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ASYMPTOTIC CONTRACTIONS OF INTEGRAL TYPE
Tomonari SuzuKi

Abstract

We discuss whether asymptotic contractions of integral type are still asymptotic contractions.

1. Introduction

    In 2002, Branciari [2] proved the following fixed point theorem, which is one of
generalizations of the Banach contraction principle [1].

    THEoREM 1 (Branciari [2]). Let (X,d) be a complete metric space and let T be a
mapping on X. Assume that there existrE [O,1) anda locally integrablefunction ffrom
[O, oo) into itself' such that

             fSf(t)dt Åro and fd(TX' T')f(t)dt :g rfd(X'')f(t)dt

             Jo Jo Jo
for all sÅrO and x,yEX. Then T has a unigue fixed point.

    Suzuki [11] showed that Theorem 1 is a corollary of the famous Meir-Keeler fixed

point theorem [4]. Moreover, he proved the following theorem.

    THEoREM 2 ([11]). Let (X,d) be a metric space and let T be a mapping on X.
Assume that there exists a function 0 from [O, oo) into itself satisfying the following:

    (Al) e(O) =O and 0(t) ÅrOfor every tÅr O. .,
    (A2) 0 is nondecreasing and right continuous.
    (A3) For every eÅr O, there exists iÅrO such that

e(d(x, y)) ÅqÅí+i implies e(d( Tx, Ty)) Åqs

         for all x,yEX.
Then T is a Meir-Keeler contraction, i.e., for every sÅr O, there exists iÅrO such that

d(x, y) Åqs+j implies d(Tx, Ty) Åq6 for all x,yE X.
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    On the other hand, motivated by [3, 9, 10], Suzuki l12] introduced the notion of
asymptotic contractions of the final type and proved the following fixed point theorem.

   THEoREM 3 ([12]). Let (X, d) be a complete metric space and let T be an asymptotic

contraction of the final type (ACF, for short? on X, i.e.,

    (B3) ,1-,lp,sup{1iy-ls.up d(T"x,Tny) d(x,y) Åqi} =.o

    (B4) For ea ch 6 År O, th ere ex is ts 6 År O su ch that for x, y E X with e Åq d(x, y) Åq

         e+i, there exists vEN such that d(TVx,T"y) f{{ a
    (B5) For x, y E X with x 7E y, there exis ts v E N such that d(T"x, TVy) Åq d(x, y).

    (B6) For xeX and sÅrO, there exist 6ÅrO and vEN such that

sÅq d(Tix, Tjx) Åqs+i implies d(TVo Tix, TVo Tj'x) sg E

        for all i, 1'EN
Assume that T!'  is continuous for some fEN. Then T has a unieue fixed point.

In this paper, we prove that ACF of integral type are still ACF.

2. Preliminaries

    In this section, we give some preliminaries. Throughout this paper we denote by N

the set of all positive integers and by R the set of all real numbers. The following
theorem is one of the most important results concerning ACF.

    THEoREM 4 ([12]). Let T be a mapping on a metric space (X,d). Then the
following are equivalent:

    (i) T is an ACF.
    (ii) lim. d(Tnx, T"y) =0 holds and {T"x} is a Cauchy sequence for all x,yEX.

    In 2001, Suzuki introduced the notion of T-distances.

    DEFiNmoN ([5]). Let (X,d) be a metric space. Then a function p from XÅ~X
into [O, oo) is called a T-distance on X if there exists a function rp from X Å~ [O, oo) into

[O, oo) and the following are satisfied:

    (Tl) p(x,z) Sp(x, Jy)+p(y,z) for all x, Jv,zEX.
    (T2) i7(Jc,O) =O and i7(x, t) !}i t for all xeX and tE [O, oo), and i7 is concave and

        continuous in its second variable.
    (T3) liMn Xn = X and liMn SUP{rp(Zn,P(Zn, Xm)) : M 2 n} == O iMPIY P(W7 X) S
        liminf. p(w,x.) for all vv EX.
    (T4) liMn SUP{P(Xn7 Ym) : M 2 n} == O and liMn rp(Xn, tn) =: O iMPIY liMn rp(Yn, tn) =

        o.
    (T5) liMn rp(zn,P(zn,Xn)) = O and liMn op(Zn,P(Zn, Yn)) =O iMPIY liMn d(Xn7 Yn) = O•
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   The metric d is a T-distance on X. Many usefu1 examples and propositions are
stated in [5-8] and references therein. The following lemmas are proved in [5].

    LEMMA 1 ([5]). Let X be a metric space with a T-distance p. Then p(z,j)c) =O and

p(z, y) =O imply x= y.

