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1. Introduction

   On an n-dimensional differentiable manifold swl with a second rank skew-symmetric
differentiable tensor field, Berezin [1] introduced the algebras of Poisson product
provided with an infinite dimensional Lie algebra structure on the ring gR (with respect

to the operations of addition and multiplication) of differentiable functions on SJJI. And

moreover, Kirillov [4] generalized the product leaving the Leibniz law out of account
and investigated the infinite dimensional Lie algebra structure with the couple (A, =.) of

a bivector (contravariant skew-symmetric 2-tensor) field A and a vector field =. on EM

satisfying certain conditions. Lichnerowicz [6] showed that a Lie algebra structure
(so-called Jacobi structure) is equivalent to the existence of such a couple satisfying

the conditions which were given in terms of the Schouten-Nijenhuis bracket for
multivector fields (Nijenhuis [11], Schouten [12]). Whenever A is non-singular, the
couple (A,=.) can be translated into a couple (9,(D) of a non-degenerate differential
2-form 9 and a differential closed 1-form tu (dto == O) satisfying dS2 + to A S2 = O. Such

a form 9 (called a semiclosed form with to [4]) defines an infinitesimally conformally

symplectic structure on S"l (Guedira and Lichnerowitz [2]). Mimura and N6no [9]
gave an alternative approach to the infinite dimensional Lie algebra structure with the

couple (9,=.) of non-degenerate differential 2-form 9 and a vector field =. on SM,
where 9 was assumed to be a semiclosed form with ca = =. 19 (contraction of 9 by
=-) so that =-(S;2)=O (Lie derivative of 9 by =-). They [10] gave a futher con-
sideration by replacing the differentiable couple (9,=.) with a couple (dto,=.) of a
constant rank 2r closed differential 2-form dco and a vector field =. satisfying the

conditions =.Idco=O and =.]to=j, where 6 takes the respective value 6=1 or
6=O according to the cases: co A (da))" is non-zero or equal to zero (cf. Libermann
[5], Lichnerowitz [6], for the contact structure on the case coA(dco)"7!O where
2r+1 =n == dim E"l; Ikushima, Fujiwara and Mimura [3] detailed the discussion of
[10]).

    In this paper, it is first reviewd (section 2 through section 3) the main results for the

construction of Poisson algebra structure in [3] (also [10]), and then applied (section 4)
to define the Poisson product of conserved quantities in N-body problem in R3. It is

well-known that the Euler-Lagrange equations in the problem have the ten conserved
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quantities. We show that suitable four conserved quantities of them can generate other
six conserved quantities by means of the Poisson product given in [3].

                     2. Lie and Poisson algebra structures

    We first review the Lie and Poisson algebra structures discussed in [3] (also [10]).

    Let (o be a differential 1-form on S"'l such that dtu has constant rank 2r (rlO),
i.e., (dco)" = dco A ••• A dco iE O (r-factors) everywhere but (dco)"+i =O on SJJI. For the

form co, there are two cases

                  (i) co A (da))r iE o, (ii) co A (dco)"=o.

According to the cases, we can set up a vector field =. on S!]l satisfying the relations (cf.

Mimura and N6no [10]):

(1) a) =-jdto-O, b) =-]ca-i,
where i takes the respective value 6==1 for (i) or b' =O for (ii).

    Let X be a set of all vector fields and SR a set of all differentiable functions on EM;

and define a set E., of characteristics of both tu and dtu:

                   C. == {X EX1X] to =O and Xj dco = O},

and a set of integrals SJI,. of characteristics:

                   `R., = {fe 9{lX(f) =O for all XEC.}.

    The set SR forms a ring with respect to the usual addition and multiplication of
functions, and the set SR. forms a subring of the ring SR. A set of vector fields Xf E sc

corresponding to fE S{. can be determined by the following rule (cf. [10], Theorem 1).

