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1. Introduction

On an n-dimensional differentiable manifold 9t with a second rank skew-symmetric
differentiable tensor field, Berezin [1] introduced the algebras of Poisson product
provided with an infinite dimensional Lie algebra structure on the ring R (with respect
to the operations of addition and multiplication) of differentiable functions on M. And
moreover, Kirillov [4] generalized the product leaving the Leibniz law out of account
and investigated the infinite dimensional Lie algebra structure with the couple (A4, E) of
a bivector (contravariant skew-symmetric 2-tensor) field 4 and a vector field = on I
satisfying certain conditions. Lichnerowicz [6] showed that a Lie algebra structure
(so-called Jacobi structure) is equivalent to the existence of such a couple satisfying
the conditions which were given in terms of the Schouten-Nijenhuis bracket for
multivector fields (Nijenhuis [11], Schouten [12]). Whenever A is non-singular, the
couple (4,Z) can be translated into a couple (£2,w) of a non-degenerate differential
2-form Q and a differential closed 1-form  (dw = 0) satisfying d2 + w A € = 0. Such
a form Q (called a semiclosed form with w [4]) defines an infinitesimally conformally
symplectic structure on M (Guédira and Lichnerowitz [2]). Mimura and No6no [9]
gave an alternative approach to the infinite dimensional Lie algebra structure with the
couple (£,Z) of non-degenerate differential 2-form € and a vector field Z on N,
where © was assumed to be a semiclosed form with w = Z 1@ (contraction of @ by
Z) so that Z(Q) =0 (Lic derivative of Q by Z). They [10] gave a futher con-
sideration by replacing the differentiable couple (£2,Z) with a couple (dw,Z) of a
constant rank 2r closed differential 2-form dw and a vector field = satisfying the
conditions = Jdw =0 and = Jw =0, where § takes the respective value d =1 or
6 = 0 according to the cases: A (dw)” is non-zero or equal to zero (cf. Libermann
[5], Lichnerowitz [6], for the contact structure on the case @ A (dw)” # 0 where
2r+ 1 =n = dim M; ITkushima, Fujiwara and Mimura [3] detailed the discussion of
[10]).

In this paper, it is first reviewd (section 2 through section 3) the main results for the
construction of Poisson algebra structure in [3] (also [10]), and then applied (section 4)
to define the Poisson product of conserved quantities in N-body problem in R®. Itis
well-known that the Euler-Lagrange equations in the problem have the ten conserved
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quantities. We show that suitable four conserved quantities of them can generate other
six conserved quantities by means of the Poisson product given in [3].

2. Lie and Poisson algebra structures

We first review the Lie and Poisson algebra structures discussed in [3] (also [10]).

Let w be a differential 1-form on 9 such that dw has constant rank 2r (r # 0),
ie., (do)" =dw A --- A dw # 0 (r-factors) everywhere but (dw) ™ =0 on M. For the
form w, there are two cases

(i) o A (dw)" #0, (i) @A (dw) =0.

According to the cases, we can set up a vector field 5 on M satisfying the relations (cf.
Mimura and Néno [10]):

(1) a) Eldw=0, b Ejo=04,

where J takes the respective value 6 =1 for (i) or 6 =0 for (ii).
Let X be a set of all vector fields and R a set of all differentiable functions on 9i;
and define a set €, of characteristics of both w and dw:

C,={XeX|Xlo=0 and X Jdw =0},
and a set of integrals R, of characteristics:
Ry ={feR|X(f)=0 for all X eE,}.

The set | forms a ring with respect to the usual addition and multiplication of
functions, and the set R, forms a subring of the ring R. A set of vector fields Xy € X
corresponding to f € R, can be determined by the following rule (cf. [10], Theorem 1).

THEOREM 1. A differentiable function [ € R is an integral of the chracteristics of
both w and dw, i.e., f € R, if and only if there exists a vector field Xy € X determined
uniquely up to modulo &, by the following rules. For the case (i):

) X Jdo=—df  (mod o),
(3) Xrlw=f;

or for the case (ii):

(4) Xy Jdw = —df.

The rules (2) and (4) are unmified as

(s) Xy Jdw = —df + 5(f)o,

which is, for the case (i) or (ii), equivalent to (2) or (4), respectively.
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ReMARK 1. Note that a relation X |dw = —df + go guarantees that in which f
satisfies =(f) =g¢ for (i) or Z(f) =0 for (ii).

