Bull. Kyushu Inst. Tech. Pure Appl. Math. No. 47, 2000, pp. 5-11

A 4-DIMENSIONAL JACOBI MANIFOLD WITH NONSINGULAR AND NONSEMICLOSED 2-FORM

Akira Ikushima*, Fumiyo Fujiwara** and Fumitake Mimura**

(Received November 25, 1999)

1. Introduction

Lichnerowicz [6] showed that a Lie algebra structure (so-called Jacobi structure) on a differentiable manifold \mathfrak{M} is equivalent to the existence of a couple (Λ, Ξ) of a bivector (contravariant skew-symmetric 2-tensor) field Λ and a vector field Ξ satisfying certain conditions which were given in terms of the Schouten-Nijenhuis bracket for multivector fields (Schouten [9], Nijenhuis [8]). Whenever dim $\mathfrak{M} = 2m$ and Λ is nonsingular, the couple (Λ, Ξ) can be transformed into a couple (Ω, ω) of nonsingular differential 2-form Ω and a closed differential 1-form ω ($d\omega = 0$) satisfying

(1)
$$d\Omega + \omega \wedge \Omega = 0.$$

Such a form Ω (called a semiclosed form with ω) defines an infinitesimally conformally symplectic structure on \mathfrak{M} (Guédira and Lichnerowicz [2]). Mimura and Nôno [7] gave an alternative approach to the infinite dimensional Lie algebra structure with the couple (Ω, Ξ) of nonsingular differential 2-form Ω and a vector field Ξ on \mathfrak{M} , where Ω was assumed to be a semiclosed form with $\omega = \Xi \rfloor \Omega$ (contraction of Ω by Ξ) so that $\Xi(\Omega) = 0$ (Lie derivative of Ω by Ξ). More generally, Ikushima and Mimura [3] investigated the structure with the couple (Ω, ω) satisfying (1) where (instead of on ω) the closedness condition was imposed on $\Xi(\omega)$:

(2) $d\Xi(\omega) = 0.$

Since the form ω in (1) is always closed if dim $\mathfrak{M} = 2m \ge 6$ (Libermann [5]), nonsemiclosed 2-form Ω exists only if m = 1 or 2, while (1) is identical for an arbitrary 2-form Ω if m = 1. In fact, Fujiwara, Sakurai and Mimura [1] established a complete class of nonsingular 2-forms Ω on 4-dimensional differentiable manifold, in which appeared a subclass of nonsemiclosed 2-forms. The presented paper is devoted to find the Jacobi structure associated with the 2-forms in the subclass.

The all objects involved on \mathfrak{M} is assumed to be differentiable of sufficiently high order.

2. Jacobi structure

Let \mathfrak{M} be a 4-dimensional differentiable manifold, \mathfrak{X} a set of all vector fields on \mathfrak{M} and \mathfrak{R} a ring of all differentiable functions on \mathfrak{M} . Our discussion begins with a brief review of [3] for introducing Jacobi structure associated with a nonsingular 2-form Ω on \mathfrak{M} . For the form Ω , since dim $\mathfrak{M} = 4$, there exists a unique 1-form ω satisfying (1) (Lee [4]); and for the form ω , also a unique vector field Ξ satisfying

(3)
$$\omega = \Xi \rfloor \Omega.$$

For an arbitrary $f \in \mathfrak{R}$, set a unique vector field X_f on \mathfrak{M} :

(4)
$$X_f \rfloor \Omega = df + f\omega,$$

and define the product $\{f, g\}$ on \mathfrak{R} :

(5)
$$\{f,g\} = X_f(g) - g\Xi(f).$$

Then, whenever the condition (2) is imposed on the couple (Ω, ω) , the subset \mathfrak{X}_{Ξ} :

$$\mathfrak{X}_{\Xi} = \{X_f \in \mathfrak{X} \mid [\Xi, X_f] = X_{\Xi(f)}\}$$

forms a Lie subalgebra of the Lie algebra \mathfrak{X} under the bracket [,], and the subset \mathfrak{R}_{Ξ} (of course, subring of \mathfrak{R}):

$$\mathfrak{R}_{\Xi} = \{ f \in \mathfrak{R} \, | \, X_f \in \mathfrak{X}_{\Xi} \}$$

forms an infinite dimensional Lie algebra under the product $\{,\}$.