    THEoREM 1. A dtl.SIierentiahle function fG SR is an integral of the chracteristics of
both (D and dco, i.e., fE `R,. if and only if there exists a vector .f2'eld Xf E GE determined

uniquely up te modulo C. by the .following rules. For the case (i):

(2) Xfldtu !! -df (mod ca),

or fbr the case (ii):

The rules (2) and (4) are uniJfied as

(5) Xf ll dco--df'+=- (f)ca,
which is, for the case (i) or (ii), eeuivalent to (2) or (4), respectively.
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    RemARK 1. Note that a relation X]dco=-df+gco guarantees that in which f
satisfies =- (f) == g for (i) or =- (f) == O for (ii).

    REMARK 2. A contraction of the relation (5) by Xf yields =-(f)(Kf•lco)=
Xf]clfi == Xf•(f), which implies that Xf satisfies Xf(f) -f=-(f) for (i) or Xf(f) =O
for (ii).

    REMARK 3. For the case (i), whenever a vector field X satisfies the relation (2), it

can be modified as X=X+(f-XJa))=- so as to satisfy both relations (2) and (3).

Here keep in mind the relation

(6) X(co)-Xldco+d(XJco) (XEX),
to see that the rules (2) and (3) for (i), or (4) for (ii) imply respectively Kf(tu) ::=: =-(f)tu,

or Xf (to) == d(Xf l tu - f) so that Xf (dto) = O. Conversely for (i), let X(tu) = gco

(g E `R), which leads by (6) to X] d(D = -d(Xj (D) + gco. So by putting Xl co =f
that X]dto=-df+gtu, where g== ."-,(f) by Remark 1. And for (ii), let X(dca) == O.
Then, X(co) is written as X(co) == dh (h G ER), so that X1d(;o - X(co) -d(X] co) = -df

where f=XJco-h. Therefore, for both cases (i) and (ii), there exist fE Y{ satisfy-
ing the relation XJd(o == -df'+ =- (f)to, while =- (f) ==: O for (ii). A contraction of the

relation by an arbitrary YEC. satisfying Y]dco =O and Y1co == O implies Y(f) =O,
so that fE SR,.. Thus we have the following theorem (cf. [10], Theorem 2).

    THEoREM 2. The vectorfield XfeIE crresponding to fESR,. is, for the case (i), an
inLfinitesimal ='(f)-conformal symmetry Qf- co:

(7) Xf(tu)-=- (f)caI
or, for the case (ii), an inLfinitesimal sJvmmetrJv qf dco:

(8) Xf(dto) =- O.
Conversely, according to the case (i) or (ii), for an infinitesimal conformal symmetry X

of (D or an infinitesimal symmetry X of dco; there exists fEYI. such that X-Xf
(mod Cco)•

    REMARK 4. In view of Remark 1, any infinitesimal conformal symmetry X of co
satisfying Xjca =f is to be an infinitesimal =.(f)-conformal symmetry of tu.

    Let X. be a set of all vector fields Xf (fEY{.) satisfying the relations (2) and (3)
for (i), or (4) for (ii). Then, C. c X,, is trivial, and =- EX. follows from (la) and (lb)

(note that =. i Xi (mod C.) for (i), where Xi is a vector field corresponding to f= L
while =- E (S,, for (ii)).

    For Xf,X,EX., since by (la) and (5):

        Xf+g j dtu = (Xf + Kq)] dtu, Xfq J dca = (fKq +gXf' - fg=')] dca,
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and moreover for the case (i), since by (lb) with i=1 and (3) (in the relating line of
([10], p. 61): (ii) (i.e., 6=- O) should be read (i) (i.e., 6-1)):

         Xf+.qjco = (Xf + Xg)j tu) Xfi 1tu = (fXg + gXf m f9=')J ca,

the following relations are valid:

(9) a) Nf+giJtff'+Xq, b) Xfg!fX.g+.qXf-f9=', (MOdCca)-

   Here recall the relation (6) together with

(10) [iY, N] ll co -= ]Y(X]co)-X] Y(co) (Y,XEX).

Particularly for IYf E X,. and YE a; satisfying Y(co) = O, (10) is reduced to [Y, Nf•] 1 co =

Y(Xfjto), so for the case (i) with (3) that

(11) [Y, Xf•]1ca-Y(f).
Similarly for Kf•EX,. and Yeee satisfying Y(dto)=O, the form to in (10) is replaced
with dto to see [Y,Xf]jdtu = Y(Xf]dtu), for which (5) is substituted to derive

(12) [Y, Xf]]dtu - -dY(f) + Y(=- (f))ca + =- (f) Y(tu).

