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ASYMPTOTIC CONTRACTIONS OF INTEGRAL TYPE

Tomonari SUZUKI

Abstract

We discuss whether asymptotic contractions of integral type are still asymptotic contractions.

1. Introduction

In 2002, Branciari [2] proved the following fixed point theorem, which is one of
generalizations of the Banach contraction principle [1].

THEOREM | (Branciari [2]). Let (X,d) be a complete metric space and let T be a
mapping on X. Assume that there exist r € [0,1) and a locally integrable function f from
[0, 00) into itself such that

d(Tx, Ty) d(x,y)

f(de < rj f()dt

0

L:f(t)dt >0 and J

0

for all s >0 and x,ye X. Then T has a unique fixed point.

Suzuki [11] showed that Theorem 1 is a corollary of the famous Meir-Keeler fixed
point theorem [4]. Moreover, he proved the following theorem.

TueoreM 2 ([11]). Let (X,d) be a metric space and let T be a mapping on X.
Assume that there exists a function 0 from [0, c0) into itself satisfying the following:

(A1) 6(0) =0 and 0(t) >0 for every t> 0.

(A2) 0 is nondecreasing and right continuous.

(A3) For every ¢ >0, there exists 6 > 0 such that

0(d(x,y)) <e+0o implies 0(d(Tx, Ty)) < ¢

for all x,yeX.
Then T is a Meir-Keeler contraction, i.e., for every ¢ > 0, there exists & > 0 such that
d(x,y) < &e+0 implies d(Tx,Ty) < ¢ for all x,ye X.
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On the other hand, motivated by [3, 9, 10], Suzuki [12] introduced the notion of
asymptotic contractions of the final type and proved the following fixed point theorem.

THEOREM 3 ([12]). Let (X,d) be a complete metric space and let T be an asymptotic
contraction of the final type (ACF, for short) on X, ie.,
(B3) 61im0 sup{lim sup d(T"x,T"y) : d(x,y) < 5} =0.
—+

n—cO

(B4) For each &> 0, there exists 0 > 0 such that for x,y e X with ¢ <d(x,y) <
e+0, there exists ve N such that d(T"x,T"y) <.

(B5) For x,ye X with x # y, there exists ve N such that d(T"x,T"y) < d(x, y).

(B6) For xe X and ¢ >0, there exist 5 >0 and veN such that

e<d(T'x,T'x) <e+d  implies d(T'oT'x,T'oT/x)<e

for all i,jeN.
Assume that T’ is continuous for some £ € N. Then T has a unique fixed point.

In this paper, we prove that ACF of integral type are still ACF.

2. Preliminaries

In this section, we give some preliminaries. Throughout this paper we denote by N
the set of all positive integers and by R the set of all real numbers. The following
theorem is one of the most important results concerning ACF.

THEOREM 4 ([12]). Let T be a mapping on a metric space (X,d). Then the
Sfollowing are equivalent:

(i) T is an ACF.

(i) lim, d(T"x,T"y) =0 holds and {T"x} is a Cauchy sequence for all x,y € X.

In 2001, Suzuki introduced the notion of z-distances.

DeriniTION  ([5]).  Let (X, d) be a metric space. Then a function p from X x X
into [0, c0) is called a t-distance on X if there exists a function # from X x [0, o0) into
[0,00) and the following are satisfied:

(z1) p(x,2) < p(x,y)+ p(p,z) for all x,y,ze X.

(72) #(x,0) =0 and 5(x,7) > ¢ for all xe X and r€[0,0), and # is concave and

continuous in its second variable.
(r3) lim, x, =x and lim,sup{#n(z,, p(zu, X)) :m=n} =0 imply p(w,x) <
liminf, p(w,x,) for all we X.

(t4) lim, sup{p(X,, ym) : m = n} =0 and lim, #(x,,1,) =0 imply lim, n(y,, #,) =
0.

