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1. Introduction

   Noether theorem (Noether [11]) concerning with symmetries of the action integral
or its generalization (Bessel-Hagen [1]) with those up to divergence plays an effective role

for discovering conservation laws from the Lagrangian or the Hamiltonian structures of

considering problem.
    In contrast with Noether theorem, we built up a new operative procedure for
the derivation of conservation laws (Mimura and N6no [7]) and applied it to various
economic growth models (Mimura and N6no [8]; Mimura, Fujiwara and N6no [9],
[10]; Fujiwara, Mimura and N6no [3]-[6]) to discover new economic conservation laws
including non-Noether ones. Particularly in [3], the procedure was so reforrned as to

make an effective application to more general neoclassical optimal growth models.
And in (Fujiwara, Mimura and N6no [4]), by a reduction of the theorem 1 in [3],
the application was pursued to a one sector model of Ramsey type (Ramsey [12])
with a constant discount rate relative to a utility (welfare) of consumption, and
then the model was generalized in an external two-sector version with linear technol-
ogies. The growth process relative to the technologies were characterized by a matrix

of second order. By the reduced theorem, we found three types of conservation laws
according as the discriminant of the characteristic equation of the matrix is positive, zero

or negative. And in (Fujiwara, Mimura and N6no [5]), optimal paths were determined
completely through the three types of conservation laws, while the utility is assumed to

be of second order polynomial of consumptions.
    In this paper, also in (Fujiwara, Mimura and N6no [6]), more application of the
reduced theorem can be made to an external three-sector growth model with linear
technology. In 2, we first sketch the six types of triple conservation laws discovered in

[6]. In 3, through the conservation laws, optimal paths are determined completely for
finite horizon and then detailed for infinite horizon under a given utility of second order

polynomial of consumptions.
    For convenience, differentiability is assumed to be of sufficiently high order and the

summation convention is employed throughout.
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           2. Conservation laws in external three-sector growth model

   The external two-sector growth model of Ramsey type [4] can be extended to a
three-sector version. In [6], we have discussed the objective of society to maximize the

following integration (the social welfare functional) over a finite (OÅqTÅq oo) or an
infinite (T == oo) period of time:

(i) IoT e-pt u(ci, c2, c3)dt,

under constraints (external growth process with respect to the consumption cpt and the
capital-labour ratio xpt in pt-th (pt = 1,2,3) sector):

       ab pt = gi` (xi, x2, x3) - n,ptxV - cpt (n ,pt: const., nC` År O; pt, v = 1, 2, 3),

where U is a utility (welfare) function provided with the concavity (see, e.g., [13]), i.e.,

the successive principal minors Dk (k = 1,2,3) of Hessian matrix of U satisfy Di Åq O,

D2 ÅrO and

(2) D3 =det (o,O,2 oU, ,) Åqo,

and g" are assumed to be linear production technologies

                     gL` = ct5xV+fi" (eq", ,6pt: const.),

so that the growth process are written as

(3) abi` =aff, x"-c"+fi'` (a," = ct,pt, -nei: const.).

In the multiplier technique to the problem, the Lagrangian is given by (nu are the
multipliers):

                    L = e-P'U + 7tx,(](U - a,pt)cV + cpt - 6pt),

whose Euler-Lagrange equations consist of (3) and

(4a) iil,(oO.e,)-,O.L,-o: it,+ale,-o,

(4b) :l,(8,4,)-8,L,-o: e-p'g,g,,+n,,-o•

A conserved quantity (first integral) for the maximizing problem is a quantity =. of the

variables 7tLt,abpt,6pt,7tpt,Jx/i,cpt (Lt= 1,2,3) and t whose total time derivative vanishes

(=. = O: conservation law) on the optimal paths, i.e., on solutions to the relating Euler-

Lagrange equations (3), (4a) and (4b).
   When A = (a,pt) has real characteristic values Apt (/t = 1,2,3), set the linearly inde-

pendent vectors p, (pt = 1,2,3) in the following three cases (i), (ii) and (iii), respectively.
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    (i) The case of Apt 7i A, (pt 7E v): The characteristic vectors pi, p2 and p3 of A

with respective characteristic values 2i, A2 and A3.

    (ii) The case of Zi # A2 == A3 is devided into two subcases.

    (ii-1) rank(A-A2E)=1: The characteristic vector pi of A with characteristic
value Ai and linearly independent characteristic vectors p2 and p3 of A with charac-

teristic value A2.