Now, in view of (1) and (3), since

$$E \rfloor d\Omega = -E \rfloor (\omega \land \Omega) = \omega \land (E \rfloor \Omega) = \omega \land \omega = 0,$$

the basic identity

$$\Xi(\Omega) = \Xi \rfloor d\Omega + d(\Xi \rfloor \Omega)$$

leads to

(6) $\Xi(\Omega) = d\omega.$

The identity (1), i.e., $d\Omega = -\omega \wedge \Omega$ yields $\omega \wedge d\Omega = 0$, and then its exterior derivative leads to $d\omega \wedge \Omega = 0$. Accordingly

$$\Xi(d\omega \wedge \Omega) = \Xi(d\omega) \wedge \Omega + d\omega \wedge \Xi(\Omega) = 0,$$

for which (2) and (6) are substituted to see $d\omega \wedge d\omega = 0$. Hence the following cases occur on nonclosed ω :

(i) $d\omega \neq 0$, $\omega \wedge d\omega = 0$, (ii) $\omega \wedge d\omega \neq 0$, $d\omega \wedge d\omega = 0$.

Therefore, within a suitable local coordinate system (x^1, x^2, y^1, y^2) , the forms ω and Ω have the following appearances according to the cases (see [1]):

$$\omega = x^{1} dy^{1}, \qquad \Omega = e^{-x^{1} y^{1}} \Theta, \qquad \text{for (i)};$$

$$\omega = x^{1} dy^{1} + dy^{2}, \qquad \Omega = e^{-x^{1} y^{1} - y^{2}} \Theta, \qquad \text{for (ii)};$$

in which Θ is of the form

$$\Theta = dlpha \wedge dx^1 - deta \wedge dy^1 + y^1eta dx^1 \wedge dy^1,$$

where $\alpha = \alpha(x, y)$ and $\beta = \beta(x, y)$ are arbitrary differentiable functions satisfying

(7)
$$\begin{vmatrix} \frac{\partial \alpha}{\partial x^2} & \frac{\partial \alpha}{\partial y^2} \\ \frac{\partial \beta}{\partial x^2} & \frac{\partial \beta}{\partial y^2} \end{vmatrix} \equiv a \neq 0.$$

In both cases, since $d\omega = dx^1 \wedge dy^1$, by putting

$$\Xi = \xi^{1}(x, y) \frac{\partial}{\partial x^{1}} + \xi^{2}(x, y) \frac{\partial}{\partial x^{2}} + \eta^{1}(x, y) \frac{\partial}{\partial y^{1}} + \eta^{2}(x, y) \frac{\partial}{\partial y^{2}},$$

it follows that $\Xi \rfloor d\omega = -\eta^1 dx^1 + \xi^1 dy^1$. So the condition (2):

$$d\Xi(\omega) = d(\Xi \rfloor d\omega + d(\Xi \rfloor \omega)) = d(\Xi \rfloor d\omega) = 0$$

leads to $d\eta^1 \wedge dx^1 - d\xi^1 \wedge dy^1 = 0$, i.e.,

$$\frac{\partial \xi^1}{\partial x^1} + \frac{\partial \eta^1}{\partial y^1} = 0, \qquad \frac{\partial \xi^1}{\partial x^2} = \frac{\partial \xi^1}{\partial y^2} = 0, \qquad \frac{\partial \eta^1}{\partial x^2} = \frac{\partial \eta^1}{\partial y^2} = 0.$$

Therefore ξ^1 and η^1 are of the forms

(8)
$$\xi^{1} = \frac{\partial \boldsymbol{\Phi}(x^{1}, y^{1})}{\partial y^{1}}, \qquad \eta^{1} = -\frac{\partial \boldsymbol{\Phi}(x^{1}, y^{1})}{\partial x^{1}}.$$

