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1. Introduction

Noether theorem (Noether [11]) concerning with symmetries of the action integral
or its generalization (Bessel-Hagen [1]) with those up to divergence plays an effective role
for discovering conservation laws from the Lagrangian or the Hamiltonian structures of
considering problem.

In contrast with Noether theorem, we built up a new operative procedure for
the derivation of conservation laws (Mimura and No6no [7]) and applied it to various
economic growth models (Mimura and Néno [8]; Mimura, Fujiwara and Noéno [9],
[10); Fujiwara, Mimura and Néno [3]-[6]) to discover new economic conservation laws
including non-Noether ones. Particularly in [3], the procedure was so reformed as to
make an effective application to more general neoclassical optimal growth models.
And in (Fujiwara, Mimura and Néno [4]), by a reduction of the theorem 1 in [3],
the application was pursued to a one sector model of Ramsey type (Ramsey [12])
with a constant discount rate relative to a utility (welfare) of consumption, and
then the model was generalized in an external two-sector version with linear technol-
ogies. The growth process relative to the technologies were characterized by a matrix
of second order. By the reduced theorem, we found three types of conservation laws
according as the discriminant of the characteristic equation of the matrix is positive, zero
or negative. And in (Fujiwara, Mimura and Nono [5]), optimal paths were determined
completely through the three types of conservation laws, while the utility is assumed to
be of second order polynomial of consumptions.

In this paper, also in (Fujiwara, Mimura and Noéno [6]), more application of the
reduced theorem can be made to an external three-sector growth model with linear
technology. 1In 2, we first sketch the six types of triple conservation laws discovered in
[6]. In 3, through the conservation laws, optimal paths are determined completely for
finite horizon and then detailed for infinite horizon under a given utility of second order
polynomial of consumptions.

For convenience, differentiability is assumed to be of sufficiently high order and the
summation convention is employed throughout.
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2. Conservation laws in external three-sector growth model

The external two-sector growth model of Ramsey type [4] can be extended to a
three-sector version. In [6], we have discussed the objective of society to maximize the
following integration (the social welfare functional) over a finite (0 < 7 < o) or an
infinite (7 = o0) period of time:

T
(1) J e U (e, 2 ),
0

under constraints (external growth process with respect to the consumption ¢# and the
capital-labour ratio x* in u-th (1 =1,2,3) sector):

X = gh(x!, x? x%) - nix? —c# (nf: const., n¥ > 0; u,v=1,23),

where U is a utility (welfare) function provided with the concavity (see, e.g., [13]), i.e.,
the successive principal minors Dy (k =1,2,3) of Hessian matrix of U satisfy D; < 0,
D> > 0 and

U
(2) D3 = det <ac”ac‘"> < 0

and g” are assumed to be linear production technologies

gt = akx’ + g+ (o, p*: const.),
so that the growth process are written as
(3) Xt =alix’ —ct+ p# (al' = ot — n!: const.).

In the multiplier technique to the problem, the Lagrangian is given by (m, are the
multipliers):
L=e""U+m,(x* — al'x" + c* — p*),

whose Euler-Lagrange equations consist of (3) and

d (LN oL o
“ dt (ax#) Tow O Mt ame=0,

d (oL oL ou
4 — -— _ = N Pt = L.
(4) de (%”) dct 0 ¢ e T 0

A conserved quantity (first integral) for the maximizing problem is a quantity = of the
variables 7, x*, é* m,, x*, c¢# (p=1,2,3) and ¢ whose total time derivative vanishes
(£ = 0: conservation law) on the optimal paths, i.e., on solutions to the relating Euler-
Lagrange equations (3), (4a) and (4b).

When A4 = (af) has real characteristic values 4, (u=1,2,3), set the linearly inde-
pendent vectors p, (4 =1,2,3) in the following three cases (i), (ii) and (iii), respectively.
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(i) The case of 4, # 4, (u#v): The characteristic vectors py, p, and p; of 4
with respective characteristic values 4;, 4 and /3.

(i) The case of 4; # Ay = 43 is devided into two subcases.