    (ii-2) rank(A - A2E) = 2: The characteristic vectors pi and p2 of A with respec-
tive characterisitic values Ai and A2, and a vector p3 satisfying Ap3 =p2 +A2p3, i.e.,

(A -22E)p3 =p2. Such a vector p3L exists by rank(A- ).2E) =2.
    (iii) The case of A i Ai == A2 = Z3 is devided into two subcases with an assumption

that A is not a constant multiple of the identity E. Here remark that whenever A is a
constant multiple of E, there is no externality, i.e., each of three sectors behaves inde-

pendently of the others.
    (iii-1) rank(A-2E)=1: Linearly independent characteristic vectors pi and p2
with characteristic value A, and a vecter p3 satisfying Ap3 = p2 + Ap3, i.e., (A - AE)p3 =

P2•
    (iii-2) rank(A - ZE) = 2: The characteristic vecter pi with characteristic value A,

and vectors p2 and p3 satisfying Ap2 =pi + Ap2 and Ap3 =p2 + 2pi, i.e., (A - AE)p2 ==

pi and (A - AE)p3 =p2, respectively.
    In fact, the vectors p3 in (iii-1), p2 and p3 in (iii-2) exist by the respective condition

of the rank of the matrix A-AE.
    When A has real characteristic value Zi and complex characteristic values A Å} ie
(A, 0: real, 0 7L O), set the linearly independent vectors ppt (lt = 1,2,3) such that

    (iv) The characteristic vectors pi and p2 Å} ip3L (p2, p3: real) of A with respective

characteristic values Ai and 2 Å} iO.

    By virtue of the reduction (Theorem 2 in [4]) of (Theorem 1 in [3]), we have
obtained the following result (Theorem in [6]):

    In the max im iz ing prohlem of (1 ), let the consump tions cpt = gpt (x i , x2 , x3) - n,ptxV - ge

grow externally under the linear production technolo.qies gpt = ctg,xV+6pt. Then, in the
setting of (i), (ii-1), (ii-2), (iii-1), (iii-2) and (iv) according to the classifl'cation of the

 characteristic values of the matrij)c A = (ct,pt -n,"), there exist the following respective

 conserved quantities (5a)-(5f) in which U, =OU/Ocpt (pt = 1,2,3); while in (5d)-(5e), the

 matrix A is assumed not to be a constant multiple of E:

(sa) (1/Li)- e(Aioo-P)' e(A20o-p)' .(,,Oo-,), iPpp21 (Uuui) for ('),

(sb) (///L-l)- e(rtIP)' e(220ormp)' ,(,,Oorm,), l,ii (Uuul) for(n-i)7
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(s,) (ii) .,.,a2-p)t e(AisM22)t ?t g/ iil (:ti) for (ii-2),

(sd) G'-'Ei21)-e("Lp"(k!oOi) l;"21 (2) for(m-i),

        (ll-l) ,l,!\ ii,i (gi)

(sf) (/.---l-i)-e(A-p)' e(21TA't g.inO,zt, -go.O,s,t i,',l ([)l) for(iv)

                    3. Determination of optimal paths

   Since the matrix P= (pi p2 p3) is nonsingular, (5a)-(5f) lead respectively to

            Ul =.le(P-Ai)t
(6a) U2 == t.P-i =-2e(PTA2)' for (i),
            U3 =. 3e( X'- )L3)t

            Ul =.le(f'L2i)t
(6b) U2 =`P-i =-2e(P-22)' for (ii-1),
            U3 =.3e(P-A2)t

()

()

(g,i) .:.i,el•2].Alit

(Ui) (='i)

()

()

( ),

(6d) U2 =e(P-A)"P-' =.2 for (iii-1),
            U3 =.3-=.2t
            Ul =.I(6e) U2 =e(L'-A)'tP-i ='2-='it for (iii-2),

Ul =.le(A-Ai)t
U3 =.2 cos et - =.3 sin Ot
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Therefore, since det(OU,/acV) = D3 iE O by (2), the optimal path c(t) = t(e`(t) c2(t) ci(t))

is implicitly determined as c"(t) =F"(Wi(t),W2(t),W3(t)), where '(Wi(t) W2(t) W3(t)) iS

the right hand side of (6a)-(6f), respectively. And then cpt(t) = Fpt are substituted for

the growth process (3) to have the first order linear differential equations with respect to

xpa, i.e.,

where x= t(xi x2 x3), F= '(Fi F2 F3) and fi = `(6i 62 63). The general solution x

of the subsidiary equation rk = Ax of (3)' are give as a linear conbination of the inde-
pendent solutions qu with constant coefficients G#, i.e., x == Giqi + G2q2 + G3q3 = ÅqPG

where Åë == t(qi q2 Åë3) and G= `(Gi G2 G3). And then, after replacing the constants
GU with arbitrary functions GU(t), the solution x is substituted for (3)' to have the

equation ÅëG = -F+ll, i.e.,

                            G- -Åë-i(F - ll).