    LEMMA 2 ([5]). Let (X,d) be a metric space with a T-distance p. ij-a sequence
{xn } in X satisLfies lim. sup{p (xn , x.) : m År n} = O, th en {x. } is a Cauchy sequence.

Moreover if a seeuence {y.} in X satisLfies limn p()cn, Jvn) = O, then limn d(Jxn, yn) = O.

                               3. Results

   In this section, we give our results. We begin with the following theorem.

   THEoREM 5. Let X be a metric space with a T-distance p and let T be a mapping on

X. Assume that the following hold:
    (C3) ,1rm,.g}, sup{ 1iv-1 s.up p(T"x, Tny) p(x, y) Åq i} = o

    (C4) For each sÅr O, there exists 6ÅrO such that for x,yEX with eÅqp(x, y) Åq
         s+i, there exists vEN such that p(TVx,TVy) f{; s.
    (C5) For x,yEX with p(x,y)ÅrO, there exists vEN such thal p(TVx,TVy)Åq
         p(x, y).
    (C6) For xE X, there e)cist sequences {oc.}, {J6.} and {Z.} such that O Åq ocn, O Åq 13.

         and 2. EN for n E N, lim. ct. = O and

           ctn ÅqP(TiX, TjX) Åq ctn+6. iMPIies p(T?L'i oTix, TA" oTix) sll ct.

         for all i, J',nEN

Then T is an ACF.

    PRooF. We first show

(1) lim p(Tnx,Tny) ==O for all x,yEN.
                   n- co

Fix x,yEX. We consider the following two cases:
    • p(Tjx, Tjy) =O for some 7'EN.
    • p(Tjx, Tfy) ÅrO for all 1'EN.
In the first case, we have

          lim sup p(Tnx, Tny) = lim sup p(Tn o Tjx, Tn o Tjy)

            n- co n- oo
g sup{ liIp-s.up p(Tnu, Tnv) : p(u, v) Åq 6}
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for all5ÅrO. By (C3), we have lim.p(T"x,T"y)=O. In the second case, we put
7=liminf.p(T"x,T"y). Then from (C5), we have

(2) 7Åqp(T'"x,Tfy) for all 1'EN.
Arguing by contradiction, we assume 7ÅrO. Then from (C4), there exists iiÅrO
satisfying the following:

   ' For u,vEX with 7Åqp(u,v)Åq7+ii, there exists vEN such that
     p(TVu, TVv) S 7•
From the definition of 7, we can take 1' eN satisfying 7 Åq p(T•fx, T•iy) Åq 7+(Si. Hence,

there exists vEN such that

                p(TV+jx, TY+J'y) = p(TV o TJx, TV o TJ'y) S 7.

This contradicts (2). Therefore we obtain 7=O. Fix eÅrO. Then from (C3), there
exists j2 ÅrO such that

sup
{lilp-s.-p p(T'iu, Tnv) : p(u, v) Åq 62} Åq s.

Taking 1' GN with p(Tjx, Tjy) Åq i2, we have

            lim sup p(Tnx, Tny) = lim sup p(Tn o Tjx, Tn o Tjy) Åq Åí.

             n- oo n- oo
Since sÅrO is arbitrary, we obtain (1). We next show

(3) lim sup p(Tnx, TMx) =O for all xEX.
                 n-Åroo mÅrn

Fix xEX. We let sÅrO be arbitrarily fixed and choose KEN and iÅrO such that
ctK Åqs and aÅq min{fiK,ctK}. Then from (C6),

        ctK Åq p(Tix, TjJ,c) Åq ctK +i implies p(TAK+iJ)c,TA"+jx) -Åq ctK

for all i,jEN. By (1), we can choose NEN such that p(Tnx, T"+ix) Åq b'/ZK for every

n2 N. Fix LEN with L2 N. We shall show

(4) p(TLx, TL+nx)ÅqctK +iÅq 2s
for all n E N by induction. For every n E {1, 2, . . . , ZK }, we have

                       n-I
         p(TLx, TL+"x) :E{ 2p(TL+jx, TL'j+ix) Åq nj/AK s{ ti Åq ctK +i•

                       ,f--o

For m EN with m År ZK, we assume (4) holds for every n EN with n Åq m. In particular,
p(TLx,TL+MrmAKJc) Åq ctK+j. In the case where p(TLx,TL+MTAKx) g ctK, we have
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                                     AK-1
      p(TLx, TL+Mx) sg p(TLx, TL+M-AKJx) + Z p(TL+m-AK+ix, TL+m=)LK+j+lx)

                                     fr-o

                  Åq ctK + ZKb'/ZK = ctK +i.