Since =- (tu) = O, (1 2) is reduced for Y= =. to

                     [=- , Xf] 1 dto = -d=- (f) + =. 2(f).,

so, in view of (5) and (1 1) with Y = =- , that

(l3) [=-,Xf]!X=. (f) (mod E,.).
   Let YE (S .. Then Y] (z) =O and YJ d(D = O, so that Y(co) == O as well as
=- (co) == O. Therefo re, in view of (10), [Y, =. l1 co = O and also [Y, =- ] j dco = O; ac-

cordingly [Y, =' ] E C,,, i.e., [Y, =- ](f) = O for fE Y{ ,.. Since Y(f) = O, (1 1) and (12)

are reduced respectively to [Y, Xf] ] to = O and lY, Nf] J dto := Y(=. (f))tu which vanishes

al so as Y(=' (f)) - [Y, =' ](f) - =- (Y(f)) - O. Thus it it concluded:

(14) [(S ,., X.]cLr,..
   In terms of Xf•EX,. corresponding uniquely to fE9{. up to modulo (S.,, since
Y(g)=O for YE(SJ,. and gE9{,., a product {f,g} on SR. can be defined by

(15) {f, g}- Yf•(g)-=' (f)g.
First show that {f,g} E Y{. if f,gE `R,.. In fact for YE (S ,., since Y(f) == O, Y(.q) =O

and Y(=.(f)) =O (see above), it follows that

               Y({f, g}) - Y(Xf(g)) - Y(=' (f)g) - [Y, Xf](g),
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which vanishes by (14), i.e., IY,Xf] eC,.; so that {f,g}E fR,,, i.e.,

(16) {S{ ,., SR.}cSR..
    Let Xf,X,,EX,.. Then, for the case (i), (3) and (7) are substituted for (10) with

Y=Xf and X=: X, to see

                    [Xf7 Xg] 1 to = Nf (g) - Xg j (=' (f)ca)

                              - Xf'(g) - =' (f)g - {f, g}•

So, after arranging [Xf, X,](co) = Xf(X,(to)) - X,(Xf(ca)) by (7), the property in Remark

4 is used to see

(17) [Xf, Xg](ca) == Kf(=' (g)tu) - Xg(=' (f)to)

                        - (Xf(=' (g)) - Xq(=' (f)))tu = =' ({f, g})to•

Therefore, in view of (6), it follows that

                    [Xf, X,] ] dca - -d{f, g} + =- ({f, g})co,

which will be valid for the case (ii). In fact, since X,(dco)=O (see (8)) and =-(f) =:O

(see Remark 1), (12) with Y= X, implies that [X,, Xf]Jdto = -dX,(f) = -d{g,f}, i.e.,
[Xf , Xg] ] d(D = -d{f, g} . The re fo re the final relation is obtained:

(18) [Xf,Xg]!X{f,g} (MOd C(o)•
Thus obtained Lie algebra structure on X. is summarised as follows.

    THEoREM 3. The set lll. ofall vector.fields Xf (fE SR.) satisfving the relations (2)

and (3) for the case (i), or (4) for the case (ii), forms a subalgebra of the Lie algebra ;E

under the hracket [,]. And the set C,. ofall characteristic vectorfields of both co and dco

forms an ideal of X..

    Essential relations are now in hand to show a Lie algebra structure on SR. under
the product {,}. For the case (i), the product (15) of f,gESR,,, is written by (3) and

(5) as

                   {f, g} - Xf ll (-X, ] dto + =' (g)to) - =' (f)g

                         = -Xf j X, 1 dco + =' (g)f - =' (f)gi

which is valid also for (ii), while =-(f)==-(g)=O. Therefore the product is anti-

commutatlve:

(19) {f, g}--{g, f}.
Since (14) and (18) yield the relation for f,g,hE Y{,,,:
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               X{{f,.g},h} i [X{f,g},Xh] =' [[Xf, Xq]7 Xh] (MOd Cca),

it follows for the case (i) that (see (3) and (16))

                  {{f, g},h} = X{{f, .q},h} ] (JO = [[Xf, Xq], Xh] 1 tu•

Therefore, for (i), the Jacobi identity on SR.:

(20) {{f, g},h} +{{g, h},f} +{{h, f}, g} -O
is guaranteed by that on sc,. under the bracket [,].