Thus the optimal path x(t) is implicitly determined as

(7) x(t) --{pf(p-' (F-ll)dt.

   To go into detail, let the utility function U(ci,c2,c3) be a second order polynomial

of consumptions of the form

(s) u(ci, c2, c3) = -S [(ci)2 + (c2)2 + (ci )2] - ctci c2 - 6c2c3 - 7c3ci (ct,6, 7: const);

where in view of

                     (,iig,,)-(:-l :-:, i-i)-M,

the constants ct, 6 and 7 are assumed for the concavity to satisfy

     -1 -ct      -ct -1 =1- ct2 År o,D2 =

D3 ==
-1 -ct -7
-. -1 -6
-7 -6 -1

=-1-2ct67+ct2+fi2+72Åqo,

while Di = -1 Åq O. Then the explicit appearances of (7) can be determined as follows.

    The case (i): By (6a), i.e.,
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                                     =' 1e(P-Ai )t
                        Mc(t) = tP"1 =. 2e(P-A2)t ,

                                     =' 3e(P-Z3 )t

the optimal path c(t) =F(t) leads to

                                      =' 1e(PmZi )t

(9) c(t)=MualtPTI =.2e(p-A2)t ,
                                      =' 3e(P-A3 )t

where =.pt (ps = 1,2,3) are some constants, while

                               1-62 67 - ct ct6 -7
                           1                    M-l-                        - D3 67 - ct 1- 72 7ct -6
                              ct6 -7 7ct -6 1- .2

Accordingly, after substituting the solution ÅqZ} in the case (i) for gb-i(F-fi), by putting

(io) -prm'M-' 'p-i = (il Ei 2)• p-'ll = (ii )'

it follows that

               al =. 1e(P-2"Zi)t + b1 =. 2e(P-Ai mA2)t + cl =. 3e(P-Ar r23)t + Kl eT?-it

ÅqP-1(F - jB) = - a2=. Ie(PrmZ]-2?)t + b2=.2e(P-2A2)t + c2=.3e(P-A2-Z3)t + K;2eLZ2t

               a3 =. 1e(Pnv )bi-A3)t + b3 =. 2e(P-A2-)'3)t + c3 =. 3e(Prm2A-3 )' + K3e-Z3t

The above appearance of Åërmi(F - fi) can be integrated immediately, where p (p ) O) is

assumed that p 7E Apt +A, (,et,v= 1,2,3), i.e., p 7E 21i, p 4i 2A2, p 7e 2Z3, p 7! 2i +A2,

p 7E 12 + A3 and p # 13 + Zi (the integration can be made also when p == Zpt + 1,
(pt,v= 1,2,3)). Therefore, the optimal path x(t) of (7) is determined completely as

(11) x(t)-P

pa-/  tSl, i e(/J-Ai)t +p -bfi7-'l z2 e(pmuA2)t +p -Ci7-'l A3 e(p-n3)t + b'ieAit - lfli-i

]o -a iiF'l: z2 e(PrmAi)` +pb:t'22A2 e(p-Z2)' +p -Cl/71 2.3 e(p-A3)' + b'2e?L2' - liSt

p .a i3 ;'":"i! A3 e(PLAi)' +p -b23./7ii z3 e(p7?L2)t +pCit'iz3 e(p-A3)t + (s3eZ3t - :. I'

7

where of (pt =1,2,3) are some constants.
    Similarly, for the cases (ii-1), (ii-2), (iii-1), (iii-2) or (iv), the optimal paths can be

determined by (6b), (6c), (6d), (6e) or (6f) respectively.
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   The case (ii-1):

                      =' 1 e(P-Ai )t
(12) c( t) = M-1 'P-1 =. 2e(prA2 )t ,

                      sE'73e(P-A2)t

(13) x(t) == P

  al =' 1. e(p-Ai)t + bl ='2 + Cl =' 3 e(p-A2)t + ileAit - {gL/

 p-2ni p-Zi-A2 Zi  al =' 1 . e(p-P.i)t + b2 =' 2 + C2 =' 3 e(pNA2)t + b'2ePL2t - t!ILt

p- rt1-rt2 p- 2Z2 Z2
p -a 23.7-'l ).2 e(p-Ai)t + b3/7 2-+2f3i"3 e(p-A2)t + 63eA2t - liSt

;

where iu (pt = 1, 2, 3) are some constants, while p 7E Ai + 1i- (i, 1' = 1, 2).