REMARK 2. A contraction of the relation (5) by X, yields Z(f)(XyJw) =
Xy 1df = X;(f), which implies that X, satisfies X;(f) = fZ(f) for (i) or X;(f) =0
for (ii).

RemArK 3. For the case (i), whenever a vector field X satisfies the relation (2), it
can be modified as X = X + (f — X Jw)Z so as to satisfy both relations (2) and (3).

Here keep in mind the relation
(6) X(w)=Xldo+d(X Jw) (X e X),

to see that the rules (2) and (3) for (i), or (4) for (ii) imply respectively X;(w) = Z(f)ow,
or Xy(w)=d(Xy Jo—f) so that Xy(dw)=0. Conversely for (i), let X(w)=gw
(g € N), which leads by (6) to X ldw = —d(X Jw)+gw. So by putting X Jw = f
that X Jdw = —df + gow, where g = Z(f) by Remark 1. And for (ii), let X(dw) = 0.
Then, X (w) is written as X(w) = dh (he R), so that X Jdw = X(w) —d(X Jw) = —df
where /= X Jw — h. Therefore, for both cases (i) and (ii), there exist / € R satisfy-
ing the relation X Jdw = —df + Z(f)w, while Z(f) =0 for (ii). A contraction of the
relation by an arbitrary Y € €, satisfying ¥ 1dw =0 and Y Jw = 0 implies Y(f) =0,
so that f e R,. Thus we have the following theorem (cf. [10], Theorem 2).

THEOREM 2. The vector field Xy € X crresponding to f € R, is, for the case (i), an
infinitesimal Z(f)-conformal symmetry of w:

(7 Xp(w) = E(f)w;
or, for the case (ii), an infinitesimal symmetry of dw:
(®) X (d) = 0.

Conversely, according to the case (i) or (ii), for an infinitesimal conformal symmetry X
of w or an infinitesimal symmetry X of dw; there exists [ e R, such that X = Xy
(mod €,,).

ReEMARK 4. In view of Remark 1, any infinitesimal conformal symmetry X of o
satisfying X Jw = f is to be an infinitesimal Z(f)-conformal symmetry of w.

Let X, be a set of all vector fields Xy (f € R,,) satisfying the relations (2) and (3)
for (i), or (4) for (ii). Then, €, < X, is trivial, and = € X,, follows from (la) and (Ib)
(note that & = X, (mod €,) for (i), where X; is a vector field corresponding to f = 1;
while = e €, for (ii)).

For X;, X, € X,,, since by (la) and (5):

Xpyg Jdo = (Xp + X,) Jdo, Xy Jdo = (X, +9Xy — f9Z) Jdo,



4 Akira IkusHiMA, Fumiyo Funwara and Fumitake MIMURA
and moreover for the case (i), since by (1b) with 6 =1 and (3) (in the relating line of
([10], p. 61): (ii) (i.e., o = 0) should be read (i) (i.e., 6 = 1)):
Xig o= (X + Xg) Jo, Xy Jo=(fXy+9X; = fg=) Jo,

the following relations are valid:
9) a) Xpyg =Xy + Xy, b)) Xy =[fX 49Xy - fgE, (mod §,,).

Here recall the relation (6) together with
(10) Y. X]Jo=Y(X Jo)— X 1Y (w) (Y, X eX).

Particularly for X € X, and Y e X satisfying Y (w) = 0, (10) is reduced to [Y, X;] Jow =
Y(Xr Jw), so for the case (i) with (3) that

(11) Y, Xyl do = Y(f).

Similarly for Xy € X, and Y e X satisfying Y (dw) = 0, the form w in (10) is replaced
with dw to see [Y,Xy] dw = Y(X; Idw), for which (5) is substituted to derive

(12) Y, X7l Jdo = =dY(f)+ Y(E(/ o+ EZ(f) Y (o).
Since Z(w) =0, (12) is reduced for ¥ = = to
(5. %] Jdo = —dZ(f) + Z(f)e,
so, in view of (5) and (11) with ¥ = &, that
(13) (=, Xr] = X=p) (mod €,,).

