A 4-DIMENSIONAL JACOBI MANIFOLD WITH NONSINGULAR AND NONSEMICLOSED 2-FORM

Akira Ikushima*, Fumiyo Fujiwara** and Fumitake Mimura**

(Received November 25, 1999)

1. Introduction

Lichnerowicz [6] showed that a Lie algebra structure (so-called Jacobi structure) on a differentiable manifold \mathfrak{M} is equivalent to the existence of a couple (Λ, Ξ) of a bivector (contravariant skew-symmetric 2-tensor) field Λ and a vector field Ξ satisfying certain conditions which were given in terms of the Schouten-Nijenhuis bracket for multivector fields (Schouten [9], Nijenhuis [8]). Whenever $\operatorname{dim} \mathfrak{M}=2 m$ and Λ is nonsingular, the couple (Λ, Ξ) can be transformed into a couple (Ω, ω) of nonsingular differential 2 -form Ω and a closed differential 1-form $\omega(d \omega=0)$ satisfying

$$
\begin{equation*}
d \Omega+\omega \wedge \Omega=0 . \tag{1}
\end{equation*}
$$

Such a form Ω (called a semiclosed form with ω) defines an infinitesimally conformally symplectic structure on \mathfrak{M} (Guédira and Lichnerowicz [2]). Mimura and Nôno [7] gave an alternative approach to the infinite dimensional Lie algebra structure with the couple (Ω, Ξ) of nonsingular differential 2 -form Ω and a vector field Ξ on \mathfrak{M}, where Ω was assumed to be a semiclosed form with $\omega=\Xi\rfloor \Omega$ (contraction of Ω by Ξ) so that $\Xi(\Omega)=0$ (Lie derivative of Ω by Ξ). More generally, Ikushima and Mimura [3] investigated the structure with the couple (Ω, ω) satisfying (1) where (instead of on ω) the closedness condition was imposed on $\Xi(\omega)$:

$$
\begin{equation*}
d \Xi(\omega)=0 . \tag{2}
\end{equation*}
$$

Since the form ω in (1) is always closed if $\operatorname{dim} \mathfrak{M}=2 m \geq 6$ (Libermann [5]), nonsemiclosed 2 -form Ω exists only if $m=1$ or 2 , while (1) is identical for an arbitrary 2-form Ω if $m=1$. In fact, Fujiwara, Sakurai and Mimura [1] established a complete class of nonsingular 2 -forms Ω on 4 -dimensional differentiable manifold, in which appeared a subclass of nonsemiclosed 2 -forms. The presented paper is devoted to find the Jacobi structure associated with the 2 -forms in the subclass.

The all objects involved on \mathfrak{M} is assumed to be differentiable of sufficiently high order.

2. Jacobi structure

Let \mathfrak{M} be a 4 -dimensional differentiable manifold, \mathfrak{X} a set of all vector fields on \mathfrak{M} and \mathfrak{R} a ring of all differentiable functions on \mathfrak{M}. Our discussion begins with a brief review of [3] for introducing Jacobi structure associated with a nonsingular 2-form Ω on \mathfrak{M}. For the form Ω, since $\operatorname{dim} \mathfrak{M}=4$, there exists a unique 1 -form ω satisfying (1) (Lee [4]); and for the form ω, also a unique vector field Ξ satisfying

$$
\begin{equation*}
\omega=\Xi\rfloor \Omega \tag{3}
\end{equation*}
$$

For an arbitrary $f \in \mathfrak{R}$, set a unique vector field X_{f} on \mathfrak{M} :

$$
\begin{equation*}
\left.X_{f}\right\rfloor \Omega=d f+f \omega, \tag{4}
\end{equation*}
$$

and define the product $\{f, g\}$ on \mathfrak{R} :

$$
\begin{equation*}
\{f, g\}=X_{f}(g)-g \Xi(f) \tag{5}
\end{equation*}
$$

Then, whenever the condition (2) is imposed on the couple (Ω, ω), the subset \mathfrak{X}_{Ξ} :

$$
\mathfrak{X}_{\Xi}=\left\{X_{f} \in \mathfrak{X} \mid\left[\Xi, X_{f}\right]=X_{\Xi(f)}\right\}
$$

forms a Lie subalgebra of the Lie algebra \mathfrak{X} under the bracket [,], and the subset $\mathfrak{\Re}_{\boldsymbol{\Xi}}$ (of course, subring of \mathfrak{R}):