   The case (ii-2):

                       =. 1 c)/ (P-A, )t

(14) c( t) =M-l tP-1 =. 2e(PT)v2)t ,
                    (='2 - ='3t)e(P-A2)t

(15) x(t) -P

    Aiie(PMA')' + (Ai2 - Ai3t)e(P-A2)t +6ie;"i' - l:/-

A2ie(P-Ai)`  + (A22 - A23t)e(P-A2)t + (i2 + i3t)eA2' - litt + lil/i

    A3ie(P-Zi)t + (A32 - A33t)e(PTA2)' + 63ei2' - lilti

;

where 6pt (pt :1,2,3) are some constants and Apt, (pt,v== 1,2,3) are the constants of the

following forrn with the constants =.i, =.2 and =.3, while io 7E Ai+af (i,j-- 1,2):

               al         All=                   ='1,
             p- 2Ai

         Ai2 =p(21zl l'lh ='2+ (p - lii- 22)2 =' 3'

                 Cl         Al3 =                      ='3,
             p-Al-Z2
         A21 = (p - A"12 ne A2 + (p - A\3- A2)2) =' 1'

         A,, ,., (pb2r+2f22 + (pbillACi),) =.2 + ((p -CgA,), + (p -2Ci,)3) =.3,
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         A23 == (p -C22z2 + (p -CgA2)2) ='3'

                 a3         A31 ==                       ='1,
              p-Zl-A2

              b3+c3- c3         A32 =p- 222 "Z2+ (p - 2A2)2 ='3'

                C3         A33 =                    ='3-
              p- 212
   The case (iii-1):

(16) c(t) = e(p-2)tM-i 'PTi ( =.3 /'-"" l=.2t),

(17) x(t) -P

     (Bii - Bi2t)e(PmA)t +iieAt - {ii/

(B2i - B22t)e(P-A)t + (i2 + 63t)eA' + lii/ - tlitL

     (B3i - B32t)e(PneZ)t + i3eZt - {tL

                 y

;

where ii, (pt = 1,2,3) are some constants and Bi- (i = 1,2,3v' = 1,2) are the constants

of the following form with the constants =.i, =.2 and =-3, while pl21,:

       B'i =p llli2A =' i + (p 2'2z + (p -C'2ne)2) ='2+,o E'2A ='3'

              Cl       B12 =                 ='2,
            p-2A
       B,, = (p :l22A + (p -a32A),) =- , + (p 222A + (lb,, 3-+2f2), + (p 2Cgl),) =-,

            + (p !22z + (p -C321)2) ='3'

               C3       B22 =                  2='2,
            (p - 2A)

       B3i =p Sl32A ='i + (p 232a + (p -C321)2) ='2+p E32A ='3,

       B32= C3 =.2.
            p-2A
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  The case (iii-2):

(18) c( t) = e(P-Z)tM-i tPrl ='2- =' lt ,

(19) x(t)-P

     (=.,-=./7,i.s=.,,2)

(C- - Ci2t+ Ci3t2)e(/'-A)' + ((Si + (S2t+ ll(IS3t2)e7'` - {l/ + lil/ - lil-1

   (C2i - C22t+ C23t2)e(P-Z)' + (6i2 + (53t)eAt - EitL + l3/

      (C31 - C32t + C33t2)e(P-A)` + (53eAt . :tL

;

where 6i, (pt = 1,2,3) are some constants and C/,, (pt,v= 1,2,3) are the constants of the

following form with the constants =.i, =-2 and =.3, while p iE 2A:

   c, , - (p lli2A + (pa2-+2bzi), + a3(i; 2b22Aiil,Ci + iiibilllllf)2,) + (p lilCiA),) =- ,

      + (p 2i2A + (pb2-+2f32 + (bp3 -+222C)23 + (p iC;A)4) ='2

      + (p E'i2z + (p mC22z)2 + (p -C32A)3) ='3'

   c,, = (2(pa2-+29i) + (ph2-+2f3, + (bp3 -+22zC)2, + (p iCgA),) =-i

      + (2 (pb2.+22C.i) + (p -C22A)2+ (p -C32A)3) ='2 +p 2-C22A ='3'

   c,, - S (p Ei2A + (p -C22A), + (p -C32A),) =- i,

   c,, = (p g22A + (pa3-+2ba2),+ (2pbt3 +2AC)2, + (p iCgz),) =-,

      + (p 222A + (pb3.+2f2)2+ (p 2Cg2)3) ='2+ (p E222 + (p -C322)2) ='3'



10 Fumiyo FuJiwARA, Fumitake MiMuRA and Takayuki N6No

 C22 = ("p3 m+2b22 + (pb3-+2f2)2+ (p iCSA)3) ='i + (bp3-+2CA2 + (p -C32z)2) ='2+p E32A ='3'