    For the case (ii), since Xf(X,(h)) - -Xf({g,h}) - -{f,{g,h}} (note that =- (f) -O
in (15)), it follows that

                     {{f,g},h} =: X{ f,g}(h) = [Xfi X.q](h)

                               = Xf(Xg (h)) - Xg(Xf (h))

                               - {f, {.q,h}} - {g, {f,h}},

which turns by (19) to the Jacobi identity (20).

    Particularly consider a subring gBtr of SR,.:

                          fRa - {f G !R ,. 1 =- (f) - O},

which satisfies by the last euality of (17) that

                              {ER6, YIS} c SR8,

while YIS= fR,. for the case (ii). On `R8, since {f,gh}= Xf(gh), the Leibniz law

                          {f, gh} - g{f, h} + h{f, g}

is valid. Thus the following structure on 91,. is deduced under the product {,} (cf. [10],

Theorem 4).

    THEoREM 4. The subring SJI,. of gR forms an inLfinite dimensional Lie. algebra under

the producl {,}. Moreover., the subalgehra Y{tr qf Dl. for the case (i), or V{. itselffor

the case (ii), fbrms a Polsson algebra, i.e., on which the Leihniz law is valld.

              3. Poisson algebra structure on conserved quantities

    Adding the time-axis R to the tangent bundle TM of m-dimensional configuration
manifold M, let SJJI = TM x R and (e, q, t) - (e,(t), qi(t), t) (i = 1, . . . , m) be its local

coordinate system. On the setting, introduce the Poincare-Cartan form e associated
with a given Lagrangian L(e,q,t) (the summation convention is employed in what
follows):
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                                OL
                            (E) -= bli.i. ei + L dt,

where ei = dqi - 4i dt. Here the Lagrangian is assumed to be regular, i.e., det( JiVi•) l O

where W(7• =02L/OaiOÅë-, to put the Euler-Lagrange equations

(2i) ill, (giti)-g,e -iji pvu +Åë,2• l8.+oOi,2,-g,k -o

into the kinematical form:

(22) iji-Fi(ij, q, t)•
Then, in terms of ipi = dei - Fi dt and 0i -- dqi - 4i dt, the exterior derivative de of e is

wrltten as

     de = Wtyipt A 0i -iioLq, 0i " 0y - ("Fy VVti +ÅëoOq• ioLth + aOi,Lot- oOqk)0t " dt,

which, by the Euler-Lagrange equations (21) and its equivalent form (22), turns into

                                      o2L
                      d(E) :=:: PVifipi A 0j - o4ioqj 0i " 0j'

Since ipi, A•••A ipi, =O (kÅrm) and ipi, A•••A ipi. = f.,,...i.ip1 A -•- A ip. (Ei,,..i. is the

Eddington's symbol), and similar relations are valid for 0i, A•••A0i, (kÅrm and
k=m), it follows that

              (d(El))M = (J)ViiJ'i ipi, A 0fi) A ''' A (VVimi'm ipi,. A e]',")

                   = s.m! det( PVi•)ip1 A ••• A ip. A 01 A ••• A 0m•

Therefore (d(!))M 7E O, (de)M'i =O and e A (de)M 7! O, so that (E) lies in the case (i).