$$
\mathfrak{R}_{\Xi}=\left\{f \in \mathfrak{R} \mid X_{f} \in \mathfrak{X}_{\Xi}\right\}
$$

forms an infinite dimensional Lie algebra under the product $\{$,$\} .$
Now, in view of (1) and (3), since

$$
\Xi\rfloor d \Omega=-\Xi\rfloor(\omega \wedge \Omega)=\omega \wedge(\Xi\rfloor \Omega)=\omega \wedge \omega=0
$$

the basic identity

$$
\Xi(\Omega)=\Xi\rfloor d \Omega+d(\Xi\rfloor \Omega)
$$

leads to

$$
\begin{equation*}
\Xi(\Omega)=d \omega . \tag{6}
\end{equation*}
$$

The identity (1), i.e., $d \Omega=-\omega \wedge \Omega$ yields $\omega \wedge d \Omega=0$, and then its exterior derivative leads to $d \omega \wedge \Omega=0$. Accordingly

$$
\Xi(d \omega \wedge \Omega)=\Xi(d \omega) \wedge \Omega+d \omega \wedge \Xi(\Omega)=0
$$

for which (2) and (6) are substituted to see $d \omega \wedge d \omega=0$. Hence the following cases occur on nonclosed ω :
(i) $d \omega \neq 0, \quad \omega \wedge d \omega=0$,
(ii) $\quad \omega \wedge d \omega \neq 0, \quad d \omega \wedge d \omega=0$.

Therefore, within a suitable local coordinate system $\left(x^{1}, x^{2}, y^{1}, y^{2}\right)$, the forms ω and Ω have the following appearances according to the cases (see [1]):

$$
\begin{array}{lll}
\omega=x^{1} d y^{1}, & \Omega=e^{-x^{1} y^{1}} \Theta, & \text { for (i); } \\
\omega=x^{1} d y^{1}+d y^{2}, & \Omega=e^{-x^{1} y^{1}-y^{2}} \Theta, & \text { for (ii); }
\end{array}
$$

in which Θ is of the form

$$
\Theta=d \alpha \wedge d x^{1}-d \beta \wedge d y^{1}+y^{1} \beta d x^{1} \wedge d y^{1}
$$

where $\alpha=\alpha(x, y)$ and $\beta=\beta(x, y)$ are arbitrary differentiable functions satisfying

$$
\left|\begin{array}{cc}
\frac{\partial \alpha}{\partial x^{2}} & \frac{\partial \alpha}{\partial y^{2}} \tag{7}\\
\frac{\partial \beta}{\partial x^{2}} & \frac{\partial \beta}{\partial y^{2}}
\end{array}\right| \equiv a \neq 0
$$

In both cases, since $d \omega=d x^{1} \wedge d y^{1}$, by putting

$$
\Xi=\xi^{1}(x, y) \frac{\partial}{\partial x^{1}}+\xi^{2}(x, y) \frac{\partial}{\partial x^{2}}+\eta^{1}(x, y) \frac{\partial}{\partial y^{1}}+\eta^{2}(x, y) \frac{\partial}{\partial y^{2}},
$$

it follows that $\Xi\rfloor d \omega=-\eta^{1} d x^{1}+\xi^{1} d y^{1}$. So the condition (2):

$$
d \Xi(\omega)=d(\Xi\rfloor d \omega+d(\Xi\rfloor \omega))=d(\Xi\rfloor d \omega)=0
$$

leads to $d \eta^{1} \wedge d x^{1}-d \xi^{1} \wedge d y^{1}=0$, i.e.,

$$
\frac{\partial \xi^{1}}{\partial x^{1}}+\frac{\partial \eta^{1}}{\partial y^{1}}=0, \quad \frac{\partial \xi^{1}}{\partial x^{2}}=\frac{\partial \xi^{1}}{\partial y^{2}}=0, \quad \frac{\partial \eta^{1}}{\partial x^{2}}=\frac{\partial \eta^{1}}{\partial y^{2}}=0
$$

Therefore ξ^{1} and η^{1} are of the forms

$$
\begin{equation*}
\xi^{1}=\frac{\partial \Phi\left(x^{1}, y^{1}\right)}{\partial y^{1}}, \quad \eta^{1}=-\frac{\partial \Phi\left(x^{1}, y^{1}\right)}{\partial x^{1}} . \tag{8}
\end{equation*}
$$