 C23 = -5 (p E222 + (p -C32z)2) ='i'

 C3i = (p g32z+ (p -b32A)2+ (p -C32;.)3) ='i + (p 232A+ (p -C321z)2) ='2+p E321 ='3'

 C32 = (p 232z+ (p -C32A)2) ='i +,, E32z ='2,

         C3 C33 =             ='1•      2(p - 2A)

   The case (iv):

                           =' 1e(P-Ai)t
(2o) c(t) = MNi'P-i (=.2 sin 0t+ :.3 cos et)e(Pm;`)'

                    (='2 cos et - =.3 sin 0t)e(p-A)t

                             p- 21i

'

                                al =. le(p-2Ai)t + il

(21) X( t) = "PR (Bi sin2 ot + B2 sin 0t cos 0t + B3 cos2 0t + B4)e(PT2A)' + i2

                (Ci sin2 0t + C2 sin 0t cos 0t + C3 cos2 0t + C4)e(P-2A)t + b'3

                (Ai sin 0t + A2 cos 0t)e(P-Z)' - lii/-

           +P Bse(p-Zi)t+B6
                       Cse(P-)`i)` + C6

where R is the matrix:

;

                         e.Ait o O
                    R= 0 eAt cos Ot eZt sin Ot 7
                          O -ePL` sin Ot e2' cos Ot

and moreover of (u = 1, 2, 3) are some constants and Ai, Bi•, Cf (i = 1, 2; 1' = 1, 2, . . . , 6)

are the constants of the following form with the constants =.i, ='2 and ='3, while p 7G 2A

and pl 2Zi:
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          (p - A - Ai)(bi ---2 - ci =- 3) + 0(bi =- 3 + ci =- 2)

      Ai= (p-1-Ai)2+02 '
      A, - (P -A- Ai)(1)'t2 A+ntb itr, i,) i Zgbi='2 - Ci =' 3) ,

          (p - 22)(c3 =-3 - h3 =- 2) + e[(h2 - e3)='2 - (b3 + c2)=' 3]

      Bi= (p.2A)2+402 '
          (p - 2A)[(b2 - c3)=-2 - (b3 + c2)=- 3] + 20[(b2 - c3)=-3 + (b3 + c2)=- 2]

      B, = (P - 2A)(C2='2 + b27-i'p3 )--2201 (,bl -4eC,3)='2 - (b3 + C2)=' 3] ,

           402/(p - 2A)
      B4 ==
          (p - 2A)2 + 4o2 '

          (p - 2 - Zi )a2 =. i + 0a3=' 1
      B5 = (p -A- Ai )2+02 '

          K30 - K2Z
      B6= A2+o2 ,

           (p - 2A)(b2=-2 - c2=-3) + e[(b3 + c2)='2 + (b2 - c3)=' 3]

      Ci= (p-2A)2+4e2 '
           (p - 21)[(b3 + c2)='2 + (b2 - c3)=' 3] + 20[(c3 - b2)='2 + (b3 + e2)=' 3]

           (p - 22)(c3 =.2 +b3L =' 3) - e[(b3 + c2)='2 + (b2 - c3)=' 3]

      C3= (p-2A)2+402 '
            402/(,o - 2A)
      C4=           (,o - 2A)2 + 4o2 '

           (p -A - 21 )a3 =. 1 - 0a2 =' i
      C5 = (p -2- A, )2+e2 '

            K3A + K;20
      C6 =- z2 + e2 '

   THEoREM 1. In the maximizing problem of (1), let the utility function U(ci,c2,c3)
with the concavity be given as (8) and the consumptions cpt =gpt(xi,x2,x3)-ne`xV-abpt

grow externally under the linear production technologies gpt = ct,ptxV+6". Then, in the
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case offinite horizon T Åq oo, the optimalpaths c(t) and x(t) are determined completely as

(9) and (11) in the case (i) with p 7L A, +Z, (lt,v== 1,2,3); as (12) and (13) in the case

(ii-1) with p 7E Ai + 2,• (i, 1' = 1, 2); as (1 4) and (1 5) in the case (ii-2) with p 7E Ai + 2,i

(i,1' = 1,2); as (16) and (17) in the case (iii-1) with p 7E 2A; as (18) and (19) in the case

(iii-2) with p iE 2Z; as (20) and (21) in the case (iv) yvith p 7i 2A and p iL 21i.

    REMARK. The interested reader will find the optimal paths when p takes the
exceptional values in the theorem 1.