(r5) lim, #(z,, p(zn, X»)) = 0 and lim, 5(z,, p(z,, y»)) = 0 imply lim, d(x,, y,) = 0.
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The metric d is a t-distance on X. Many useful examples and propositions are
stated in [5-8] and references therein. The following lemmas are proved in [5].

LemMa 1 ([5]). Let X be a metric space with a t-distance p. Then p(z,x) =0 and
p(z,y) =0 imply x=y.

LemMma 2 ([5]). Let (X,d) be a metric space with a t-distance p. 1If a sequence
{x,} in X satisfies lim,sup{p(x,,xy):m>n} =0, then {x,} is a Cauchy sequence.
Moreover if a sequence {y,} in X satisfies lim, p(x,, v,) =0, then lim, d(x,, y,) = 0.

3. Results

In this section, we give our results. We begin with the following theorem.

THEOREM 5. Let X be a metric space with a t-distance p and let T be a mapping on
X. Assume that the following hold:
(C3) 5lim0 sup{lim sup p(T"x, T"y) : p(x,y) < 5} =0.
ot

A0
(C4)  For each ¢ >0, there exists 0 > 0 such that for x,ye X with ¢ < p(x,y) <
&40, there exists ve N such that p(T’x,T"y) < ¢.
(C5) For x,ye X with p(x,y) >0, there exists veN such that p(T'x,T"y) <
px, p).
(C6) For x € X, there exist sequences {a,}, {p,} and {J.,} such that 0 < a,, 0 < f,
and A, €N for neN, lim, o, =0 and

an < p(T'x, T'X) < oy + B, implies p(T* o T'x,T* o T'x) <,

for all i,j,neN.
Then T is an ACF.

Proor. We first show

(1) lim p(T"x,T"y) =0 for all x,ye X.

Fix x, ye X. We consider the following two cases:
« p(T/x,T/y) =0 for some jeN.
« p(T/x,T’y) >0 for all jeN.

In the first case, we have

limsup p(T"x, T"y) = limsup p(T" o T/x,T" o T'y)

n— 0 n—o0

< sup{lim sup p(T"u, T"v) : p(u,v) < (5}

n—0
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for all 6 > 0. By (C3), we have lim, p(7"x,T"y) =0. In the second case, we put
y = liminf, p(T"x, T"y). Then from (C5), we have

(2) y < p(T’/x, T'y) for all jeN.

Arguing by contradiction, we assume y > 0. Then from (C4), there exists J; >0
satisfying the following:
« For wu,veX with p<p(u,v)<y+d;, there exists veN such that
p(T'u, TVv) <.
From the definition of y, we can take j e N satisfying y < p(T/x, T/y) < y +J,. Hence,
there exists v € N such that

P(T"x, T"y) = p(T o T'x,T" o T'y) < y.
This contradicts (2). Therefore we obtain y = 0. Fix ¢ > 0. Then from (C3), there

exists d, > 0 such that

sup{lim sup p(T"u, T"v) : p(u,v) < 52} <&.

n— 00
Taking je N with p(T/x,T/y) < J,, we have

limsup p(T"x,T"y) = limsup p(T" o T’/x,T" o T'y) < &.

n— 00 n— 0
Since ¢ > 0 is arbitrary, we obtain (1). We next show

(3) lim sup p(7T"x,T"x)=0 for all xe X.

=% mn

Fix xe X. We let ¢ >0 be arbitrarily fixed and choose K € N and § > 0 such that
og <& and 6 < min{fg,ax}. Then from (C6),

ak < p(T'x,T'x) < ag +6  implies  p(T*Fx, T x) < ox

for all i, je N. By (1), we can choose N e N such that p(T"x, T""'x) < §/1x for every
n>N. Fix LeN with L> N. We shall show

(4) p(Thx, THX) < o +6 < 2
for all n e N by induction. For every ne {1,2,... A}, we have
p(Thx, TH"x) < z:p(TL“x7 TET T x) < nd/ix <0 < ax +90.

