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                           1. Introduction

   We shall extend the Hlawka's 3-element inequality in R" (or in Hilbertian space) to
the n-element inequality in Li related to the Hanner's inequality and to the n-element

inequality of another type, which is related closely to the Adamovi6's inequality.

   The original Hlawka's inequality is as follows (the 3-element Hlawka's inequality):

   IIx +y+ zll + llxll + llyll + llzll ;}r Ilx+yll + lly + zll + 11z + J)cll for x, .y,ze R"•

If we set by xi = (x+y)/2, x2 = (y+z)/2, x3 = (z+x)/2, then we have the following
inequality equivalent to the Hlawka's inequality:

        11xl + Jx2+ x3 11 + llxl + x2 - J)c3Il + 11xl - x2 +x3 li + 11-xl + x2 + x3 II

         ;}ir 2(11xi ll + 11x211 + llx3H)•

                            33This inequality is rewritten as E Z) sixi År-S2)11xill, where 6i is the Rademacher

                           i=1 i--1sequence (Åíi= Å}1 with probability S) and E means the expectation. We shall give

the following extension:

          E ]I.ili.,. )i 8iXi -År 2nl-i'n-iC[s]'II.ili.. )i llxi[1 forxi,•••,xnELi.

            1..The constant 2.mi •n-iC[g] is best possible.

   In the Euclidean space R", the Hlawka's inequality is generalized by Adamovi6 as
follows:

         nn        2xi +(n-2)211xill ;;2 2 llxi+xJll forxi,•••,x.eR"-
         i=1 i--1 imÅqiÅq]--Åqn
We shall prove that if the 3-element Hlawka's inequality is valid in the Banach space E,

                    nnthen it follows also that Z xi + (n - 2) Z llxi ll }}i 2 ll xi + xj ll for xi,•••, xn E E•

                   i--1 i--1 lsiÅqj-ÅqnIn particular this n-element inequality is valid in Li.
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        2. The Hlawka's inequality and the 3tlement Hanner's inequality

   Hlawka (see [3]) proved the following inequality: For x,y,zERn, it holds that

          IIjx +y+zll + llxll + 11yll + llzll 2 llx+.yll + lly +zll + llz+xll•

This inequality follows immediately from the triangular inequality and the following
identity ([3]);

          (llx+ v+zll + Ilxll + 11 vll + llzll - Ilx+.]vll - 11y +zll - liz+ xll)

              Å~ (llx + jv + zll + 11xll + llyll + 11zll)

            - (11yll + 11zll - II.y +zll)(llxll - 11y +zll + 11x+ .y +zll)

             + (11zU + 11xll - llz+ xll)(11 Jt'II - 11z+xll + llx+ .y +zll)

             + (llxll + ll.yll - llx+ vll)(IIzll - 11x+yll + 11x+.y +zll)

            År-o.

   Let (S,.27,pt) be a measure space. The norm of Li is given by llxll =Slx(t)1du(t).
The n-element Hanner's inequality was obtained in [1], [2]. In the case of Li, the n-
element Hanner's inequality is as follows. Let n be a natural number, ei,s2,...,en be

the independent Rademacher sequence and xi,x2,...,x.ELi. Then it holds that

                         nn                      E 2 sixi År- E 2 eillxill •

                         i--1 i--1
In the case where n==3, by the triangular inequality, the Hanner's inequality implies
that

llJx1 + x2 + x311 + lixl + x2 - x311 + llxl - x2 + x311 + ll-xl + x2 + jx3ll

  ;2 1 llxi ll + 11x211 + llx311 l+l llxi 11 + llx2 11 - llx3 11 l+I 11xi II - IIx2H+ llx3 11 1

    + 1 - llxi ll + ilx2" + llx3 11 l

  2 l ll)ci ll + llx2 11 + 11x3 ll + 11J,ci ll + llx2 11 - ll J)c3 ll + llxi 11 - llx2 11 + llx3 ll - 11xi ll + llx2 11 + llx3 H 1