In the other case, where ctK Åqp(TLx,TL+M-AKx) Åq ctK+ti, we have

        p(TLx, TL+Mx) g p(TLJx, TL+AKx) + p(TL+AKx, TL+Mpc)

                     .. .p(TLjx;, TL+AKx) +p(TZK o TLx, T)LK' o TL+M-2"Kx)

                     Åq i + ctK•

Therefore (4) holds when n=m. Thus, by induction, we obtain (4) for all nEN.
Since e'ÅrO is arbitrary, we obtain (3). By (1), (3) and Lemma 2, we have (ii) of

Theorem 4. By Theorem 4, we obtain the desired result. D
    Next, using Theorem 5, we prove the following.

    TH]ioREM 6. Let X he a metric space with a T-distance p and let T be a mapping on
X. Assume that there exists afunction 0fbom [O, oo) into itself satisfying (Al) and the

following.'

    (D2) e is nondecreasing.
    (D3) lim sup(lim sup o(p( Tnx, Tny)) : e(p (x, y)) Åq 6) = o.

         b'-+O kn-oo J    (D4) For each sÅr O, there exists iÅrO such thatfor x,yEX with sÅq 0(p(x, y)) Åq

         e+6, there exists vGN such that 0(p(TVx,TVy)) f{; a

    (D5) For x,yEX with 0(p(x,y))ÅrO, there exists vEN such that
         0(p(TVx, TVy)) Åq e(p(x, y)).

    (D6) For xEX andsÅrO, there existiÅrO and vEN such that

            ss O(p(Tix, Tjx)) Åqs+6 implies e(p(TV o Tix, TV o TY'x)) Åqs

         for all i, 1' E N.

Then T is an ACF.

    Before proving Theorem 6, we give one lemma.

    LEMMA 3. if lim 0(t) =O, then (D3) is equivalent to (C3).
                t-+o

    PRooF. We first show that (D3) implies (C3). Fix sÅrO. Then since 0(s/2) ÅrO,
from (D3), there exists 6i ÅrO such that

SUP
{lill.m,96JP e(p(T"x, T"y)) : 0(p(x, y)) Åq 6i } Åq e(s/2).



6 Tomonari SuzuKi
This implies

               sup{ lilp-s.-p p(Tnx, Tny) : e(p(x, y)) Åq 6i } Åq s

By hypothesis, we can choose ii ÅrO such that 0(ji)Åq6i. Since p(x,y) Åqii implies
0(p(x,y)) Åq6i, we have

                sup{liel-s.u,p p(Tnx, Tny) : p(x, y) Åq il} Åq s.

Thus (C3) holds. We next show that (C3) implies (D3). Fix eÅrO. Then by
hypothesis, there exists ct År O with 0(ct) Åq s. From (C3), there exists 62 År O such that

                sup{lill-i ,T s.up p(T'ix, T"y) : p(x, y) Åq fi2} Åq ct

Hence

            sup{liy-} s.up e(p(Tnx, Tny)) : p(x, y) Åq fi2} :E{ o(ct) Åq e

We put 62 =0(62). Since e(p(x,y))Åqj2 implies p(x,y) Åq62, we have

              sup{lilp-s.up e(p(Tnx, Tny)) : o(p(x, y)) Åq i2} Åq 6.

   PRooF oF THEoREM 6. Put T= lim e(t). We consider the following two cases:
                             t-+o   . TÅr O.
   . T= O.
In the case TÅr O, we shall show the following:

   ' For x,yGX, there exists NEN such that T"x= T"y and p(Tnx, T"x) =O for
     all n År N.
We note that from this formula, we can easily prove (1) and (3). Thus, T is an ACF by

Theorem 4. In order to prove this formula, we fix x,yEX. Arguing by contradiction,
we assume p(T"x, T"y) ÅrO for all nGN. We put 7=liminf. 0(p(T"x,Tny)). Then
from (D5), we have

(5) 7Åq 0(p(T"x,Tfy)) for all 7'eN.
Since O Åq T sg 7, from (D4), there exists ii År O satisfying the following:

   . For u,vEX with 7Åqe(p(u,v))Åq7+ii, there exists vEN such that
     o(p(TVu, TVv)) f{g 7•
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From the definition of 7, we can take 1'EN satisfying 7Åq0(p(TJ'x,Tj'y))Åq7+ii.

Hence, there exists vEN such that

                         0(p(TV+fx, TV+jy)) S{l 7.