Let Ye€, Then Yl lw=0 and Y jdw=0, so that Y(w)=0 as well as
Z(w) =0. Therefore, in view of (10), [Y,Z]Jw =0 and also [Y,Z]Jdw =0; ac-
cordingly [Y,Z] €€, ie., [Y,Z](f)=0 for feR,. Since Y(f)=0, (11) and (12)
are reduced respectively to [Y,X;] Jw =0 and [Y, X;] Jdw = Y(Z(f))w which vanishes
also as Y(=Z(f)) =Y, Z](f) - E(Y(f)) =0. Thus it it concluded:

(14) €. X, = C,.

In terms of X, e X, corresponding uniquely to f € R, up to modulo €,, since
Y(g9)=0 for Ye@, and g e R,, a product {f,g} on R, can be defined by

(15) {/.9} = Xr(9) = Z(f)9-

First show that {f,g} e R, if f,g€ R,. Infact for Y € E,, since Y(f) =0, Y(g)=0
and Y(Z(f)) =0 (see above), it follows that

Y({/.9}) = Y(Xr(9)) — Y(Z()g) = [Y, X/](9).
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which vanishes by (14), ie., [V, X;] € €,; so that {f,g} e R, ie.,
(16) {m(mmw} < ‘J{w

Let X7, X, € X,. Then, for the case (i), (3) and (7) are substituted for (10) with
Y =Xy and X = X, to see

(Xr, Xy] Joo = Xr(g) — Xy 1 (E(/)w)
=Xr(g) - =g =1{f.9}

So, after arranging [X;, X,|(w) = X;(X,(®)) — X,(Xr()) by (7), the property in Remark
4 is used to see

(17) (X7, Xg)(0) = Xp(E(9)w) — Xy(E(f)w)
= (Xr(2(9)) — Xy(E(/))eo = Z({S, gD
Therefore, in view of (6), it follows that
(X7, Xg) Jde» = —d{f,g} + E({f, g}

which will be valid for the case (ii). In fact, since X (dw) =0 (see (8)) and Z(f) =0
(see Remark 1), (12) with ¥ = X, implies that [X, X;] |dow = —dX,(f) = —d{g f} ie.,
(X7, Xyl Jdow = —d{f,g}. Therefore the final relation is obtained:

(18) [Xf’, Xg] = X{/q} (mod (‘:w).
Thus obtained Lie algebra structure on X, is summarised as follows.

TuEOREM 3.  The set X, of all vector fields Xy (f € Ry,) satisfying the relations (2)
and (3) for the case (i), or (4) for the case (ii), forms a subalgebra of the Lie algebra X
under the bracket [,]. And the set €, of all characteristic vector fields of both w and dw
forms an ideal of X,,.

Essential relations are now in hand to show a Lie algebra structure on R, under
the product {,}. For the case (i), the product (15) of f,g e R, is written by (3) and
(5) as

{fi9} = Xy 1 (=X Jdo + E(g)w) — E(f)g
=Xy 1 X, Jdo + E(9)f — Z(f)g;

which is valid also for (ii), while Z(f) = Z(g) =0. Therefore the product is anti-
commutative:

Since (14) and (18) yield the relation for f,g,7 e R,:
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Xetrgrm = Xipgy Xl = [X, X[, Xa] - (mod €,,),
it follows for the case (i) that (see (3) and (16))

WSahht = Xqrgm do = [[Xr, Xl Xa] Joo.

Therefore, for (i), the Jacobi identity on R,,:

(20) g ny + g h 7y +{{h, /1. 9} =0

is guaranteed by that on X, under the bracket [,].
For the case (i), since X;(X,(h)) = —X;({g.h}) = —{/,{g,A}} (note that Z(f) = 0
in (15)), it follows that

S gh iy = Xy, (h) = [X7, X](R)
= Xy (Xy(h)) — Xy(Xy(h))
= {fv{‘%h}} - {g, {f’h}}v

which turns by (19) to the Jacobi identity (20).
Particularly consider a subring ‘Ri of R,:

R, =1{feRa| 5(/) =0},
which satisfies by the last euality of (17) that
{3, R3} = N7,
while R- = R, for the case (ii). On R, since {f,gh} = X¢(gh), the Leibniz law
{/:gh} = g{f,h} + h{f .4}

is valid. Thus the following structure on R,, is deduced under the product {,} (cf. [10],
Theorem 4).