(ii-1) rank(4 — A E) = 1: The characteristic vector p; of A with characteristic
value 1, and linearly independent characteristic vectors p, and p; of 4 with charac-
teristic value 4.

(ii-2) rank(A4 — A,E) =2: The characteristic vectors p; and p, of 4 with respec-
tive characterisitic values A; and 4, and a vector p; satisfying Ap; = p, + Aop;, le.,
(A — JE)py =p,. Such a vector p; exists by rank(4 — LE) =2.

(iii) The case of 1 = 4 = 4, = 43 is devided into two subcases with an assumption
that A is not a constant multiple of the identity E. Here remark that whenever A4 is a
constant multiple of E, there is no externality, i.e., each of three sectors behaves inde-
pendently of the others.

(iii-1) rank(4 — AE) = 1. Linearly independent characteristic vectors p; and p,
with characteristic value 4, and a vecter p, satisfying Ap; = p, + Ap;, ie., (A — AE)p; =
P>

(iii-2) rank(4 — AE) =2: The characteristic vecter p; with characteristic value 4,
and vectors p, and py satisfying Ap, = p, + Ap, and Ap; = p, + Ap;, ie., (A — LE)p, =
p, and (A — LE)p; = p,, respectively.

In fact, the vectors p, in (iii-1), p, and p, in (iii-2) exist by the respective condition
of the rank of the matrix 4 — AE.

When A4 has real characteristic value A; and complex characteristic values 4 + i0
(4, 0: real, 0 #0), set the linearly independent vectors p, (= 1,2,3) such that

(iv) The characteristic vectors p; and p, + ip; (p,, ps: real) of 4 with respective
characteristic values A; and A 4 i0.

By virtue of the reduction (Theorem 2 in [4]) of (Theorem 1 in [3]), we have
obtained the following result (Theorem in [6}):

In the maximizing problem of (1), let the consumptions c* = g#(x', x?,x%) — nf'x? — x#
grow externally under the linear production technologies g* = otx" + p*.  Then, in the
setting of (i), (ii-1), (ii-2), (iii-1), (ili-2) and (iv) according to the classification of the
characteristic values of the matrix A = (a —nt), there exist the following respective
conserved quantities (5a)—(5f) in which U, = dU/oc* (u=1,2,3); while in (5d)—(5e), the
matrix A is assumed not to be a constant multiple of E:

E elh=pt 0 0 'p, U

(5a) = | = 0 el 0 'py U, for (i),
=y 0 0 elB—p) ‘py Us
ch elh=nt 0 0 vl U,

(5b) = | = 0 el 0 ‘p, U, for (ii-1),
5 0 0 ela—p)t ps Us;
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3. Determination of optimal paths

0
0 sin 0t
0 cos Ot
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for (ii-2),
for (iii-1),
for (iii-2),
Uy
U, for (iv).
Us

P> p3) is nonsingular, (5a)-(5f) lead respectively to

e(p_ll )t

el =)t

) [ I

1

e(/)*’ll )
elp—a)t

—_

hy [ x
3°]

36(/’*/12”

— plp=A)rtp-1

38(/)>)~3)t

E, sin 0t + =5 cos Ot
53 cos Ot — =5 sin Ot

for (i),

for (ii-1),

for (ii-2),

for (iui-1),

for (iii-2),

for (iv).
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Therefore, since det(3U,/dc*) = Dy # 0 by (2), the optimal path ¢() = “(c' () ¢*(¢) ¢*(1))
is implicitly determined as c#(t) = F#(y,(2), ¥, (2),¥5(1)), where ‘(;(2) Ya(t) ¥5(2)) is
the right hand side of (6a)—(6f), respectively. And then c#(f) = F# are substituted for
the growth process (3) to have the first order linear differential equations with respect to
x*, 1e.,

(3) x=Ax—F+p,

where x = (x! x2 x3), F='(F' F> F*) and g ='(' * B°). The general solution x
of the subsidiary equation ¥ = Ax of (3)’ are give as a linear conbination of the inde-
pendent solutions ¢, with constant coeflicients G*, ie., x = Glo, + G*p, + Gp; = DG
where @ = (¢, ¢, ¢;) and G = (G' G*> G*). And then, after replacing the constants
G* with arbitrary functions G*(t), the solution x is substituted for (3)' to have the
equation @G = —F + f, ie.,

G=—-o(F-p).
Thus the optimal path x(¢) is implicitly determined as

(7) x(1) = —quqb—l(r _ pydt.