Pay attention here to the identity

$$
\left.\left.\left.\left[\Xi, X_{f}\right]\right\rfloor \Omega=\Xi\left(X_{f}\right\rfloor \Omega\right)-X_{f}\right\rfloor \Xi(\Omega),
$$

for which (4) and (6) are substituted to see

$$
\left.\left.\left.\left[\Xi, X_{f}\right]\right\rfloor \Omega=X_{\Xi(f)}\right\rfloor \Omega+f \Xi(\omega)-X_{f}\right\rfloor d \omega .
$$

Therefore it is verified that

$$
\begin{equation*}
\left.X_{f} \in \mathfrak{X}_{\Xi} \quad \text { if and only if } \quad f \Xi(\omega)=X_{f}\right\rfloor d \omega . \tag{9}
\end{equation*}
$$

We are now in a position to pursue our discussion in each case of (i) and (ii) with the identity

$$
\begin{align*}
\Xi\rfloor \Theta= & \left(\xi^{2} \frac{\partial \alpha}{\partial x^{2}}+\eta^{2} \frac{\partial \alpha}{\partial y^{2}}+\eta^{1} \gamma\right) d x^{1}-\left(\xi^{1} \frac{\partial \alpha}{\partial x^{2}}-\eta^{1} \frac{\partial \beta}{\partial x^{2}}\right) d x^{2} \tag{10}\\
& -\left(\xi^{2} \frac{\partial \beta}{\partial x^{2}}+\eta^{2} \frac{\partial \beta}{\partial y^{2}}+\xi^{1} \gamma\right) d y^{1}-\left(\xi^{1} \frac{\partial \alpha}{\partial y^{2}}-\eta^{1} \frac{\partial \beta}{\partial y^{2}}\right) d y^{2},
\end{align*}
$$

where $\gamma=\partial \alpha / \partial y^{1}+\partial \beta / \partial x^{1}-y^{1} \beta$. For the case (i), since $\omega=x^{1} d y^{1}$ in (3), the coefficients of $d x^{2}$ and $d y^{2}$ (also of $d x^{1}$) in $\left.\left.\Xi\right\rfloor \Omega=e^{-x^{1} y^{1}} \Xi\right\rfloor \Theta$, i.e., in (10) vanish. Accordingly

$$
\begin{aligned}
& \xi^{1} \frac{\partial \alpha}{\partial x^{2}}-\eta^{1} \frac{\partial \beta}{\partial x^{2}}=0 \\
& \xi^{\prime} \frac{\partial \alpha}{\partial y^{2}}-\eta^{1} \frac{\partial \beta}{\partial y^{2}}=0
\end{aligned}
$$

so that $\xi^{1}=\eta^{1}=0$ by (7). Therefore Ξ is of the form

$$
\Xi=\xi^{2}(x, y) \frac{\partial}{\partial x^{2}}+\eta^{2}(x, y) \frac{\partial}{\partial y^{2}}
$$

Hence $\Xi(\omega)=0$, i.e., $\left.X_{f}\right\rfloor d \omega=0$ in (9), which concludes that $X_{f} \in \mathfrak{X}_{\Xi}$ is of the form

$$
X_{f}=\xi_{f}^{2}(x, y) \frac{\partial}{\partial x^{2}}+\eta_{f}^{2}(x, y) \frac{\partial}{\partial y^{2}} .
$$

Consequently, since $\left.X_{f}\right\rfloor \Theta=X_{f}(\alpha) d x^{1}-X_{f}(\beta) d y^{1}$, (4) implies that $\partial f / \partial x^{2}=\partial f / \partial y^{2}=$ 0 , i.e., $f=f\left(x^{1}, y^{1}\right)$. Thus

$$
\begin{equation*}
\mathfrak{R}_{\Xi}=\left\{f \mid f=f\left(x^{1}, y^{1}\right) \in \mathfrak{R}\right\} \tag{11}
\end{equation*}
$$

on which the product $\{f, g\}$ of (5) vanishes because of $\Xi(f)=X_{f}(g)=0$.
For the case (ii), in view of (8) and (10), since $\omega=x^{1} d y^{1}+d y^{2}$, (3) gives in coordinates the system of equations