  == 2(11xi 11 + llx211 + 11x311)•

If we set by x == xi + x2 - x3, y == xi - x2 + x3, z == -xi + x2 + x3, then it follows that

          llx+y+zll + 11xli + ll ,t'll + 11zll 2 Iix+.]vll + lly+zH + llz+xll•

Thus the Hlawka's inequality is derived from the 3-element Hanner's inequality. Hence
the Hlawka's inequality holds in Li. Conversely from the Hlawka's inequality, we
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obtain the 3-element Hanner's inequality in the following way. First, we have

          11x+y+ zll + ll-J)c + Jy +zll + llx - .iv + zll + llx+y - zll

           2 11 (x +y+z) + (x -y- z) 11 + 11 (x -y+z) + (x +y- z) 11

           - l12xll + l12xll - 411xR•

Next, let u=-x+y+z, v=x-y+z, w==x+y-z and we apply the Hlawka's
inequality as follows;

            llx +y+ zll + ll-J)c +y+ zll + llx -y+ zll + llx + .]v - zll

              = 11u+v+ wll + llu" + 11vll + llwll

              ;}r 11u+ vll + llv+ wll + llw+ ull

              - l12zll + 112xll + II2J,t'11 - 2(11xll + llyll + llzll)•

Hence, it holds that

            llx+ .J)t' +zll + ll-jx +y+zll + llx - v+zll + 11J)c + v- zll

             ;}i{:ltll`'/`i:,!lli+"y"+"zll) ' (")

We show the 3-element Hanner's inequality:

     llxi + x2 + x3 11 + llxi + x2 - x3 ll + IIJ)ci - x2 + x3 ll + ll-xi + x2 + x311

       ;}r l llxi ll + 11x211 + llx311 1 + l llxi 11 + llx211 - 11x311 i + l llJxill - llx2il + 11x311 l

         + l-llxi ll + llx2Il + 11J)c31I 1•

We can suppose that IlxiIl }? Ilx211 2 Ilx311 without loss of generality. Then the last term
is:

       (llxi ll + llx211 + 11x311) + (llxi Il + 11x211 - 11J,c311) + (llxill - 11x211 + IIx311)

           + 1-Ilxi ll + llx211 + 11x3 M

          = 311xi II + 11x2 11 + llx3 11 + l-llxi Il + 11x2 11 + llx3 11 l•

Consider the two cases:
   (i) if Ilxi ll ) ll x2 11 + llx3 11, then

       right-hand side - 311xill + llx21i + llx311 + Ilxill - llx211 - 11x311 = 411xi11
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   (ii) if llxi ll sg 11 x2 11 + ll x3 11, then

       right-hand side = 3Ilxill + 11x211 + 11x311 - 11xill + llx211 + llx311

                   - 2(llxi ll + 11x2 11 + 11x3 11)•

In these two cases, the Hanner's 3-element inequality is derived by (*).

Accordingly, the Hlawka's inequality and the 3-element Hanner's inequality are
equivalent in Li.

                 3. Generalization of Hlawka's inequality

   The Hlawka's inequality in Li is given by

                   33               E 2eixi År- S2llxill forxi,x2,x3ELi,
                  i--1 i--1
where E means the expectation with respect to the Rademacher distribution. We shall
extend the Hlawka's inequality naturally as follows. Let Åíi,s2,...,en be the inde-
pendent Rademacher sequence and xi,x2,...,x. eLi. We can conjecture the following
inequality;

                         nn                     E 2 eixi År- K(n) • 2 ll xi ll,

                        i--1 i=1
where K(n) is a constant which depends on n.

   THEoREM 1. Let n be a natural number, si,e2,...,e. be the independent Rade-
macher sequence and xi,x2,...,x. be functions in Li, then it holds that

                   E Åí ei xi 2 2.1-i ' n-iC[sl ' S ll xi ll,

                     irm-1                                        i=1
                1where the constant 2.-i•.-iC[Il is best possible.