To go into detail, let the utility function U(c!,c?,¢*) be a second order polynomial
of consumptions of the form

(8) U(cl, ¢t = —%{(61)2 + () + (03)2} —ac'e? — peted —yde!  (a, B,y const.);

-1 —a -y
o°U
<5c#8cv> B (—a - —ﬂ> =M,
-y = -1

the constants o, f and y are assumed for the concavity to satisfy

where in view of

-1 —a

D; = =1-a’>0,
—o —1
-1 —a —y
Dy=|—a —1 —B|=—-1-2upy+a?+p>+><0,
-y = -1
while D; = —1 < 0. Then the explicit appearances of (7) can be determined as follows.

The case (i): By (6a), ie.,
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El e(/’*;ﬂ i
Mec(t) = P~ | Zpelr—t
Erelr=M)t

the optimal path ¢(¢) = F(¢) leads to

le(ﬂ"il )t

) e(t) = M7VPH | Zpelrai

) [ [y

39(/)*/13"

where =, (u=1,2,3) are some constants, while
1 1 - ﬁz ﬁy -« [xﬁ -7

M”:Dj By—o 1=y yu—p
"Nof—y ya—pf 1 —o?

Accordingly, after substituting the solution @ in the case (i) for @' (F — §), by putting

aj bl C1 K1
(10) P 'MP =4 by o], Pip=1x |,
as b3 C3 K3

it follows that

alEle(szlil)f + blsze(l)*il—/ﬁ)f + 01536(/771]7/13)[ + Kle—)ult
Q)*I(F — ﬂ) = — azgle(/’~il—iz)l 4 bzgzg(ﬂfziz)f + C253e(/7*12*/13)' + Kze*/"»zt
ayE elr~h—A)r 4 ngze(””lr’m’ + 3552 | i iat

The above appearance of @~ !(F — f) can be integrated immediately, where p(p=0)is
assumed that p # 4, + 4, (u,v=1,2,3), ie., p#241, p#24y, p#2l3, p# i + /2,
p#4+43 and p # 13+ /4 (the integration can be made also when p=41,+ 4,
(u,v=1,2,3)). Therefore, the optimal path x(z) of (7) is determined completely as

MET (i b=, (p=ia)t 1=y (=)t o 5, a0 _ Kl

5 € +t——e + e 4 G — —

p—24 p—A— 4 p—ri1— A3 Al

ar=, 2 brEy (i €253 ) Lt K2
11 H=p| ==t =), 7272 (p-i) e(ﬂ 3) Srelt — T2 |
(11) x() pfilf/lze +p—2/12€ +p—/12—i3 + oge |

a3 =] (p—A1)t byZs (p—2a2)t I3 (i ae K3

, + - + W d3e — =

P—il"ise p~J~2*/L3€ /7—2/138 tos 23

where J, (u#=1,2,3) are some constants.
Similarly, for the cases (ii-1), (ii-2), (iii-1), (iii-2) or (iv), the optimal paths can be
determined by (6b), (6¢), (6d), (6e) or (6f) respectively.



Conservation Laws and Optimal Paths in External Three-Sector Growth Model 7

The case (ii-1):

Eelp—ht
(12) o) = MTUPT| Sl
:'33(/) A2t
ME o BiE2taZs o e K
e +—"¢ e’ ——=
p— 2 p—r1— 42
@ E g &+l _k
13 x(t) =P fe(p R S T )+é€ ;
(13) () p—A— A2 p—24 lz
S PGS e
p— )vl - /12 P — 2/12 22

where 0, (u=1,2,3) are some constants, while p # 4, + 4, (i, =1,2).
The case (ii-2):

(14) c(t) = M~1p!