    Let T be the equation field of (22):

                                o oo                          i7 = Fi oe, + ai -aq, + bTt '

and put =. =Lumil7. Then, since TJipi=O and 1"]ei=O, =. satisfies the condi-
tions (la) and (lb) with i=1 for the form co == e. Locally, in terms of a basis
{0/OOi, O/ Oqi, T} (i -- 1, . . . , m), a vector field X E swl = TM Å~ R can be expressed as

                                oo                         X = nyi o4, + C, di, + WT,

where qi,4i,WE 9{ (the set of all differentiable functions on E"l = TM Å~ R). Then both

XJ (E) == 4iOL/Oa, + WL and
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   (23) X] de =-Wti 4] ipi +(Wii iji + (aOi, oLq m oOq,2aLq,) 4i) 0i

   vanish if and only if nyi = 4i -- W = O, i.e., the set Ee of characteristics of both e and dO

   is Ce={O}, and so Y{e == 9{.
• Now consider the subring fRS = {fE SR1=. (f) =: O} which coincides with a ring of
   all conserved quantities Y{F for the Euler-Lagrange equations (21):

                           sRr = {f E ER lr(f) - o}.

   By replacing d4i and dqi with ip,+Fi dt and 0i+4, dt respectively, df (fESR) can be

   put mto
                               of                                     Qf
                          df = ao, ipt + oq, 0i + T(f)dt,

   which is combined with (23) to see that X]dO == -df' (fESR') if and only if

                 vari,c,-Sl';li• muep,-(,Z,2aL,,-o:ioL,,)ci-SrZ7',

   By the first equations of the above, 4f are determined as Cj= PVi`ef/Oei, where
   (wi7")=(wij)Li; and after substituting the (f for the second ones, ijf are also as

                   rpi = ""'k Wi' (oSi3,, - oSOioL,,) oOf,, - 'i"t' S/

   Consequently, Xf E a;e corresponding to fE 91r is of the form Nf• == XfQ + Vtl7, where

           xfo - wik w'g (oqO,2oLq, - oqO,2oLq,) StllS oOq, + Wij (oafq, oOq, - oofq, oOq,)'

   while W is determined by Xf1e=f as

                           W == i (f - PVii il'li gi':i)

   Therefore the following product {f,g} =: Nf(g) for f,gESRi" is deduced:

   (24) {f,g}=:wikw'g(,S,2,L,,-,Si,L,,)X,if,g',g,+Wi](oOf,,oO,Z-ISroO,g,)

               - w'k w's ,Si,L,, (X,Y ,9,g - 8,f, i'g,)+ pV" (i'i;1' S',g, - g',, oO,g)

   Thus the structure on Y{tr. in Theorem 4 is translated into that on SRF as follows (cÅí [7],

  Theorem 9; [8], Theorem 10).
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   THEoREM 5. The ring SRF of all conserved quantities for the Euler-Lagrange
equations (21) with regular Lagrangian forms a Poisson algehra under the product (24).

                 4. Conserved quantities in N-body problem

   Consider N particles Pk (k = 1, • • • , N) with masses mk. Let rk = (xk, yk, zk) be
the position vectors of Pk and G be the gravitational constant. Then the Lagrangian L

in the problem is given as

                     L =: Åí., mk iiPk ll2 + ,E., iiS,M-k {lllfii •

so that the Euler-Lagrange equations (21) have the appearance

                         ilk = M ,2# Gfi/\,l, (:k ,i, "r3D '

It is well-known that the equations have the fo11owing ten conserved quantities:

(i) Total energy (Hamiltonian):

      H ,,. g S. mkllpkll2 - III.l), llf,MiVfll

        =gS., mk(abk2 +rf + 22) - ill.ll,. (., - .,), + (Gv:k-M;,,)2 + (., - .,,)2'

(ii) Components of momentum vector Z)i.=1Mkfik:

                    N N IV               gl = Emk abk, g2 = 2 mkyk, g3 == 2mk 2k.

                    k=1 k=1 k=1
(iii) Components of the integration ZkN=imk(rk - tfik) of (ii):

      =- , = 2mk(xk - tabk), =.2 = 2mk(yk - tyk), =.3 = 2mk(zk - t2k).

           k=1 k==1 k=1
(iv) Components of angular momentum vector 2i=imk(rk Å~ fik):

  AI == E ml, (yk 2k - abkzk), A2 = 2 mk (zk abk - 2k xk), A3 == 2 mk (xkPk - abkyk).