    The case (i): To look the case of infinite horizon T= Go, the relation (4b):
zu=-emP`Upt are written by (6a) as

(ii)--tP7i1"H-l,liill,

'

and then used, together with (11), for the transversality condition limt-,. zptxU = O. In

view of the resulting appearance of zptxpt:

 zptxpt = -patt'22hi e(p-2A])t - pbit'222rt.2 e(pn2A2)t - pCi t'2i3 e(p-2rt3)t

        - (ap2 -+ zbi /=' ili'iZ2 e(p-Ai -z2)t - (b,o3 -+ 2Ci )tli lif"-'3 e(pm;L?-A3)t - (C]o/ -+ Aai3 )tlliil i!ii'l3 e(p-2i-A3)t

            " - r-"       + Kall 1 e-Ait + K2i" 2 e-A2' + K3z-3" 3 e-A3' - (6il =' 1 + (52 =' 2 + (S3 =' 3),

we can find the optimal paths satisfying the transversality condition. For example, let
O Åq 22i s{ p Åq 2A2 and O Åq 2Ai f{{ p Åq 2Z3. Then limt-. n.x/i = O requires =. i == O in
the coefficient of e(Pm 2Ai )'; so that i2 =. 2 + j3 =. 3 = O. There fo re, by putting =' i == O,

i2 =O and i3 = O, the optimal paths (9) and (11) take the forms respectively:

(g)'  e(t)-M-''p-i
(/:.II"is,`9pl.A:j,`)•

(1 1)' x(t) == P

p -b ilF'l 22 e(p-2)' +p -CliH:'l z3 e(pmA3)` + eiieAi` - {l/

      b2='2 e(p-Jv2)t+ C2='3 e(P-Z3)'-tSLt

     p- 2Z2 p- A2 -A3 Z2
       b3 =' 2 e(pne A2 )t + C3 =' 3 e(p-Z3 )t - {EILt

     p- Z2 -A3 p- 2Z3 23
    Similarly, we can have the optimal paths satisfying the transversality condition for
the case (ii-1), (ii-2), (iii-1), (iii-2) and (iv).
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   The case (ii-1): By (6b) and (13), n,,xpt is written as

         nptxU == -palt'iAi e(p-2Ai)' - b2=' 22 + C3=';2 ff+ ibz23 + C2)='2=' 3 e(p-2A2)t

               - (a2 + bl)=' 1='2 + (Cl + a3)=' 1='3 e(p-).i-A2)t

                        p-Ai-A2

                   ---               + Kl-"1 1 e-Zi` + K2":2 A+2 K3`:3 e-A2' - ((Sl=' 1 + i2='2 + (S3=' 3)7

in which, let OÅq2Ai f{;pÅq2Z2. Then limt-. nptxpt=O requires =.i=O in the co-
efllcient of e(Pr2Ai)`; so that 62=.2+j3=.3 == O. Therefore, by putting ='i =O, 62 =O and

63 = O, the optimal paths (12) and (13) take the forms respectively:

(i2)'
 c(t) =: M-' tp-i (E:f zz[9,Il;il);

(13)' x(t) =P

bl =' 2 + Cl =' 3 e(p-A2)' + (51eAi' - EL/

p-Al-A2 Al   h2=' 2 + C2=' 3 e(p-A2)t - {ELt

     p- 222 A2
   b3=' 2 + C3=' 3 e(p-A2)t - tELt

     p- 2A2 Z2
   The case (ii-2): By (6c) and (15), n,xi` is written as

7tpt)cL` = -[Aii=' i + (A2i + A3i)=.2 - A3i =.3t]e(P-2)Li)'

      - [A12=' 1 + (A22 + A32)='2 + (A13=' i + (A23 + A33)='2 -A32=' 3- )t - A33=.3t2]e(P-2A2)`

      + Klitti e-A't + [ (iC2 i K3 - lil/) =' 2 - K3ii' 3 t] e-A2t

      - (i3=. 2 - 63 =- 3)t - 61 =. 1 - (62 + i3)=. 2.

So, let O Åq p Åq 2Ai and O Åq p Åq 2A2. Then limt- oo nptxpt = O requires i3 =' 2 - j3 =' 3 = O

and 6i =- i + (62 + j3)=.2 == O. Therefore, by putting 6i = O, =.2 = O and =-3 = O, the

optimal paths (14) and (15) take the forms respectively:

(14)'
 ,(t) =M-i ,pmi (=' ie(sP-Ai)'),
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(15)' )c(t) -P

        Aiie(p-Ai)t - lg!/-

                 11
A2ie(P-Ai)'  + (6i2 + (S3t)e?"2' - litt + :l/i

    A31e(P-Zi)t + 63eA2t - !!Lt

                    Z2

;

where Aii, A2i and A3i are the constants given before, while in which =.2 and =.3 are
placed as =.2 = =. 3 = O.