A= 4 (A = Apst)er= 4 g — EL
1
K K
(15)  x(1) = P| AuneV™"" + (Aa — Ant)eV ) + (3, + d31)e “",Tiﬂ?z ;
2
Az elP~ M 4 (Azy — Asst)elr=) 4 §yeh! 5
2

where 6, (¢ =1,2,3) are some constants and A, (u,v = 1,2,3) are the constants of the
following form with the constants &}, 5> and &3, while p # 4, +4; (i,j =1,2):

aj
Ay = F
n= oo
Ap = (b +c1) z, c1 =,
p—ri— A (p—i—A)> 7
4]
Ap=—201 =
13 p—/l]_lz 3,

a as

Ay = +
3 QM-M @—M—bﬁ)

by + by + 2
Ap={-2 222 TR 5 |52+ = 5+ o 3 |55,
pP=2t2 (p—24) (p—242)" (p—24)

[x]

Iy
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y b3 + c3 3
= =3,
YTy —2 T () 24)
I
Azz = =
B =T,

The case (iii-1):

c(t) = elP=Aip-lip-l

(Bll — Blzl)e(p"l)t +51€M — %

. K K
(17) x(t) = P| (Ba — Buat)el? V' + (6, + 531)e™ +:1—; - 72 ;
(B31 — B32t)e(p7'{)t +53€;‘t — 73

where 6, (¢ =1,2,3) are some constants and B; (i =1,2,3;j=1,2) are the constants
of the following form with the constants =, =, and Z3, while p # 24
C1

By = il =1+ b + ° o+ — 53
Y] p—24 " (p—21)> p—2."7%

By — €3 =
2 (p—2/1)2 2,
I b3 3 = 3
B3 = 2/1H1+(p—22+(p2j,) )s—2~l~p2/1 3
3
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The case (iii-2):

[1]

1
(18)  ¢(r) = P Miptip! -5t ,
=3 — Ezt—F%Ellz

1
(Ci1 — Cpat + Crar?)elr=A1 4 <51 +5zl+§53l2>€}" - % %—%

(19) x(t) =P (Cz] — Cypt + C2312)e(p‘i)‘ + (52 —}—(53!)6/1[ — % —l—% 5
K3

(C31 — Capt + C332)eP=" 4 Sz —

where 6, (= 1,2,3) are some constants and C,, (u,v = 1,2,3) are the constants of the
following form with the constants =), &, and &3, while p # 24

a ay+b az+2bi+c 3(b3+ ) 6c3 —
Cy = 2 + 5 3 T+ = | &
P (p—24) (p—24) (p=20)" (p—24)

by by + ¢ b3 + 2¢; 3¢5 _
7 3 3+ 3 |=2
P2 (p-2) (-2 (p-22)

2 2 =
p=2 (p—2i) (p-22)°)77

2 b b by +2 3
Cn:((az-F 1)+ 2+ . 3+ CzJr c3 )51

p=2 (p-2)° (p-2° (p-2)°

2(by + ’ 2
p(Aate) e s )32 5,
P2 -2 pe2)) T e

1 c (653 3
Cis == + + =,
B 2<p—22 (p—22)° (p—zzf)‘

a as + by 2b3 + ¢ 3¢3
Cu = + 2 3 3
P2+ (p=24" (p—24)" (p-27)

by by +c 2¢3 - &) & -
+ + + 2+ + =3,
(p—zi (p—22)° (p—w) ’ (p—m <p—2z>2>3

Iy

1
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by + ¢ C3 — (ST
T (p—Zi RTEETIL) ar y el

[x)

as+b by +c 2¢
szz 3 2+ 3 22+ 3A3
P=20 (p=20)" (p—2))

71 [ C3 _
Cx =3 (p—21+(p—2/1)2>uh
as b3 3 - b3 &) &
Cy = + + i+ -+ 4+ 55,
" (p—Z/l (p—24)° (p—zzf) ‘ (pu (pz/z)z) T