Pay attention here to the identity

$$[\Xi, X_f] \, \rfloor \, \Omega = \Xi(X_f \, \rfloor \, \Omega) - X_f \, \rfloor \, \Xi(\Omega),$$

for which (4) and (6) are substituted to see

$$[\Xi, X_f] \, \rfloor \, \Omega = X_{\Xi(f)} \, \rfloor \, \Omega + f \, \Xi(\omega) - X_f \, \rfloor \, d\omega.$$

Therefore it is verified that

(9)
$$X_f \in \mathfrak{X}_{\Xi}$$
 if and only if $f\Xi(\omega) = X_f \rfloor d\omega$.

We are now in a position to pursue our discussion in each case of (i) and (ii) with the identity

(10)
$$\Xi \rfloor \Theta = \left(\xi^2 \frac{\partial \alpha}{\partial x^2} + \eta^2 \frac{\partial \alpha}{\partial y^2} + \eta^1 \gamma\right) dx^1 - \left(\xi^1 \frac{\partial \alpha}{\partial x^2} - \eta^1 \frac{\partial \beta}{\partial x^2}\right) dx^2 - \left(\xi^2 \frac{\partial \beta}{\partial x^2} + \eta^2 \frac{\partial \beta}{\partial y^2} + \xi^1 \gamma\right) dy^1 - \left(\xi^1 \frac{\partial \alpha}{\partial y^2} - \eta^1 \frac{\partial \beta}{\partial y^2}\right) dy^2,$$

where $\gamma = \partial \alpha / \partial y^1 + \partial \beta / \partial x^1 - y^1 \beta$. For the case (i), since $\omega = x^1 dy^1$ in (3), the coefficients of dx^2 and dy^2 (also of dx^1) in $\Xi \rfloor \Omega = e^{-x^1 y^1} \Xi \rfloor \Theta$, i.e., in (10) vanish. Accordingly

$$\begin{split} \xi^1 \frac{\partial \alpha}{\partial x^2} &- \eta^1 \frac{\partial \beta}{\partial x^2} = 0, \\ \xi^1 \frac{\partial \alpha}{\partial y^2} &- \eta^1 \frac{\partial \beta}{\partial y^2} = 0, \end{split}$$

so that $\xi^1 = \eta^1 = 0$ by (7). Therefore Ξ is of the form

$$\Xi = \xi^2(x, y) \frac{\partial}{\partial x^2} + \eta^2(x, y) \frac{\partial}{\partial y^2}.$$

Hence $\Xi(\omega) = 0$, i.e., $X_f \rfloor d\omega = 0$ in (9), which concludes that $X_f \in \mathfrak{X}_{\Xi}$ is of the form

$$X_f = \xi_f^2(x, y) \frac{\partial}{\partial x^2} + \eta_f^2(x, y) \frac{\partial}{\partial y^2}.$$

Consequently, since $X_f \rfloor \Theta = X_f(\alpha) dx^1 - X_f(\beta) dy^1$, (4) implies that $\partial f / \partial x^2 = \partial f / \partial y^2 = 0$, i.e., $f = f(x^1, y^1)$. Thus

(11)
$$\mathfrak{R}_{\Xi} = \{ f \mid f = f(x^1, y^1) \in \mathfrak{R} \},\$$

on which the product $\{f, g\}$ of (5) vanishes because of $\Xi(f) = X_f(g) = 0$.