This contradicts (5). Therefore p(TMx, TMy) =O for some mEN. On the other hand,
since T/2 År O, from (C3), there exists i2 E (O,T) such that

sup
{lilp-s.up o(p(Tnu, Tnu)) : o(p(u, v)) Åq i2} Åq g,

which is equivalent to the following:
   ' If p(u,v) =O, then there exists NEN such that p(T"u, T"v) == O for all n) AI.
Since p(TMx, TMy) = O, there exists Ni EN such that p(T"x, Tny) =O for all n }) Ni.
In the same way, we can prove that there exists N2 EN such that p(T"y,T"x) =O for

all n2N2. We put N=max{Ni,N2}. Then p(Tnx,T"y)=O and p(T"y,Tnx) ==O
for all nÅrN and hence

               p(Tnx, Tnx) g p(Tnx, Tny) + p(Tny, Tnx) = o.

So by Lemma 1, we obtain T"x= Tny and p(T"x, T"x) == O for all n2N. Thus T is
an ACF. In the caseT=O, we shall prove (C3)-(C6). By Lemma 3, we know that
(D3) implies (C3). Let us prove (C4). Fix sÅrO and put ij == ,!tp.}o 0(t). In the case

where qÅq e(s+7) holds for every 7År O, from (D4), there exists 6i ÅrO satisfying the

following:

   ' For u,vEX with rpÅq0(p(u,v))Åqny+6i, there exists vEN such that
     0(p(TVu, TVv)) S rp.
We can choose 63 År O satisfying e(s +i3) Åq rp + /3i. Fix x, y EX with e Åq p(x, y) Åq

s+i3. Then we have

                    ij Åq 0(P(X, Y)) f{ e(8 +63) Åq ny + fii•

Hence there exists vEN with 0(p(TVx,TVy)) g rp. This implies p(TVx,TVy) f{g s. In
the other case, where there exists i4 År O such that ny == e(e + 64), we also fix x, y E X with

s Åq p(x, y) Åq e + b'4. Then from (D5), there exists v E N such that 0(p(T"x, TVy)) Åq

0(p(x,y)). Thus e(p(TVx,TVy))Åqq holds. This implies p(TVx,T"y)):fgs. It is
obvious that (D5) implies (C5). In order to show (C6), we prove the following, which
is stronger than (C6):

   (C6)' For xEX and sÅrO, there exist jÅrO and vEN such that

             6Åq p(Tix, Tfx) Åqe+i implies p(TV o T`x, TV o Tjx) ge

         for all i,1'EN.
Fix xeX and eÅrO and put q= lim 0(t). Then from (D6), there exists fi2 ÅrO and

       .. . t-e+OKEN satisfying the followmg:
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   ' ijs0(p(Tkx,Tfx))Åqq+62 implies e(p(TKoTkx,TKoTix))Åqij for all
      k,fEN.
We can choose j4 År O satisfying e(s+64) Åq ny +62. Fix i, 1' EN with 6Åq p(Tix, Tjx) Åq

Åí+i4. Then we have

ij g 0(p(T`x, Tfx)) s{ 0(e. +i4) Åq ij + fi2•

and hence

                       0(p(T" o Tix, T" o Tfx)) Åq ij•

This implies p(TKoTix,TKoTjx) se. We have shown (C3)-(C6). By Theorem 5,

we obtain thatTis an ACF. D
   As a direct consequence of Theorem 6, we obtain the following.

   CoRoLLARy 1. Let X be a metric space with a T-distance p and let T be a mapping
on X. Assume that there exists afitnction 0from [O, oo) into itselfsatis:fjving (Al), (D2),

(D3) and the following:

   (E45) For each s År O, there ex is ts 6 År O such that for x, y E X with 0(p(x, y)) Åq

         s + 6, th ere exis ts v G N such that 0(p(TVx, TVy)) Åq a

   (E6) For xEX andeÅrO, there exist tiÅrO and vEN such that

0(p(Tix, T]'x)) Åqe+ b- implies e(p(TVo T`x, TV o Ti'x)) Åqs

         for all i,.iEN
Then T is an ACF.

   Using Theorem 5 again, we shall prove the following.

   THEoREM 7. Let X be a metric space with a T-distance p and let T be a mapping on
X. Assume that there exists ajunction 0from [O, oo) into itself satisf)ing (Al), (D3)-
(D5) and the following:

   (F2) 0 is nondecreasing and continuous
   (F6) For xEI andsÅrO, there exist 6ÅrO and vEN such that

           sÅq 0(p(Tix, Ti'x)) ÅqÅí+6 implies e(p(TV o Tix, TV o T•fx)) gÅí

        for all i, 1'EN
Then T is an ACF.