_ [ b3 3 - G L
Cyp = (p~2/1+ (p—2/1)2>u1 +p—21~2’

The case (iv):

= olp=A)t
1€
(20) () =M ipT] (22 sin 01 + Z5 cos Ot)elr—)
(Z5 cos Of — =5 sin Or)elr—H)t
A = (p=2i 5
» =2 Ze + 01
(By sin’ 6t + B sin 0 cos 0t + B cos? 0 + By)elr=) 4 5,
(Cy sin® 0t + C> sin 0t cos 01 + C; cos? Ot + Cy)elr=201 1 5,

(21)  x(r)= PR

(A sin 01 + A5 cos Of)elr—1 — %
1

Bselr=4t 4 B ;
Cse(/)*?tl)? + Cg

+ P

where R is the matrix:

eht 0 0
R=1| o0 e*cos 0t e sin 0t |,
0 —esinfr e cos Ot

and moreover 0, (u=1,2,3) are some constants and 41, B;,C (i=1,2;j=1,2,...,6)
are the constants of the following form with the constants =,, =, and 53, while p # 24
and p # 2/;:
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(p B — /11)(])152 — C[E3) + 0([)]53 + C]Ez)

Ay = ,
’ (p— 74— 2) + 6
A2 _ (p — A= /1])(6‘152 + b153) - 0(1)152 - C153)
(p—A—a)*+6° ’
_ (/) — 2;{)((,’3.53 —bh3Es) + 0[(/72 —c3)5 — (b3 + C2)53}
B = 2 2 ’
(p—24)" + 480
(p — 22)[([)2 — 63).52 - (b3 -+ C2)53] + 20[(1)2 — C3)E3 + (b3 + Cz)Ez]
By, = 2 2 '
(p—21)"+40
By — (p — 2/1)(6‘252 + b253) — 9[(b2 - 63)52 — (b3 + 02)53]
(p—24)* + 46? ’
46°/(p - 24)
(p—24) +40%
Bs — (p—A—A)aZ + Oay 5,
(p—4—i) +0?
K30—K2}.
6 — /12 T 02 P
= (p =20)(b282 — c253) + O[(b3 + c2) B2 + (b2 — ¢3) 53]
(p —22)* + 46* ’
G, = (p — 2).)[(1)3 + Cz)Ez + (bz — C3)E3] + 20[(C3 — bg)Ez + (b; —+ C2)E3]
(p —22)* + 40* '
_(p=24) (382 + b3E3) — O[(b3 + 2) 55 + (by — ¢3) 53]
C; = 3 ,
(p—24)* + 40?
40°/(p — 24)
(p—21)* +40%
Cs _ (p —A— 11)0351 — 9(1251
(p—r—a)+6*
K34 + K0
Co = —————.
¢ 20

THeOREM 1. In the maximizing problem of (1), let the utility function U(c', c?,c?)
with the concavity be given as (8) and the consumptions c* = g*(x', x?, x?) —nlx’ — x#
grow externally under the linear production technologies g# = ax" + . Then, in the
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case of finite horizon T < oo, the optimal paths ¢(t) and x(t) are determined completely as
(9) and (11) in the case (i) with p # A, + Ay (v =1,2,3); as (12) and (13) in the case
(i-1) with p# Ji+ 4 (i,j =1,2); as (14) and (15) in the case (ii-2) with p# A+
(i,j=1,2); as (16) and (17) in the case (iii-1) with p # 2); as (18) and (19) in the case
(iii-2) with p # 24, as (20) and (21) in the case (iv) with p # 24 and p # 2.

ReMARK. The interested reader will find the optimal paths when p takes the
exceptional values in the theorem 1.