THEOREM 4.  The subring R, of R forms an infinite dimensional Lie algebra under
the product {,}. Moreover, the subalgebra R of R, for the case (i), or R, itself for
the case (i1), forms a Poisson algebra, ie., on which the Leibniz law is valid.

3. Poisson algebra structure on conserved quantities

Adding the time-axis R to the tangent bundle TM of m-dimensional configuration
manifold M, let M =TM x R and (4,q,1) = (4;(¢),q:(t),t) (i=1,...,m) be its local
coordinate system. On the setting, introduce the Poincaré-Cartan form @ associated
with a given Lagrangian L(q,q,?) (the summation convention is employed in what
follows):
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e :%Qi—i—Ldt,
0q;

[

where 0; = dg; — ¢; dt. Here the Lagrangian is assumed to be regular, i.e., det(Wj) # 0
where W = 82L/ 94;0q;, to put the Euler-Lagrange equations

L 42 2
) d(aL) oL . . oL L oL

= g Wit g ——— — = =

dt\oq;) Oq; G+ 0¢,0q; + 0,0t 0g;

into the kinematical form:

Then, in terms of ¢, = dg; — F; dt and 0; = dg; — g, dt, the exterior derivative d@ of @ is
written as

0°L
04,;04;

de = I’Vlj¢, A Oj - 0; A dt,

2 2
L
9,'/\0]-(&”’,",‘ 0 oL a—L)

+ Gt —
Uag:0q; " dqiar o
which, by the Euler-Lagrange equations (21) and its equivalent form (22), turns into
o’

d@:ml/\g——
A 3¢,0q;

0[ A 0j,

Since ¢;, A+ Ay, =0 (k>m) and ¢; Ao A B =€ i A Ay (€, 1S the
Eddington’s symbol), and similar relations are valid for 0, A --- A 0; (k> m and
k = m), it follows that

(d@)m - (H/iljl¢i1 A 0/1) AN A (mnrjlvv¢i,n A Gjm)
=gum! det(Wy)py A - Ay, AOL A A Oy

Therefore (dO)™ # 0, (dO)"™" =0 and © A (dO)" # 0, so that @ lies in the case (i).
Let I be the equation field of (22):

5 0 0

I = Fi—. 1 A,

cq, Tlag T e
and put 5= L"'I". Then, since I' J¢,=0 and I 16, =0, = satisfies the condi-
tions (1a) and (1b) with 0 =1 for the form o = &. Locally, in terms of a basis
{0/0q¢;,0/0q:, '} (i=1,...,m), a vector field X e M = TM x R can be expressed as

0 0
q; qi

where 7;, &, € R (the set of all differentiable functions on 9 = TM x R). Then both
X 160 =¢,0L/0¢; + L and
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L oL
23 = Wyl + | Wi, + | —— — ¢, |0,
(23) X 1d6e iCidi + ( i+ (aq,aqj 6%6%) c'fj> 0

vanish if and only if #;, = & = = 0, i.e., the set €g of characteristics of both @ and d®
is €¢ = {0}, and so Re = R.

Now consider the subring R5 = {/ € ®|Z(f) = 0} which coincides with a ring of
all conserved quantities R’ for the Euler-Lagrange equations (21):

R ={f eR|T(f) =0}

By replacing dq; and dg; with ¢; + F; dt and 0; + ¢; dt respectively, df (f € R) can be
put into

D g+ Lo ripar

4= a4; oq;

which is combined with (23) to see that X Jd@ = —df (f e R'") if and only if
of L 'L of
Wi ==, Win, = | ———=——1& — =—.
4 0q; 7 (a(Z/’aqi 0q;0q; & aq;

By the first equations of the above, & are determined as & = WY3f/dq,, where
(W¥) = (W;)"'; and after substituting the ¢&; for the second ones, n; are also as

. ’L 0L ' )
wy=wiws( CL L LTy O
04x0qs  0q,0qyx | 0q; g,

Consequently, Xy € Xo corresponding to f € R’ is of the form Xr = XfQ + I, where

v &L PL \of 0 fof o of o
X0 = wikwis| — — = =+ W=,
! (0qk6qs 6%6611() aq; 0g; 94; 0¢;  0q; 04;

while y is determined by Xy 10 = f as

fl g U@i@_L
‘P‘Z(f_ W g aq_,)'