For the case (ii), in view of (8) and (10), since $\omega = x^1 dy^1 + dy^2$, (3) gives in coordinates the system of equations

(12a)
$$\xi^2 \frac{\partial \alpha}{\partial x^2} + \eta^2 \frac{\partial \alpha}{\partial y^2} = \gamma \frac{\partial \Phi}{\partial x^1},$$

(12b)
$$\frac{\partial \alpha}{\partial x^2} \frac{\partial \Phi}{\partial y^1} + \frac{\partial \beta}{\partial x^2} \frac{\partial \Phi}{\partial x^1} = 0,$$

(12c)
$$\xi^2 \frac{\partial \beta}{\partial x^2} + \eta^2 \frac{\partial \beta}{\partial y^2} = -\gamma \frac{\partial \Phi}{\partial y^1} - x^1 e^{x^1 y^1 + y^2},$$

(12d)
$$\frac{\partial \alpha}{\partial y^2} \frac{\partial \Phi}{\partial y^1} + \frac{\partial \beta}{\partial y^2} \frac{\partial \Phi}{\partial x^1} = -e^{x^1 y^1 + y^2}.$$

A 4-Dimensional Jacobi Manifold with Nonsingular and Nonsemiclosed 2-Form

Remind that $\Phi = \Phi(x^1, y^1)$ for the integration of (12b):

$$\alpha \frac{\partial \Phi}{\partial y^1} + \beta \frac{\partial \Phi}{\partial x^1} = \psi(x^1, y^1, y^2),$$

whose differentiation by y^2 is combined with (12d) to see $\partial \psi / \partial y^2 = -e^{x^1y^1+y^2}$, i.e.,

$$\psi(x^1, y^1, y^2) = -e^{x^1y^1 + y^2} + \varphi(x^1, y^1).$$

Hence (12b) and (12d) are valid if and only if

(13)
$$\alpha \frac{\partial \Phi}{\partial y^1} + \beta \frac{\partial \Phi}{\partial x^1} = -e^{x^1 y^1 + y^2} + \varphi(x^1, y^1).$$

Since $a \neq 0$ in (7), the equations (12b) and (12d) are equivalent to

(12b)'
$$a\frac{\partial \Phi}{\partial x^1} = -e^{x^1y^1+y^2}\frac{\partial \alpha}{\partial x^2},$$

(12d)'
$$a\frac{\partial \Phi}{\partial y^1} = e^{x^1 y^1 + y^2} \frac{\partial \beta}{\partial x^2}.$$

In view of (12b) and (12d), the solutions ξ^2 and η^2 of (12a) and (12c) are given respectively by

$$a\xi^{2} = \gamma \left(\frac{\partial \alpha}{\partial y^{2}} \frac{\partial \Phi}{\partial y^{1}} + \frac{\partial \beta}{\partial y^{2}} \frac{\partial \Phi}{\partial x^{1}} \right) + x^{1} e^{x^{1} y^{1} + y^{2}} \frac{\partial \alpha}{\partial y^{2}} = e^{x^{1} y^{1} + y^{2}} \left(x^{1} \frac{\partial \alpha}{\partial y^{2}} - \gamma \right),$$

$$-a\eta^{2} = \gamma \left(\frac{\partial \alpha}{\partial x^{2}} \frac{\partial \Phi}{\partial y^{1}} + \frac{\partial \beta}{\partial x^{2}} \frac{\partial \Phi}{\partial x^{1}} \right) + x^{1} e^{x^{1} y^{1} + y^{2}} \frac{\partial \alpha}{\partial x^{2}} = x^{1} e^{x^{1} y^{1} + y^{2}} \frac{\partial \alpha}{\partial x^{2}}.$$

Consequently Ξ is determined as

$$\Xi = \frac{\partial \Phi}{\partial y^1} \frac{\partial}{\partial x^1} + a^{-1} e^{x^1 y^1 + y^2} \left(x^1 \frac{\partial \alpha}{\partial y^2} - \gamma \right) \frac{\partial}{\partial x^2} - \frac{\partial \Phi}{\partial x^1} \frac{\partial}{\partial y^1} - a^{-1} x^1 e^{x^1 y^1 + y^2} \frac{\partial \alpha}{\partial x^2} \frac{\partial}{\partial y^2},$$

in which the coefficient of $\partial/\partial y^2$ is replaced by (12b)' with $x^1 \partial \Phi/\partial x^1$ to see $\Xi(\omega) = d\Phi$. Therefore, by putting

$$X_f = \xi_f^1(x, y) \frac{\partial}{\partial x^1} + \xi_f^2(x, y) \frac{\partial}{\partial x^2} + \eta_f^1(x, y) \frac{\partial}{\partial y^1} + \eta_f^2(x, y) \frac{\partial}{\partial y^2},$$