The case (i): To look the case of infinite horizon T = co, the relation (4b):
n, = —e ?'U, are written by (6a) as

4l El e*}.]t
m | =="P | S|,
3 E3€713t

and then used, together with (11), for the transversality condition lim,_, ., mx*=0. In
view of the resulting appearance of m,x*:

=2 =2 =2
a) = _ b= _ 3= Y
nﬂx“ — 1 e(p 20t _ 2 e(p 2t 3 e(p 2A3)t

p =24 p—24 p =223
@t b)EE oy (b +0) 5B, iy _ L1+ a3)E1Es g,
p—A— 4 p—rr— A2 p—A1— 43
K= K= K3Z - _
-+ ! 16_;"’4-—2 26713’+ & 36_1'” — (015 + 025, +(53.:3),

A1 Az 23

we can find the optimal paths satisfying the transversality condition. For example, let
0<24; <p<2i; and 0 <24 <p < 243. Then lim, .. 7, x* =0 requires Z; =0 in
the coefficient of e’=2); so that 8,5, + 9353 = 0. Therefore, by putting Z; = 0,
02 =0 and J3 = 0, the optimal paths (9) and (11) take the forms respectively:

0
9’ e(t) = MVP | Eyele-i |
533(/)743)[
_bE ey CZ3 iy 5 oht K
/)*/11*22 p—-ﬂl—ﬂg /11
b5, _ €253 _ K2
1)’ x(t)y="P T Gl T2E ek 2
(1 ) p =22 p—rA— A3 /2
&_E(P—iz)l + €353 elP=23)t _ K3
p—r2—1743 p—23 23

Similarly, we can have the optimal paths satisfying the transversality condition for
the case (ii-1), (ii-2), (iii-1), (iii-2) and (iv).
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The case (ii-1): By (6b) and (13), m,x* is written as

—

=2 =y 5,
NET (=20 _ byE3 4+ 355 + (b3 + ¢2) 525y Slo=20)t

B
X p— 24 p—22
(@ +b)E1E A (o +a3)E1 5 Pt
p—A— A
K _ K25y +K3Z3 - - =
+ 1/1 =l ”"+%ﬂe 20— (0151 + 0252 + 3353),
1 2

in which, let 0 <24 <p <24,. Then lim,,, m,x* =0 requires =
efficient of el 24)t; 5o that §,5, + d3.53 = 0. Therefore, by putting =
J; = 0, the optimal paths (12) and (13) take the forms respectively:

0
(12)’ e(t) = M~1P V| Zpelr
E3€(p_/12)[
hiEs + A5 i 500 K1
pP— /11 j-2 /11
b5y + 253 K2
13/ R -_—(piz)__
(13) X(1) p—24 &
biZ2 ¥ 55y _ K
p— 2 A2

The case (ii-2): By (6¢) and (15), m,x* is written as
X" = —[AN 51 + (Aar + A31)E — A3 St =)

— [A12E1 + (A + An)Er + (41381 + (A + A33) 52 — AnZE3)t — Ay Z31%)elr—2h)!

KiZ| _ Ky + Ky K3\ _ o K3E3 | _
AL L -5 - te*!
A A 25 22

— (035 —5353)[ — 015 — (52 +(53)52.

So, let 0 < p <24 and 0 < p < 24;. Then lim,_ . m,x* = 0 requires d35, — 353 =0
and 8,5 + (6 +J3)=, = 0. Therefore, by putting 6, =0, Z, =0 and =3 =0, the
optimal paths (14) and (15) take the forms respectively:

El e(/’_'ll)[
(14)’ c(ty =M 1p! 0 ,
0
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K
Alle(p_il)t _ Ti
Ky K
(15)' x(r)="P Az et L (8) + 03t)e™! — /1_2 +/1% :
2

AzelP=50t 4§yt K3
22
where 411, Ay and A3 are the constants given before, while in which =, and Z3 are
placed as &, = 53 = 0.
The case (iii-1): By (6d) and (17), m,x* is written as

nﬂx” = —[31151 + By 5y + By1 &5 + (31251 + (Bzz — B31)52 + B3253)t — B325212]e(p‘u)t

1 - - — — 1 —_ —_ —
+1 [Kl.zl + (Kz — K3).:2 + K3E3 — K3.:2t]e - (5151 + 0,25 + 0353),

in which, let 0 <p <24 Then lim,, mx* =0 requires 015 + dr=s + 5353 = 0.
Therefore, by putting 6; =0, Z> =0 and =3 = 0, the optimal paths (16) and (17) take
the forms respectively:

Ele(p_'l)t
(16)’ C(f) — M711P71 O ,
0
Byl _ KL
K K
(17)/ x(t)="P Byjelr=At 4 (02 +53t)e’12’ +i—§ _ 72 ;
Bs1elP At 4 §yet — %

where Byj, By and By are the constants given before, while in which &, and E5 are
placed as &, = 53 =0.
The case (iii-2): By (6e) and (19), m,x# is written as

muxt = —[E1(Ci + Ciat + Ci38®) + (5, — E11)(Cay + Coot + Ca3t?)

[x

1
+ (—Eltz — Hht+ H3) (C31 + Cyt + C3312)J€(p_u)t

K1 Ky K3\ _ Ky K3\, _ _ k3 (1 5 _ i
el B s S /) ——+ S HE =51 -2 =5t — Byt + =
{( /1+/12 /13> 1+< /1+/12>( 2 it) ) (2 [ 2l + 3)]8

— (5151 + 65, +(53E3),
in which, let 0<p <24 Then lim, ., m,x* =0 requires 05| + 5=, + 353 = 0.
Therefore, by putting 5, =0, 6, =0 and J3 = 0, the optimal paths (18) and (19) take
the forms respectively:
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0
(18)’ e(r) = el plip ! =

2 i K1 K2 K3
Cii + Cpat)elP 4 et —— + — — —=
K2 K3

(19) x(t)=P (Cy1 + Capt)eP=H1 — —+ f :

(Cs31 + Cat)elr=H1t — 3

where Cy (i=1,2,3;j=1,2) are the constants given before, while in which =) is
placed as =} = 0.
The case (iv): By (6f) and (21), m,x* is written as

a
p—24

Xt = — F2elr-2)t _ (B 55 + C15,) sin® Ot

+ (B2E3 + C,=5) sin 0t cos Ot + (B3Z3 + C355) cos? Ot + Bi=5 + C452]e(/7*2)~)l
(A1 B + BsEy — Cs53) sin 0t + (4251 + C5E3 + BsEj3) cos Ote!/ 1)

K1=1 e*/{][

+/11

— [(BGEZ — Cg=3) sin Ot + (CeZa + BgE3) cos 9[}8_/1[

— (5151 + 015, +5253),

in which, let 0 <p<2i; and 0 < p <24 Then lim,., 7m,x* =0 requires 615 +
0355 + 3,53 = 0. Therefore, by putting =y =0, d, =0 and é3 = 0, the optimal paths
(20) and (21) take the forms respectively:

0
(20)’ c(f) = M~V P'| (25 sin Ot + E; cos Ot)elP !
(&, cos Ot — =3 sin Or)elr="
0
2’ x(t) = PR (B sin? 0t + By sin 61 cos 0t + Bs cos? 0t + By)elr 241t
(Cy sin? 01 + C; sin 0t cos 0t + C5 cos? Ot + Cy)elr—24)

(A sin 0t 4 A3 cos Ot)elr=2" 4 51! — %
|

+ P B6 5
Ce

where A;, B; and C; (i=1,2;j=1,2,3,4,6) are the constants given before, while in
which & is placed as & = 0.
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THEOREM 2. In the case of infinite horizon T = o, there exist the feasible optimal
paths (9)" and (11)" with 0 < 2/, < p < 2 min(4y, 43) for the case (i); (12)" and (13) with
0 <24 < p <24y for the case (ii-1); (14)" and (15)" with 0 < p < 2min(Ay, 1y) for the
case (ii-2); (16)" and (17)" with 0 < p < 2) for the case (iii-1); (18)" and (19) with 0 <
p <24 for the case (iii-2); (20)" and (21)" with 0 < p <2 min(4,41) for the case (iv).
Paticularly, let 0 < 24; < p < min(4z,43) and d; = 0 in the determined optimal paths ¢(t)
and x(1) for the case (i), 0 <2A < p < iy and 6, =0 in those for the case (ii-1); 0 <
p <min(Ay,22;) and 6, = 93 = 0 in those for the case (ii-2); 0 < p < A and 6, =53 =0 in
those for the case (iii-1); 0 < p <A and 6, =0 in those for the cases (iii-2) and (iv).
Then, as t — oo, the optimal paths ¢(t) and x(t) converge to zero and some constant
vectors, respectively.