Therefore the following product {f,g} = X;(g) for f,ge R" is deduced:

o L *L \ of g (of ég of dg
24 ’ :WIkW’/S T T | Tt we T =
(24) .9} (@qkﬁqs 5%8%) 0q; 0q; aq; 0q;  0q; 0q;

A (af g o ag>+W,~,-(g 9 of ag)

6,0q, \ 04; 84, 0¢; 04, 4, 0q;  0q; 04,

Thus the structure on RZ in Theorem 4 is translated into that on R’ as follows (cf. [7],
Theorem 9; [8], Theorem 10).
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THEOREM 5. The ring R' of all conserved quantities for the Euler-Lagrange
equations (21) with regular Lagrangian forms a Poisson algebra under the product (24).

4. Conserved quantities in /V-body problem

Consider N particles Py (k= 1,---,N) with masses my. Let rp = (xx, yx,2x) be
the position vectors of P, and G be the gravitational constant. Then the Lagrangian L
in the problem is given as

Z n’/kHrkH + Z ”fn’lk”:/”

k#r
so that the Euler-Lagrange equations (21) have the appearance

L Gmy(re — ry)
=) —= 7

3
k#¢ lrk — rel

It is well-known that the equations have the following ten conserved quantities:
(i) Total energy (Hamiltonian):

1 . Gmymy
=52 millbel* =D
k=1

e |lrx — r/||

1 & PR Gmymy
S s Y G
k=1 k>t \/(xk — X/) + (yk - y/) + (Zk - Z/)

(ii) Components of momentum vector E,{VZ | Mk
N N N
.Ql = kafck, QQ = ka)‘/k? Q3 = kaék.
k=1 k=1 =1
(ili) Components of the integration S, | my(ry — tiy) of (ii):
N

N
E = ;mk(xk —tXy), Er= : lmk(J’k — 1),

mk(zk — lZ.k)‘

n
f
-

(iv) Components of angular momentum vector Z,f: (e X i)
N N N

A1 =Y mi(yiic — Bzn),  Ax =y mu(aiy — ), As = > mu(xpy — %ave).
k=1 k=1 k=1

In view of the Lagrangian, since d>L/d¢;0q; =0 and
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1 g 0

where (q1,q2,...,q38) = (X1, ¥1,21,-..,%XN, Yn,Zn) and Ej is the unit matrix of third

order; the Poisson product (24) is reduced to

NV gof ag  of 9 o &g
{f.9} = kz:: (0xk OX o OV vk U N 62k>

—XN:I o o9 o g I o9
iy Oxy OXp ayk 0y, Oz 02 )

For example, the Poisson product {H,} is

- 1(6H6£21 0H 09 8_H§&)

=3 o on T o9 o 2 o

ﬁz | (2H 001 0H 00, ol 0@
mk axk ()xk ayk a)}k (32]( 52k

where

ks Hyk - 1’9“ k>s \/(Xk _ xS)Z + (yk _ yS)Z + (Zk _ Z.Y)Z

Z Gmymy Gmym

Since

5_U__ZN:Gmkml(xk—x1)
oxy = e —nll

6U_ZGWW—X/—X/«>* G —x0)
0xy ”l"/—l"kH k={+1 ||rk_"/|| 7 ) 7

- Nz: Gmymy(xny — Xi)
aXN k—1 H"N —l’k“

the product {H,Q;} leads to zero:
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(1,00} — S0 G s ) NZ‘ Zw_:x_k) S Gl — i)
’ e — | S\ =l T e
NZ Gmymy(Xy — X)
e 0 ]
_ oy Gl %) (SR Gmom(xy — %) 5§ Gmom (s — %)
& nc—nl = r-nl & o
N Z Z Gmymy (xi — x7) [ Gmym (xy — x1) Z Grmymi(xXy — i)
=& =l [y —nl| k= e = rel
_ N li@mmk—w Sy G (3 = /)
== el =5 el

=

B i GmNmk(xN — xk)

k=2 ”rN_rk”

- Z Z Gm/l’YIk .X/ — Xk)
e — ril]

4 -1 GmNm/ XN )C/) NZ2 N-] Gmkm/(xk — )C/)
/ HVN - V/” /=2 k=r+1 Hrk - i‘/”

NZI GmNmk xN — Xk)
= ey =]

For another example, the Poisson product {€,, =} leads to Q3:

N — -
—_ 1 6!22 8::1 692 8.:1 692 8~1
Q Ra) = _— —_— —
{ 2 l} ;mk <8xk 6xk + 5)')1( 0))/( t o (?zk 8zk

p’qz

(092051 09 051 02 05
m 6xk axk 8yk a_)'/k 52/( aik

I
M=

meZy

~
Il

1

I
S
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Similar calculations of the Poisson products establish the following table.