   PRooF. We shall start from the n-element Hanner's inequality. We have

            nn        E 2Eixi -ÅrE ]E) sillxill

           i--1 im-1
                  =l. ' 2 1Å} 11xi ll Å}Hx2 11 Å} ''' Å} 11 Jxnlll

                      (sum.fforÅ}al,lig6h,oices)
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         1       == 7. 1 lljxill + 11x2 11 +'''+ 11xn ll 1

        + 2 l llxi ll +'''- II xi ll +'''+ 11 xn ll 1
          (surgS,or.a,1.1.C,h8,i,Cfi:Of)

         + 2 llixi ll +•••- 11 xj: 11 +•••- llxk ll +•••+ llxn ll 1
          (sur{}J.or.a,1./.c,hgr,CfiZOf)

         + ''' + 1-IIXi ll - llJc2 Il - ''' - 11xn ll 1•

And we use the triangular inequality Xl(•••)1212(•••)1. Among the terms

                1Å} llXi ll Å} ''' Å} 11Xill Å} ''' Å} 11xn ll l

                         k minus signs

with k minus signs, there are .-iCk terms in which the coeMcient of 11xill is +1, and

there are .-iCk.i terms in which the coeMcient of llxill is -1. If nmiCk -n-iCk-i 2 O,

then it holds that

         2 (' ' ') = (n-i Ck - n-i Ck-i) Å~ (llXi ll + llX2 11 +'''+Hxn ll)-

     (SumiOdi,a.1",Ch,,Og'.C,eSOf)

If n-iCk -n-iCk-i Åq O, then it holds that

          2 (''') = (n-i Ck-i - n-iCk) Å~ (11Xi li + 11x2 1i +'''+ 11xn ll)•

     (SumkfOdi,a.ll,Ch,,Og'fi8SOf)

Therefore it follows that

  the right-hand side ;}t &.T • 2{1 + (n - 2) + (.-i C2 - n-iCi) + (n.i C3 - n-iC2) + '''

      + (n-1 Ck - n-1 Ck-i)}(llJCIll + llX211 + ' ' ' + llxnlD

      = 2nl-i ' "-iCk ' II.lll?, IIx' ll,

where k is the maximum value that satisfies n-iCk -.-iCk-i År. O, and this is given by
k= [g]. In Li[O,1], if we set xi =••• =x. =1, then it holds the equality. Hence this

constant is best possible. This completes the proof.
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                        4. Another extension

   Adamovi6 (see [3]) has established the following inequality in R":

         nn        2) xi + (n - 2) 2 llxi ll }z 2 11 xi + xj ll for xi,•••, x. E R",

        i=1 i--1 lsiÅqjmÅqn
Remark that this inequality implies the Hlawka's inequality as a special case of
n=3. We shall extend this inequality for a class of Banach spaces. Our proof is
based on the simple induction arguments which is essentially due to Vasi6 [4].

   THEoREM 2. Let E be a Banach space. Suppose that for every x,y,zEE it holds
that

          11x + y + zll + 11xll + llyll + 11zll ;}i 11x + .y ll + ll.y + zll + 11z + xll

                 (the Hlawka's 3-element inequality in E).

Then it also holds that

                nn                2xi +(n-2)2llJ)cill}) 2 11xi+xjll
                i=1 i=1 lg iÅq 1' -Åqn
for every n and xi,...,xn EE•

   PRooF. We prove by induction.
   (i) The case n=3 is in our assumption.
   (ii) We suppose that the inequality fornholds. Then in the case ofn+1, we
have

llxi + ' ' ' + Xn-i + (xn + Xn+i)11 + (n - 2)(ll)Cill + ' ' ' + 11xn-i11 + llJcn + ixn+i ll)

                   n-1  2 2 IIxi+xjll+2llxi+(xn+xn+i)11
    lsiÅqj-Åqn-1 i--1
                  n-1  ;}i 2 llxi + xJ ll +2(llxi + xn ll + 11xi + xn+i ll +IIxn + 'cn+i ll - 11 J'cill - li xn ll - 11 xn+i il)

    lsiÅq]'-Åqn-1 i--1

                                   n-1 .  = 2 11J'ci + xj ll + (n - 2) ll Jxn + xn+i ll - IZ) 11xi ll - (n - 1)(11Jcn ll + 11xn+i ll),

    lgiÅq1'-Åqn+1 i--1
where we have used the case n=:3 for the term lixi+x. +xn+i11. So it follows that

    11Jxi + ' ' ' + J)cn-i + xn + jXn+iIl + (n - 1)(11Xi ll + ' ' ' + 11xn-i 11 + 11xn ll + llxn+i il)

      i;? 2 llxi+)cjll•
        1 siÅqj -Åq n+1

This completes the proof.
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