$$
\begin{align*}
& \xi^{2} \frac{\partial \alpha}{\partial x^{2}}+\eta^{2} \frac{\partial \alpha}{\partial y^{2}}=\gamma \frac{\partial \Phi}{\partial x^{1}} \tag{12a}\\
& \frac{\partial \alpha}{\partial x^{2}} \frac{\partial \Phi}{\partial y^{1}}+\frac{\partial \beta}{\partial x^{2}} \frac{\partial \Phi}{\partial x^{1}}=0 \tag{12b}\\
& \xi^{2} \frac{\partial \beta}{\partial x^{2}}+\eta^{2} \frac{\partial \beta}{\partial y^{2}}=-\gamma \frac{\partial \Phi}{\partial y^{1}}-x^{1} e^{x^{1} y^{1}+y^{2}} \tag{12c}\\
& \frac{\partial \alpha}{\partial y^{2}} \frac{\partial \Phi}{\partial y^{1}}+\frac{\partial \beta}{\partial y^{2}} \frac{\partial \Phi}{\partial x^{1}}=-e^{x^{1} y^{1}+y^{2}} \tag{12d}
\end{align*}
$$

Remind that $\Phi=\Phi\left(x^{1}, y^{1}\right)$ for the integration of (12b):

$$
\alpha \frac{\partial \Phi}{\partial y^{1}}+\beta \frac{\partial \Phi}{\partial x^{1}}=\psi\left(x^{1}, y^{1}, y^{2}\right)
$$

whose differentiation by y^{2} is combined with (12d) to see $\partial \psi / \partial y^{2}=-e^{x^{1} y^{1}+y^{2}}$, i.e.,

$$
\psi\left(x^{1}, y^{1}, y^{2}\right)=-e^{x^{1} y^{1}+y^{2}}+\varphi\left(x^{1}, y^{1}\right) .
$$

Hence (12b) and (12d) are valid if and only if

$$
\begin{equation*}
\alpha \frac{\partial \Phi}{\partial y^{1}}+\beta \frac{\partial \Phi}{\partial x^{1}}=-e^{x^{1} y^{1}+y^{2}}+\varphi\left(x^{1}, y^{1}\right) \tag{13}
\end{equation*}
$$

Since $a \neq 0$ in (7), the equations (12b) and (12d) are equivalent to

$$
\begin{align*}
& a \frac{\partial \Phi}{\partial x^{1}}=-e^{x^{1} y^{1}+y^{2}} \frac{\partial \alpha}{\partial x^{2}}, \tag{12b}\\
& a \frac{\partial \Phi}{\partial y^{1}}=e^{x^{1} y^{1}+y^{2}} \frac{\partial \beta}{\partial x^{2}} . \tag{12~d}
\end{align*}
$$

In view of (12b) and (12d), the solutions ξ^{2} and η^{2} of (12a) and (12c) are given respectively by

$$
\begin{aligned}
& a \xi^{2}=\gamma\left(\frac{\partial \alpha}{\partial y^{2}} \frac{\partial \Phi}{\partial y^{1}}+\frac{\partial \beta}{\partial y^{2}} \frac{\partial \Phi}{\partial x^{1}}\right)+x^{1} e^{x^{1} y^{1}+y^{2}} \frac{\partial \alpha}{\partial y^{2}}=e^{x^{1} y^{1}+y^{2}}\left(x^{1} \frac{\partial \alpha}{\partial y^{2}}-\gamma\right), \\
& -a \eta^{2}=\gamma\left(\frac{\partial \alpha}{\partial x^{2}} \frac{\partial \Phi}{\partial y^{1}}+\frac{\partial \beta}{\partial x^{2}} \frac{\partial \Phi}{\partial x^{1}}\right)+x^{1} e^{x^{1} y^{1}+y^{2}} \frac{\partial \alpha}{\partial x^{2}}=x^{1} e^{x^{1} y^{1}+y^{2}} \frac{\partial \alpha}{\partial x^{2}} .
\end{aligned}
$$

Consequently Ξ is determined as

$$
\Xi=\frac{\partial \Phi}{\partial y^{1}} \frac{\partial}{\partial x^{1}}+a^{-1} e^{x^{1} y^{1}+y^{2}}\left(x^{1} \frac{\partial \alpha}{\partial y^{2}}-\gamma\right) \frac{\partial}{\partial x^{2}}-\frac{\partial \Phi}{\partial x^{1}} \frac{\partial}{\partial y^{1}}-a^{-1} x^{1} e^{x^{1} y^{1}+y^{2}} \frac{\partial \alpha}{\partial x^{2}} \frac{\partial}{\partial y^{2}},
$$

in which the coefficient of $\partial / \partial y^{2}$ is replaced by $(12 \mathrm{~b})^{\prime}$ with $x^{1} \partial \Phi / \partial x^{1}$ to see $\Xi(\omega)=$ $d \Phi$. Therefore, by putting

$$
X_{f}=\xi_{f}^{1}(x, y) \frac{\partial}{\partial x^{1}}+\xi_{f}^{2}(x, y) \frac{\partial}{\partial x^{2}}+\eta_{f}^{1}(x, y) \frac{\partial}{\partial y^{1}}+\eta_{f}^{2}(x, y) \frac{\partial}{\partial y^{2}},
$$