   The case (iii-1): By (6d) and (17), z,xpt is written as

nptX"  = -[Bii=' i + B2i='2 + B3i='3 + (Bi2=' i + (B22 - B3i)='2 + B32=' 3)t- B32=.2t2]e(P72A)t

        1      + IKI =' 1 + (K2 - K3)='2 + K3 =' 3 - K3 ='2t] e-2' - (il =' 1 + j2 =.2 + i3 =. 3),

in which, let O Åq p Åq 2A. Then limt- oo zptxpt = O requires ii =' i + i2 ='2 + i3 =' 3 = 0•

Therefore, by putting ii = O, =.2 == O and =.3 = O, the optimal paths (16) and (17) take

the forms respectively:

                             =' 1e(P'-A)t

(16)' c(t)=M-' `p-i o ,
                                o

(17)' x(t) -P

Biie(Pu2)t - EL/

         z
B2ie(PLZ)'  + (62 + i3t)e12t + lii/ - :tL

B3ie(P7A)` + (S3eke - \t

l

where Bii, B2i and B3i are the constants given before, while in which =.2 and =.3 are

placed as =.2=: =.3=O.
    The case (iii-2): By (6e) and (19), n,xpt is written as

nptx" = -[=' i(Cii + Ci2t+ Ci3t2) + (=-2 - =. it)(C2i + C22t+ C23t2)

      + (g =' 1t2 - =.2t+ =.3) (C31 + c32t+ c33t2)]e(p-2A)t

      - [(- Zi' + liii/ - IIill') =' i + (- Z'iL + l3/)(='2 - =' it) - \' G=' it2 - ='2t+ =' 3)]e-A`

      - (61 =. 1 + i2 ='2 + i3 =' 3),

in which, let O Åq p Åq 2Z. Then limtsu. ec npt x" = O requires ii =' i + i2 ='2 + i3 =' 3 = O.

Therefore, by putting ='i == O, i2 == O and 63 == O, the optimal paths (18) and (19) take

the forms respectively:
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(is)t

 c(t) .= e(p-2)tM-i `P-i ( =.,tr02=.,t),

(19)' x(t) -P

(Cii + Ci2t)e(P-A)' + eiieAt - {ii/ + X/ - l.il}it

    (c2i + c22t)e(p-i)t - li.ii2 + li.l}g

      (C3i + C32t)e(p-A)t - tl'i!3

;

where Ci• (i = 1, 2, 3; ,7' = 1, 2) are the constants given be fo re, while in which =. i is

placed as ='i == O.

   The case (iv): By (6f) and (21), n,xpt is written as

 7tLtjx;pt = -p g12Al =.ie(P"21i)t - [(Bl=.3 + cl=.2) sin2 ot

       + (B2 =' 3 + C2 =' 2) sin 0t cos 0t + (B3 =' 3 + C3 =' 2) cos2 0t + B4 =. 3 + C4 =. 2]e(P-2A)'

       - [(Ai=' i + Bs='2 - Cs =' 3) sin 0t + (A2=' i + Cs ='2 + Bs=.3) cos 0t]e(P-A-2i)t

       +Kt7i i e-Ai'- [(B6=-2- C6=-3) sin et+(C6=-2+ B6=.3) cos 0t]e-A`

       - (ti1 =. 1 + 63 =. 2 + i2 =. 3),

in which, let O Åq p Åq 2Ai and O Åq p Åq 21. Then limt- oo zp,xpt = O requires ji =' i +

j3='2+62='3=O. Therefore, by putting ='i == O, 62 ==O and i3 =O, the optimal paths

(20) and (21) take the forms respectively:

                   /oN(2o)' c(t) == M-i `pri t(=-2 sin 0t+ =.3 cos 0t)e(P-2)tJ,

                   X(='2 cos et - =.3 sin 0t)e(p-A)t/

(21)' x(t) = PR t (Bi sin2 0t+ B2 sin et cos 0t+ B3 cos2 et+ B4)e(P-2A)`1

               X(Ci sin2 et + C2 sin 0t cos et + C3 cos2 0t + c4)e(pL22)t/

+P

(Ai sin 0t + A2 cos 0t)e(P`A)' +6ieAi` - lii/-

B6

C6

;

where Ai, B]J and C]• (i= 1,2;1' = 1,2,3,4,6) are the constants given before, while in

which =.i is placed as ='i=O.
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    THEoREM 2. In the case of inLfinite horizon T= oo, there exist thefaasible optimal
paths (9)' and (11)' vvith OÅq 2Ai s{ pÅq2min(2.2,A3) for the case (i); (12)' and (13)' with

OÅq 21i :E{;pÅq 2A2 for the case (ii-1); (14)' and (15)' with OÅqpÅq2min(2i,Z2) for the
case (ii-2); (16)' and (17)' with OÅqpÅq 2Z for the case (iii-1); (18)' and (19)' yvith OÅq

pÅq2Z for the case (iii-2); (20)' and (21)' with OÅqpÅq2min().,Ai) for the case (iv).