 ξ_f^1 and η_f^1 are determined by (9) respectively as $\xi_f^1 = f \partial \Phi / \partial y^1$ and $\eta_f^1 = -f \partial \Phi / \partial x^1$. Accordingly X_f is of the form

$$X_f = f \frac{\partial \Phi}{\partial y^1} \frac{\partial}{\partial x^1} + \xi_f^2 \frac{\partial}{\partial x^2} - f \frac{\partial \Phi}{\partial x^1} \frac{\partial}{\partial y^1} + \eta_f^2 \frac{\partial}{\partial y^2}.$$

So, similarly as (10), $X_f \mid \Theta$ is written in coordinate. And then, in the result, (12b) and (12d) is used to derive

$$\begin{split} X_{f} \rfloor \Theta &= \left(\xi_{f}^{2} \frac{\partial \alpha}{\partial x^{2}} + \eta_{f}^{2} \frac{\partial \alpha}{\partial y^{2}} - f \frac{\partial \Phi}{\partial x^{1}} \gamma \right) dx^{1} - f \left(\frac{\partial \Phi}{\partial y^{1}} \frac{\partial \alpha}{\partial x^{2}} + \frac{\partial \Phi}{\partial x^{1}} \frac{\partial \beta}{\partial x^{2}} \right) dx^{2} \\ &- \left(\xi_{f}^{2} \frac{\partial \beta}{\partial x^{2}} + \eta_{f}^{2} \frac{\partial \beta}{\partial y^{2}} + f \frac{\partial \Phi}{\partial y^{1}} \gamma \right) dy^{1} - f \left(\frac{\partial \Phi}{\partial y^{1}} \frac{\partial \alpha}{\partial y^{2}} + \frac{\partial \Phi}{\partial x^{1}} \frac{\partial \beta}{\partial y^{2}} \right) dy^{2} \\ &= \left(\xi_{f}^{2} \frac{\partial \alpha}{\partial x^{2}} + \eta_{f}^{2} \frac{\partial \alpha}{\partial y^{2}} - f \frac{\partial \Phi}{\partial x^{1}} \gamma \right) dx^{1} \\ &- \left(\xi_{f}^{2} \frac{\partial \beta}{\partial x^{2}} + \eta_{f}^{2} \frac{\partial \beta}{\partial y^{2}} + f \frac{\partial \Phi}{\partial y^{1}} \gamma \right) dy^{1} + e^{x^{1}y^{1} + y^{2}} f dy^{2}, \end{split}$$

where $\gamma = \partial \alpha / \partial y^1 + \partial \beta / \partial x^1 - y^1 \beta$. Consequently (4) gives in coordinates the system of equations

$$\frac{\partial \alpha}{\partial x^2} \xi_f^2 + \frac{\partial \alpha}{\partial y^2} \eta_f^2 = f \frac{\partial \Phi}{\partial x^1} \left(\frac{\partial \alpha}{\partial y^1} + \frac{\partial \beta}{\partial x^1} - y^1 \beta \right) + e^{x^1 y^1 + y^2} \frac{\partial f}{\partial x^1},$$
$$\frac{\partial \beta}{\partial x^2} \xi_f^2 + \frac{\partial \beta}{\partial y^2} \eta_f^2 = -f \frac{\partial \Phi}{\partial y^1} \left(\frac{\partial \alpha}{\partial y^1} + \frac{\partial \beta}{\partial x^1} - y^1 \beta \right) - e^{x^1 y^1 + y^2} \left(\frac{\partial f}{\partial y^1} + x^1 f \right),$$

and $\partial f/\partial x^2 = \partial f/\partial y^2 = 0$. Hence ξ_f^2 and η_f^2 are determined uniquely by the above equations, while $f = f(x^1, y^1)$. Thus \Re_{Ξ} is determined also as (11), on which the product $\{f, g\}$ of (5) is written as

