Oi,ig--3y-!i}Vi,---2-oOy2//i, (2s)

                         2,Oi,ut,-g2i'-, (2g)

                           -tLi,962f---o• (3o)

Equation (30) gives the form of ut: . -
                              IPf = ct(t)Y + fir(t) ,

which rewrites (29) as
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                             024 =2 Oct
                             oy2 Ot'

and determine the form of 4:

                          4= -eOl !- y2 + (p(t)y +7(t) .

So that, by substituting these W and eg, (28) becomes

                    (2-Oolill-----Oo--tlat)+3(Oa2,g+ct)y==o, •

                     i.e.,2O,q, - 22,e -o, Slg +ct-o•

Hence ip and ct are of the form:

                    ip == ml}- S6t +b (b: const.),

                    ct :ct1 sint+ct2 cost (ct1, oc2: const.),

and so -

           ! w=(cti Sin t+ct2 cos t)y+fi(t5,

                                      '                 g" -.-- (ct, cos t- ct2 sin t)y2 + (-S- Sfit + b)y + 7( t) •

By substituting these iPf and 4 into (27), it is obtained:

                    (-gli31- +y) + (-tlt g3,e +2 gfi, ),-o,

                     i.e., Oo2,; +y==o, Oe3,4 +4Oo6, ==O•

So, 7 is determined as

                     y = yl sin t+ 72 cost (yl, y2: const.),

and moreover the B's equation:

            rv 0o2tg +46 =: a, i.e., 02(gti a) +4( fi - a) = o (a : const.)

determines 6 as.

                    fi=6i sin 2t+62 cos2t (6i, 52: const.).

Therefore the complete forms of V and C are given as
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         {Pf = (cti sin t+ct2 cos t)y+6i sin 2t +.62 cQs 2t+a,

         4 =(ct, cost•-- ct2 sin t)y2+(/3i cos 2t-B2 sin 2t+b)y+7i sin t+72 cos t,

                                                     L-r -                                                                 '                       (a, b: ct1, ct2; fi1, Y2; 71, 72: COnSt•)•

Now, sjnce [see (14) and (26)]

          Åë=.{li/I.+-swwdi, .-, A- s,4 --- 2w, ,, c= gs .-22!,p( .--3gut, ,,

the conserved quantity (constant ofmotion) A =A+Åë+C [see (20)] is derived :

                 A =3cti(y cos t-z sin t) --- 3ct2(y sin t+z cgs t)+2b.

Here note that Lutzky obtained only the non-Noether conserved quantity: A =3(y cos t--
z sin t) in his method [9, p. 88].

    II. Finally we can give an example for a field of two-dimensional space-time in our

formulation.

    ExAMpLE2. Let n=2 (i.e., dimN=2), m=1 and denote (xi)=(xi,x2)=(t,x);
yi=y, zl• =zi, ul,• ==ui.i (i,j"•-- 1, 2). In this case, consider the L.agrangian density

                     L= }--(x2y2-z?) ([L]nyx2y+u.),

                         "
which satisfies the condition of (21). First, ni and 4ii are determined from utk (k= 1, 2År

and 4:

          ni- S/"' -- ddut,k zk- @o-ei + Sl zi-- Oo4k zk--- -{ISg-E--ziik,

c,,== Snti -- ddW,k u,,=: gli +2 oOy2St .,- -Oo2tW,k .,- S3 .i

--
2 g}Wa-i ztzk+ ee2.vW2k z?zk

                              +(oOi" ---21o-utl!- -3 0oWy'-z,-2 0aVy2 z2)u,, '

                              -.2(OoKfrt'2-+ 0olPy'2 z,)u,2; i:

                                                                  .. , ,.hLwhere ui2 =u2i is assumed fgy.brevity, since di2*(qi2).= di2"(u2i). So that from the c6ndition

ip 2" (X2 [L]) == ip 2"(C( t, x, y, zi, z2) [L] ), i.e., ip 2"(2x :LysPf2 + x24 + g, ,) =: ip ,"(C(x2y + u.)) it

fOllOWS: •r-•. .u .,,,,,..'. ., ' ,..  ., .s .. .. .••
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                 Oa42-+ Ooqy2 i,==o, i.e., OoWt2-= OeWy2 ,.,o,

and so (W2 == c=const.) it fo11ows Moreover:

  (2cxy+x24+ Sli)+(2 aa,2i -- 0a2,W,')z,+(g2,4, •--•2 Oa2,uto',)z?