In view of the Lagrangian, since e2L/aeiOqi =O and
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(wi• ) =

iJ}i E3 O
     Jill E3

 O iJ,llq E3

'

Where (ql,q2,•••,q3N)= (xl,yl,zl,•••,xN,yN,zN) and E3 is the unit matrix of third
order; the Poisson product (24) is reduced to

             {f7g}=II.lll..nt,(Sl/C;•zll/it+aO,\ioO,g,+oOf2,ii/II2)

                   -S.,th(oOf,?il/g;•+81,,gi,+as.il)

For example, the Poisson product {H,9i} is

            {H7gi}=-S.=,JÅízi(Sitlli• 29.:+gi,g9,:+21tZ• g9.,l)

                   -S.,th(g.49,?•:.+gsc9,:+i#,g9,:)

                  =-S-igg''

where

       U = - III.il, rlf,MS Y,S" = - III.ll, (., - .,)2 + (Gt\k-Mi,)2 + (., . .,)2

Since

     S{ - - S., GMii71,i SM;,ii Xi) ,

     X7.U-III.;,GMilM,,kSX/i,iXk)-,,;.llll,.,GMi-llj!,f(-Mk,,ilXD (f=2,•••,N-1),

    8.U. - - ili.liiun,' GM\/;:f' `-x\,i/ xk) ,

the product {H,9i} leads to zero:
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{H,g,}==
S.,GMiiM,,i(-X;,iiXi)-tlli.lli(il.i,GMIM,,kSXi,iiXk)-,S.il,.,GMiiM.,l(-Xk,,iiXt))

        - #.i,i GMXill:lc(ntN\,ii Xk)

      =S.,GMilM,k'(-\;ii/X')-(ll.iiGMIIM,f'St"rii/Xi)"l,li=-iS.GMII,ll,(-X"r,/1Xk))

       +l•lli=i;.III,.,GMilM,kf(-XkrKii/X")-(GMXI:i(-X"r,i/Xi)+tili.iliiGMXIII:"(.X\,i/X'"))

      =-;.li3'il.lll,GMilM,,kSXfrki/Xk)+lll.liil.Illl,.,GMillilik`(-Xkr,i/XD

        -tl\.liGMxllllf(-XN,,i/Xk)

      =-t)ll.llii,iS.I},Gmf:,ll,kSMt,1,-Hxk)

        +(ll.l-,iGmft7fT(-xN,,i,xt)+il.ii,t;l,GmiiM,/'(-X;',"Xf))

        - II.lii GMxlltl -(-X\,ii Xk)

      =o

For another example, the Poisson product {S22,='i} leads to 93:

           {g2•=-i}-IS.lii.,iilzl(Z9,:O,/7i+O,Sab2:O,i',l+O,S,;27O,"'i)

                  rmS.,th(Z9.:O,i'•2+g9,zO,;n'.:+lg.7o,:-.:)

                   N                =Emk
                  f'rm-l

                = 93•



12 Akira lKusHiMA, Fumiyo FuJiwARA and Fumitake MiMuRA

Similar calculations of the Poisson products establish the following table.

                              B

A

H 9I 92 93 ='1 ='2 ='3 Al A2 A3

H o o o o 91 92 93 o o o

91 o o o o m o o o -93 92

92 o o o o o m o 93 o Åí1

93 o o o o o o m -92 91 o

='1 Rl -m o o o o o o -='3 ='2

='2 -92 o -m o o o o ='3 0 -='1

='3 -93 o o -m o o o -='2 ='1 o

Al o o -93 92 o -='3 ='2 o -A3 A2

A2 o 93 o -91 ='3 o -='l A3 o -Al

A3 o -92 91 o m='2 ='1 o ff A2 Al o

                   Poisson products {A,B} (m == Ei=iMk)

In this table, it can be observed that the conserved quantities H, =. i, A2, A3 generate the

other ones Ai, =.2, =.3, 9i, S22, S23. In fact, we can see that

                             {H, =- i} - 9i,

                             {A3,A2} = Ai,

                             {=.1,A3}==.2,

                             {=. 2, Al} = =- 3,

                      {H, {=- i,A3}} = {H, =.2} = 92,

                      {H, {=. 2, Al }} = {H, =. 3} = 93.

   Concluding remark. A signiJficance of the Poisson product given by (24) is that
unknown conserved quantity may be discovered by the product of known two conserved

ones.
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