The feasible optimal path x(7) of (21)" goes into details with ¢, = 0. In view of the
identities B3 — By = (; and C; — C3 = B,, since

( B, sin® 6t + B, sin 0t cos 0t + Bs cos? 0t + By )
Cy sin® 01 + C, sin 0t cos 01 + C; cos? 0t + C,

B + B3 B
_L(Bs— B B[ cos20r) 5 b
T2\ G- C G )\ sin 201 C) + Cs
+ Cy
2
B + B
1 G B cos 20t N 2 + B4
2 B, & sin 26t Ci+ Cs ’
_2——+ Cy

the appearance of (21)’ can be arranged as

y! = (A4 sin 6t + A, cos Ot)elr=)
(22) cos 0t —sin 6t (y?\ 1 ey Cy By [cos 20t L
sinfr  cos Ot J\y3) 2 -B, G sin 20t ny )|’

where ny = By + By + 2By, n3 = C; + C3+2C, and the vector y(r) = (' 2 »3) is
given by

(23) Y =Plx—| g

The constants B, and C, are written in the matrix form
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where the matrix

. 1 ((/) —24)(by — ¢3) +20(b3 + ) —(p—24)(bs + ) +260(by — C3))

(p—22)2+492 (/)—2/1)(173 +¢z) — 20(by — 63) (p—2/1)(b2 —63) + 20(bs + )
has the determinant

[(p = 24) (b2 — ¢3) +20(b3 + c)]” + [(p — 24)(b3 + ¢2) — 26(by — c3)]?

1= [(p—22)% + 467

bl

which vanishes if and only if

{(p—22)(b2—c3)+29(b3+c2):O, e (p—2/1 20 ><b2—03):
(p—24)(b3 + c2) = 26(by — ¢3) =0, U 20 p-2i)\bit+ac

Therefore, since 6 # 0, i.e.,

‘/)—21 20

=(p—20)2+460%> #0,
20 p—Z/I‘ (p=24)" 40" #

the determinant |4| vanishes if and only if b, —¢c3 =0 and b3 + ¢ =0. So, assuming
by —c3 #0 or b3+ ¢ #, choose the constants Z, and Z; such that (5, &3) #0.
Then (B; ;) #0 so that

(24)

C, B
| 2 Bl g2

-B, G

Therefore, the vector ‘(cos 26t sin 26¢) in (22) is written as
cos 20t _ 2 — C, —By\ [cosOt —sin0Ot\ [ y? (2
sin 20t B+ C? B> o) sinfr  cos 6t ) \ y? )’
where /; (i =2,3) are the following constants, respectively:

(Bl + B3 + 2B4)C2 — (C1 + C3 + 2C4)Bz
B3 + (3 ’

=

(B) + B3 + 2B4)By + (C) + C3 + 2C4)Cy
B3+ C3 '

ly =

which can be put as 4 =/ =0 by a suitable choice of By and C4 (this fact is
guaranteed by (24)). Thus, the identity cos? 20t + sin”® 20t = 1 yields the equation of
the spiral
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(25)
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2 2
0+ () = TG o

In conclusion, we have the following result.

THEOREM 3. Let a,, by and ¢, (n=1,2,3) in the matrix in (10) satisfy by — c3 # 0

or by +cy # 0. Then, for (iv) in the case of infinite horizon T = o, the feasible optimal
path x(t) of the form (21)" with 8y = 0 is transformed by (23), under a suitable choice of
the constants By and Cy, to y(1) = '(p! y? y3) in which y? and y* satisfy the equation of

the

[5]

[6]

spiral (25).
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