(14)
$$\{f,g\} = f\left(\frac{\partial g}{\partial x^1}\frac{\partial \Phi}{\partial y^1} - \frac{\partial g}{\partial y^1}\frac{\partial \Phi}{\partial x^1}\right) - g\left(\frac{\partial f}{\partial x^1}\frac{\partial \Phi}{\partial y^1} - \frac{\partial f}{\partial y^1}\frac{\partial \Phi}{\partial x^1}\right);$$

and, by (12b)' and (12d)', also as

$$(14)' \qquad \{f,g\} = a^{-1}e^{x^1y^1+y^2}\frac{\partial\beta}{\partial x^2}\left(f\frac{\partial g}{\partial x^1} - g\frac{\partial f}{\partial x^1}\right) + a^{-1}e^{x^1y^1+y^2}\frac{\partial\alpha}{\partial x^2}\left(f\frac{\partial g}{\partial y^1} - g\frac{\partial f}{\partial y^1}\right),$$

which completes the Jacobi structure in the consideration. In conclusion, the following theorem is deduced (see [3], Theorem 2).

THEOREM. Let Ω be a nonsingular and nonsemiclosed differential 2-form on 4dimensional differentiable manifold \mathfrak{M} satisfying (1), where ω is a differential 1-form whose existence is a matter of course. Then the nonvanishing Jacobi structure in the consideration exists if and only if Ω has the following appearance within a suitable local coordinate system:

(15)
$$\Omega = e^{-x^1 y^1 - y^2} (d\alpha \wedge dx^1 - d\beta \wedge dy^1 + y^1 \beta dx^1 \wedge dy^1),$$

where $\alpha = \alpha(x, y)$ and $\beta = \beta(x, y)$ are arbitrary differentiable functions satisfying the nonsingularly condition (7), and the relation (13) for some differentiable functions

 $\Phi(x^1, y^1)$ and $\varphi(x^1, y^1)$. For the form Ω of (15), the Jacobi structure on \Re_{Ξ} of (11) is given by (14) or equivalently by (14)'.

References

- [1] F. Fujiwara, T. Sakurai and F. Mimura, A complete class of nonsingular 2-form on 4-dimensional differentiable manifold, to appear.
- F. Guédira and A. Lichnerowicz, Géométrie des algébres de Lie locales de Kirillov, J. Math. Pures et Appl., 63 (1984), 407–484.
- [3] A. Ikushima and F. Mimura, Lie algebra structures on a manifold with a couple of differential forms, to appear in Tensor, N. S., 60 (1998).
- [4] H. C. Lee, A kind of even-dimensional differential geometry and its application to exterior calculus, Amer. Mth., 65 (1943), 433-438.
- [5] P. Libermann, Sur le probleme d'equivalence de certains structures infinitesimales, Ann. Math. Pura Appl., 36 (1954), 27-120.
- [6] A. Lichnerowicz, Les variétés de Jacobi et leurs algébres de Lie associées, J. Math. Pures et Appl., 57 (1978), 453–488.
- [7] F. Mimura and Nôno, A generalized Poisson algebra on a manifold I, A geometric formulation with non-degenerate 2-form, Tensor, N. S., 55 (1994), 54–58.
- [8] A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields, Indag. Math., 17 (1955) 390-403.
- [9] J. A. Schouten, Über differentialkomitanten zweier kontravarianter grossen, Proc. Kon. Ned. Akad. Wet. Amsterdam, 43 (1940), 449–452.

*Department of Information Science Yomiuri Institute of Science and Engineering Kokurakita, Kitakyushu, 802-0017, Japan and **Department of Mathematics

Kyushu Institute of Technology Tobata, Kitakyushu, 804-8550, Japan