ξ_{f}^{1} and η_{f}^{1} are determined by (9) respectively as $\xi_{f}^{1}=f \partial \Phi / \partial y^{1}$ and $\eta_{f}^{1}=-f \partial \Phi / \partial x^{1}$. Accordingly X_{f} is of the form

$$
X_{f}=f \frac{\partial \Phi}{\partial y^{1}} \frac{\partial}{\partial x^{1}}+\xi_{f}^{2} \frac{\partial}{\partial x^{2}}-f \frac{\partial \Phi}{\partial x^{1}} \frac{\partial}{\partial y^{1}}+\eta_{f}^{2} \frac{\partial}{\partial y^{2}} .
$$

So, similary as (10), $\left.X_{f}\right\rfloor \Theta$ is written in coordinate. And then, in the result, (12b) and (12d) is used to derive

$$
\begin{aligned}
\left.X_{f}\right\rfloor \Theta= & \left(\xi_{f}^{2} \frac{\partial \alpha}{\partial x^{2}}+\eta_{f}^{2} \frac{\partial \alpha}{\partial y^{2}}-f \frac{\partial \Phi}{\partial x^{1}} \gamma\right) d x^{1}-f\left(\frac{\partial \Phi}{\partial y^{1}} \frac{\partial \alpha}{\partial x^{2}}+\frac{\partial \Phi}{\partial x^{1}} \frac{\partial \beta}{\partial x^{2}}\right) d x^{2} \\
& -\left(\xi_{f}^{2} \frac{\partial \beta}{\partial x^{2}}+\eta_{f}^{2} \frac{\partial \beta}{\partial y^{2}}+f \frac{\partial \Phi}{\partial y^{1}} \gamma\right) d y^{1}-f\left(\frac{\partial \Phi}{\partial y^{1}} \frac{\partial \alpha}{\partial y^{2}}+\frac{\partial \Phi}{\partial x^{1}} \frac{\partial \beta}{\partial y^{2}}\right) d y^{2} \\
= & \left(\xi_{f}^{2} \frac{\partial \alpha}{\partial x^{2}}+\eta_{f}^{2} \frac{\partial \alpha}{\partial y^{2}}-f \frac{\partial \Phi}{\partial x^{1}} \gamma\right) d x^{1} \\
& -\left(\xi_{f}^{2} \frac{\partial \beta}{\partial x^{2}}+\eta_{f}^{2} \frac{\partial \beta}{\partial y^{2}}+f \frac{\partial \Phi}{\partial y^{1}} \gamma\right) d y^{1}+e^{x^{1} y^{1}+y^{2}} f d y^{2},
\end{aligned}
$$

where $\gamma=\partial \alpha / \partial y^{1}+\partial \beta / \partial x^{1}-y^{1} \beta$. Consequently (4) gives in coorinates the system of equations

$$
\begin{aligned}
& \frac{\partial \alpha}{\partial x^{2}} \xi_{f}^{2}+\frac{\partial \alpha}{\partial y^{2}} \eta_{f}^{2}=f \frac{\partial \Phi}{\partial x^{1}}\left(\frac{\partial \alpha}{\partial y^{1}}+\frac{\partial \beta}{\partial x^{1}}-y^{1} \beta\right)+e^{x^{1} y^{1}+y^{2}} \frac{\partial f}{\partial x^{1}} \\
& \frac{\partial \beta}{\partial x^{2}} \xi_{f}^{2}+\frac{\partial \beta}{\partial y^{2}} \eta_{f}^{2}=-f \frac{\partial \Phi}{\partial y^{1}}\left(\frac{\partial \alpha}{\partial y^{1}}+\frac{\partial \beta}{\partial x^{1}}-y^{1} \beta\right)-e^{x^{1} y^{1}+y^{2}}\left(\frac{\partial f}{\partial y^{1}}+x^{1} f\right)
\end{aligned}
$$