                        +(aOy21 -2 aOy2Wot')z?+ 0a2yW2' z?==Cx2y, (31)

                     oO:4J, -2 Oo}!li' -•-3Oo!i:ev" z,=c. (32), .

The equation (32) is substituted into (31) to obtairi

    (2exy+x2c-x2ySt + Sl,g" +2x2y Oog')

      + (2 eOy2i ---0o2tut,'-+3x2y-0otP;fv' )z,+ (g2f, -2g}9oijt' )z?+ -O-o2yi-fr,'-z?=o,

which leads the equations:

                   -'2x2y Oeutti = 2cKy+x24--x2y SS + -Si2y-C, , (33)

              eo2tW,i -.3.2y Ooutyi ..2 oaii, ' (34)

                       2.g}utoi, :gi4,, . , (3s)

                        Oo2:l;Pf,,i =o. ' • (36)

Equation (36) gives the form of W':

                          {fr i = ct(t, x)y + X3(t, x) ,

and hence (35) becomes

                          S}4, -=2 g}W,l ==2Sct,•

which determines the form of4:

                           Oct                       e= at y2+ip(t, x)y+7(t, x).

By substituting these Wi'and e into (34), the following equation is obtained: '
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                   (2 Ooqt --- Qo2tfi, )+3( gll +.2.)y,.o,

                               02fi -                                         02ct                         Oq                   i.e., 2                                            +x2ct= O,                                    o,                         et--o-t2-                                         Ot2

and Åë, ct are determined as

                            1 OB                                 +T(X),                        q=z2ff at

                        ct : ct1(x) sin tx + ct2(x) cos tx,

and so

                !Pfi =(ctt sin tx + ct2 cos tx)y + fi,

                 e =(cti cos tx-ct2 sin tx)x.y2+ (-S- !liJtB + T)y+y.

By substituting these Vi' and 4 into (33), it is reduced:

                (gl; +x2y)+(l,--Oa-;-/ +2x2!o-3- +2cx)y=o,

                i•e•, 21,Y +x2y :o, Oo3t4 +4x2 Oefit +4cx==o.

So, 7 is determined as

                        y=7i(x) sin tx +72(x) cos tx;

and moreover, since the B's equation is rewritten as

                Oo2te +4x2fi+4cxt=b(x), i.e.,

                oO,2, (6+ -ft- -- S,)+4.2(6+ C.t - .b,)-o,

fi is determined as (put blx2 == a)

                 17 =6i (x) sin 2tx + B2(x) cos 2tx --- Ct + a(x) .

                                            x
Therefore Wi, "2 and e are determined completely:

                             ut2=c=const.,

Wi = [ct i(x) sin tx + ct2(x) cos tx]y + fii(x) sin 2tx + fi2(x) cos 2tx - Ct + a(x) ,

                                                    X
 4 = [cti(x) cos tx + ct2(x) sin tx]xy2 + [Bi(x) cos 2tx --p- 62(x) sin 2tx]xy .,•
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-[ ix -T(•X)]Y+yi(•x) sin tx+72(x) cos tx.

Thus, in terms of [see (14) and (32)]

     di- 0,4' + O,ut,' zi, A- gS - 0,ut,' zi, c== -8,Sl- -2 O,4' -3 O,9,ti' z,,

the quantity d ==A+Åë+C is derived:

        Zt = 3ct1(x) (xy cos tx ---• 2i sin tx)+3ct2(x) (xy sin tx +z1 cos tx)+2T(x) .

From the Lagrangian density L =(x2y2-z?)12 if follows

                               dA 02L dA
                               dxi Ol,0zi -- dt ;

and so we conclude that the quantity A is conserved, in the case of (i) of theorem 4. 0f
course, this is observed by direct calculation :

              -- -Sli (xy cos tx- .7-i sin tx) == (x2y+u") sin tx= [L] sin tx,

                -ad-i- (x.v sin tx --- zi cos tx)= (x2y+uii) cos tx= [L] cos tx,
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