   PRooF. It is suMcient to prove the following because we have shown the remainder
in the proof of Theorem 6:
   • (C6) holds in the case lim 0(t) == O.
                         t-+o
We choose a strictly decreasing sequence {7.} in (O,oo) satisfying 7iÅq0(1) and
limn7.=O. We can put
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                          ctn = MaX{t : 0(t) = 7n}

for nE N. Then {ct.} is a strictly decreasing sequence in (O, 1) satisfying the following:

   ' {0(ctn)} is a strictly decreasing sequence.

   ' liMn ctn = O•
   • 0( ct.) Åq e(t) for all nEN and tÅrO with ct. Åq t.
Fix xE X. From (F6), there exist sequences {5.} and {A.} such that O Åq 6. and A.EN

for nEN, and

e(ct.) Åq 0(p(Tkx, Tfx)) Åq 0(ct.) +i. implies 0(p(TA" o Tkx, Ti" o Tk)) s; 0(ct.)

for all k,f,nE N. Since 0 is continuous, we can choose a sequence {6.} in (O, oo) such

that

                          e(ctn + 6n) Åq 0(ctn) + 6n

for all nEN. Fix i,1' ,nGN with

                        ctn Åq P(TiX7 TfX) Åq ctn + fin'

Then we have

                0(ct.) Åq 0(p(T`x, T'-x)) g 0(ctn + 6.) Åq e(ctn) + in

and hence 0(p(TA" o Tix, TAn o Tjx)) fs{ 0(ct.). This implies p(TZ" o Tix, T)v" o Ti'x) f{g

    As a direct consequence of Theorem 7, we can obtain the following.

    CoRoLLARy 2. Let (X,d) be a metric space and let T be a mapping on X. Letf
be a locally integrable function from [O,oo) into itself satisfving JoSf(t)dt ÅrO for all

sÅr O. Assume (B3) and the following hold:
    (G4) For each sÅrO, there exists iÅrO such that for x,yEX with

                               , Åq f,d(X'Y)f(t)dt Åq ,+6,

         there exists vEN such that

                                 d(TVx, Tvy)                                Jo f(t)dtss.

    (G5) For x,yEX with x iL y, there exists vEN such that

                            J,d(TVx•TVy)f(t)d, . J,d(X'Y)f(t)dt.

    (G6) ]For xEX andsÅrO, there exist6ÅrO and vEN such that



10 Tomonari SuzuKi
               td(Tix, TJx) td(T"oT'x, TVoTJx)
            ÅíÅq J, f(t)dt ÅqÅí+6 implies Jo f(t)dt sE

        for all i, J'EN
Then T is an ACF.

   We finally give an example which shows that we cannot omit the continuity of 0 in

Theorem 7.

   ExAMpLE 1. Define a complete subset X of the Euclidean space R by X=
{xn :n E N}, where

xn=
S.i}

for nEN. Define a mapping T on N by Tx. == x.+i for nEN. Define a function 0
from [O, oo) into itself by

                      o(t) - { ?,,[,,,i . ,, li l: 8)

for tE[O,Go), where [1/t] is the maximum integer not exceeding 1/t. Then all the
assumptions of Theorem 7 except the continuity of 0 are satisfied, that is, (Al), (D2)-

(D5) and (F6) hold. However, T is not an ACF.

PRooF. We note

0(t) =

o if t=o          '
1 if lÅq t,
1/2 if 1/2 Åqt sg 1,

1/3 if l/3 Åq t sg 1/2,

1/4 if 1/4 Åqt f!{ 1/3,

fortE [O,oo). Thus, (Al) and (D2) clearly hold. For aH x,yGX, lim. d(T"x,Tny) =
O holds, which implies (D3)-(D5). Since

.1-im. T"xo = .ILn. xn+i = .1!m. ;=','i= oo,

the sequence {Tnxo} in X is not a Cauchy sequence. So by Theorem 4, T is not an
ACF. Let us prove (F6). Fix xEX andeÅrO. In the case wheres21, we put
b] -- 1. Then there is no (i, 1') E N2 satisfying e Åq 0(d(Tix, Ti'x)) Åq Åí+ 6. In the other

case, where OÅqsÅq1, there exists fEN such that 1/(f+1) f{sÅq1/f. We put
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6 :== 1/f -s År O. Then there is no (i, 1') E N2 satisfying s Åq 0(d(Tix, TJ'x)) Åq s+6

because

                        {0(t) :tE [O, oo)} =- {O} U{1/n:nE N}.
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