B

H 2 Q2 23 = =, 3 Ay A A3

H 0 0 0 0 2, Q, Q; 0 0 0
Q) 0 0 0 0 m 0 0 0 -5 | O
[9)) 0 0 0 0 0 m 0 Q3 0 -

Qs 0 0 0 0 0 0 m | —£2n | 0
Al E1 | &1 —m 0 0 0 0 0 0 —Z3 | &>
Ey | 2 0 —m 0 0 0 0 =3 0 —Z]

3 | —42 0 0 —m 0 0 0 - | E) 0
A, 0 0 -3 | 2 0 —E3 | = 0 A3 | A>
A 0 £2; 0 - | =3 0 -5 | 43 0 —A;

A3 0 -, | 0 -5 | £ 0 A | A 0

Poisson products {4, B} (m = Z,](V: M)

In this table, it can be observed that the conserved quantities H, 5, Ay, A3 generate the
other ones Ay, 55, &3, 1, -, 5. In fact, we can see that

{H,21} =,

{45, 42} = 44,

{E1, 43} = 5,

{52, A1} = &3,
{H,{&,,43}} = {H, 5} = s,
{H {5, M}} = {H, 53} = Q5.

Concluding remark. A significance of the Poisson product given by (24) is that
unknown conserved quantity may be discovered by the product of known two conserved
ones.

References

[1] F.A. Berezin, Quantization, Izv. Akad. Nauk. Ser. Mat., 38 (1974), 11161175, Math. USSR-Izv., 38
(1974), 1109-1164.



(2]

8]
9]
[10]
[11)

(12]

A Generalized Poisson Algebra Structure on Manifold 13

F. Guédira and A. Lichnerowicz, Géométrie des algébres de Lie locales de Kirillov, J. Math. Pures et
Appl., 63 (1984), 407-484.

A. Tkushima, F. Fujiwara and F. Mimura, Lie algebra structures on a manifold with a constant rank
closed 2-form, Tensor, N.S., 60 (1998), 309-322.

A. A. Kirillov, Local Lie algebras, Uspeki Mat. Nauk., 31 (1976), 57-76; Russian Math. Surveys., 31
(1976), 56-75.

M. P. Libermann, Sur les automorphismes infinitésimaux des structures syplectiques et des structures de
contact, Coll. Géom. Diff. Globale (Bruxells, 1958), 37-58, Gauthier-Villars, Paris, 1959.

A. Lichnerowicz, Les variétés de Jacobi et leurs algebres de Lie associées, J. Math. Pures et Appl., 57
(1978), 453-488.

F. Mimura, T. Ikeda and F. Fujiwara, A geometric derivation of new conservation laws, Bull.
Kyushu Inst. Tech. Math. Natur. Sci., 43 (1996), 37-55.

F. Mimura and T. Néno, A method for deriving new conservation laws, Bull. Kyushu Inst. Tech.
Math. Natur. Sci., 42 (1995), 1-17.

F. Mimura and T. N6no, A generalized Poisson algebra on a manifold I, A geometric formulation with
non-degenerate 2-form, Tensor, N.S., 55 (1994), 53-58.

F. Mimura and T. Néno, A generalized Poisson algebra on a manifold II, A geometric formulation
with constant rank closed 2-form, Tensor, N.S., 55 (1994), 59-65.

A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields, Indag.
Math., 17 (1955), 390-403.

J. A. Schouten, Uber differentialkomitanten zweier kontravarianter grossen, Proc. Kon. Ned. Akad.
Wet. Amsterdam, 43 (1940), 449-452.

*Faculty of Environmental Engineering
The University of Kitakyushu
Wakamatsu, Kitakyushu, 808-0135, Japan
and
** Department of Mathematical
Kyushu Institute of Technology
Tobata, Kitakyushu, 804-8550, Japan