Paticularly, let O Åq 21i f{ p Åq min(A2,23) and ii = O in the determined optimal paths c(t)

and x(t) for the case (i); OÅq 2Ai spÅq Z2 and ii =O in those for the case (ii-1); OÅq
p Åq min(1i, 2A2) and 62 = i3 = O in those for the case (ii-2),' O Åq p Åq A and i2 = i3 = O in

those fbr the case (iii-1); OÅqpÅqA and ii =O in those .for the cases (iii-2) and (iv).

Then, as t- oo, the optimal paths c(t) and x(t) converge to zero and some constant
vectors, respectively

   The feasible optimal path x(t) of (21)' goes into details with ii == O. In view of the

identities B3 -Bi = C2 and Ci - C3 == B2, since

r Bl sin2 0t + B2 sin et cos 0t + B3 cos2 0t + B4 X

kCi sin2 0t+ C2 sin 0t cos et+ C3 cos2 0t+ C47

-g(2ii2i, 22,)(g9.S,2g,')+
Bl + B3

  2
Cl + C3

+ B4

2 +C4

                                            Bl + B3
                =g(-BC,2 Bc2,)(g9nS;eOj)' ciic3:B.`,

the appearance of (21)' can be arranged as

(22)

'

yi = (Ai sin et+A2 cos 0t)e(p-J•)`

(go,:,0j -s.':S',)(;i)-Se(p-A)t[(-SI 22,)(ggs,2S,t)+(z)])

where n2 = Bi + B3 + 2B4, n3 =: Ci + C3 +2C4 and the vector y(t) = t(yi y2 y3) is
given by

(23) y(t)-P-'x(t)-
-EL,

 21
 B6

 C6

The constants B2 and C2 are written in the matrix form
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                             c, ) -A( S.i, ),                           (B2 '-'

where the matrix

A=
(,-2zl2+4o2(:;:;llE2i;:,31t;ZE2it:l I,`P--2iA)lb`g3-'.f,i'.'270(292.-,1's')

has the determinant

          [(p - 2A)(b, - c3) + 20(b3 + c,)]2 + [(p - 2Z)(b, + c,) - 20(b2 - c3)]2

     lzdl= [(p-2A)2+402]2 '
which vanishes if and only if

{:;:;ll(,2?,;:it;Z$;t:l:.8: i•e•• (pJ,22,20,,)(2g;sg)-o

Therefore, since 0 7i O, i.e.,

                    PJiA p202z -(p-2i)2+4e2io,

the determinant IAI vanishes if and only if b2 - c3 ==O and b3 + c2 = O. So, assuming

b2 - c3 iO or b3 + c2 #, choose the constants =.2 and =.3 such that '(=.2 =. 3) ; 0.

Then t(B2 C2) iL0 so that

(24) -k Bci -Bg+c,2 ,tEo.
Therefore, the vector `(cos 2et sin 2et) in (22) is written as

    (gO,.S,2,0,')-.ii.seT(p-A)t(.C,2 MB.,2)(gO,.S,ej -g.'",e,i)(:IIi)"(2),

where fi (i=2,3) are the following constants, respectively:

                     (Bi + B3 + 2B4)C2 - (Ci + C3 +2C4)B2
                 f2 == Bg+C,2 '
                     (Bi + B3 + 2B4)B2 + (Ci + C3 +2C4)C2
                 f3- B,2+C,2 '
which can be put as !2 =f3 =O by a suitable choice of B4 and C4 (this fact is
guaranteed by (24)). Thus, the identity cos22et+sin220t=1 yields the equation of

the spiral
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(25) (y2)2+(y3)2 .. B22  +4 C22
 ,2(p-)t

In conclusion, we have the following result.

     THEoREM 3. Let apt, bpt and cpt (pt == 1,2,3) in the matrix in (10) satisfv b2-c3 #O

or b3 +c2 l O. Then, for (iv) in the case of inLfinite horizon T == oo, thefeasible optimal
path x(t) of theform (21)' with bhi =O is tranbformed hy (23), undera suitable choice of

the constants B4 and C4, to y(t) = '(yi y2 y3) in which y2 and y3 satisfy the equation of

the spiral (25).
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