and $\partial f / \partial x^{2}=\partial f / \partial y^{2}=0$. Hence ξ_{f}^{2} and η_{f}^{2} are determined uniquely by the above equations, while $f=f\left(x^{1}, y^{1}\right)$. Thus \mathfrak{R}_{Ξ} is determined also as (11), on which the product $\{f, g\}$ of (5) is written as

$$
\begin{equation*}
\{f, g\}=f\left(\frac{\partial g}{\partial x^{1}} \frac{\partial \Phi}{\partial y^{1}}-\frac{\partial g}{\partial y^{1}} \frac{\partial \Phi}{\partial x^{1}}\right)-g\left(\frac{\partial f}{\partial x^{1}} \frac{\partial \Phi}{\partial y^{1}}-\frac{\partial f}{\partial y^{1}} \frac{\partial \Phi}{\partial x^{1}}\right) \tag{14}
\end{equation*}
$$

and, by $(12 \mathrm{~b})^{\prime}$ and $(12 \mathrm{~d})^{\prime}$, also as

$$
\begin{equation*}
\{f, g\}=a^{-1} e^{x^{1} y^{1}+y^{2}} \frac{\partial \beta}{\partial x^{2}}\left(f \frac{\partial g}{\partial x^{1}}-g \frac{\partial f}{\partial x^{1}}\right)+a^{-1} e^{x^{1} y^{1}+y^{2}} \frac{\partial \alpha}{\partial x^{2}}\left(f \frac{\partial g}{\partial y^{1}}-g \frac{\partial f}{\partial y^{1}}\right) \tag{14}
\end{equation*}
$$

which completes the Jacobi structure in the consideration. In conclusion, the following theorem is deduced (see [3], Theorem 2).

Theorem. Let Ω be a nonsingular and nonsemiclosed differential 2-form on 4dimensional differentiable manifold \mathfrak{M} satisfying (1), where ω is a differential 1-form whose existence is a matter of course. Then the nonvanishing Jacobi structure in the consideration exists if and only if Ω has the following appearance within a suitable local coordinate system:

$$
\begin{equation*}
\Omega=e^{-x^{1} y^{1}-y^{2}}\left(d \alpha \wedge d x^{1}-d \beta \wedge d y^{1}+y^{1} \beta d x^{1} \wedge d y^{1}\right) \tag{15}
\end{equation*}
$$

where $\alpha=\alpha(x, y)$ and $\beta=\beta(x, y)$ are arbitrary differentiable functions satisfying the nonsingularlity condition (7), and the relation (13) for some differentiable functions
$\Phi\left(x^{1}, y^{1}\right)$ and $\varphi\left(x^{1}, y^{1}\right)$. For the form Ω of (15), the Jacobi structure on \mathfrak{R}_{Ξ} of (11) is given by (14) or equivalently by (14)'.

References

[1] F. Fujiwara, T. Sakurai and F. Mimura, A complete class of nonsingular 2-form on 4-dimensional differentiable manifold, to appear.
[2] F. Guédira and A. Lichnerowicz, Géométrie des algébres de Lie locales de Kirillov, J. Math. Pures et Appl., 63 (1984), 407-484.
[3] A. Ikushima and F. Mimura, Lie algebra structures on a manifold with a couple of differential forms, to appear in Tensor, N. S., 60 (1998).
[4] H. C. Lee, A kind of even-dimensional differential geometry and its application to exterior calculus, Amer. Mth., 65 (1943), 433-438.
[5] P. Libermann, Sur le probleme d'equivalence de certains structures infinitesimales, Ann. Math. Pura Appl., 36 (1954), 27-120.
[6] A. Lichnerowicz, Les variétés de Jacobi et leurs algébres de Lie associées, J. Math. Pures et Appl., 57 (1978), 453-488.
[7] F. Mimura and Nôno, A generalized Poisson algebra on a manifold I, A geometric formulation with non-degenerate 2 -form, Tensor, N. S., 55 (1994), 54-58.
[8] A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields, Indag. Math., 17 (1955) 390-403.
[9] J. A. Schouten, Über differentialkomitanten zweier kontravarianter grossen, Proc. Kon. Ned. Akad. Wet. Amsterdam, 43 (1940), 449-452.

*Department of Information Science
Yomiuri Institute of Science and Engineering
Kokurakita, Kitakyushu, 802-0017, Japan
and
**Department of Mathematics
Kyushu Institute of Technology
Tobata, Kitakyushu, 804-8550, Japan