J=0

For m e N with m > Ag, we assume (4) holds for every n e N with n < m. In particular,
p(Thrx, TEm=xx) < ag +5. In the case where p(TLx, T *xx) < og, we have
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Ix—1
p(TLx, TL+mx) < p(TLx, TL+m~)va) + KZ p(TL-i—m—/IK-&-jx’ TL+m7).K+j+1x)
=0

< og + Akd/ Ak = ax +0.
In the other case, where ax < p(Ttx, TI"*x) < ag +J, we have
p(Trx, TFx) < p(TEx, TH* x) + p(T* % x, THx)
— p(Ttx, TEV i) 4 p(T* o Thx, TH o TL+m=tsx)
<d+og. '
Therefore (4) holds when n=m. Thus, by induction, we obtain (4) for all neN.

Since ¢ > 0 is arbitrary, we obtain (3). By (1), (3) and Lemma 2, we have (ii) of
Theorem 4. By Theorem 4, we obtain the desired result. O

Next, using Theorem 5, we prove the following.

THEOREM 6. Let X be a metric space with a t-distance p and let T be a mapping on
X. Assume that there exists a function 6 from [0, 00) into itself satisfying (Al) and the
Sfollowing:
(D2) 8 is nondecreasing.
(D3) élimo sup{limsup O(p(T"x, T"y)) : O(p(x, y)) < (5} =0.
—+

n— 00
(D4)  For each ¢ > 0, there exists 0 > 0 such that for x,y € X with ¢ < 0(p(x,y)) <
&40, there exists ve N such that (p(T"x,T"y)) < e
(D5) For x,yeX with 0O(p(x,y)) >0, there exists veN such that
0(p(T"x,T"y)) < 0(p(x, y))-
(D6) For xe X and ¢ >0, there exist 6 >0 and ve N such that

e<O0(p(T'x,T'x)) <e+6 implies O(p(T o T'x, T o T'x)) < &

for all i,jeN.
Then T is an ACF.

Before proving Theorem 6, we give one lemma.

Lemma 3. If liIEO 0(t) = 0, then (D3) is equivalent to (C3).
—

Proor. We first show that (D3) implies (C3). Fix ¢ > 0. Then since 6(¢/2) > 0,
from (D3), there exists £, > 0 such that

sup{limsup O(p(T"x, T"y)) : 0(p(x, y)) < ﬁl} < 6(g/2).

n— OO
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This implies

n—00

sup{limsup p(T"x, T"y) : 8(p(x, y)) < ﬂl} <e.

By hypothesis, we can choose d; > 0 such that 0(d;) < ;. Since p(x, y) <, implies
B(p(x,y}) < B, we have

sup{lim sup p(T"x,T"y) : p(x,y) < 51} <e.

n—oc

Thus (C3) holds. We next show that (C3) implies (D3). Fix &> 0. Then by
hypothesis, there exists o > 0 with 0(«) < &. From (C3), there exists £, > 0 such that

sup{limsup p(T"x, T"y) : p(x, ) < /)’2} < o

H— 00

Hence

sup{limsup O(p(T"x, T"y)) : p(x, y) < [)’2} <0(x) <e.

n—ao0

We put d, = 6(f,). Since O(p(x,y)) <, implies p(x, y) < fB,, we have

n—aoo

sup{lim sup O(p(T"x, T"y)) : 0(p(x,y)) < 52} < &.

Thus (D3) holds. ]
Proor oF THEOREM 6. Put 7= lim 6(r). We consider the following two cases:
- >0 o
+ 7=0.

In the case 7 > 0, we shall show the following:
« For x,ye X, there exists N € N such that 7"x = T"y and p(T"x, T"x) = 0 for
all n > N.
We note that from this formula, we can easily prove (1) and (3). Thus, T is an ACF by
Theorem 4. In order to prove this formula, we fix x, y e X. Arguing by contradiction,
we assume p(T"x,T"y) >0 for all ne N. We put y = liminf, 8(p(T"x, T"y)). Then
from (D5), we have

(5) y < 0(p(T’x, T'y)) for all jeN.

Since 0 < 7 <y, from (D4), there exists J, > 0 satisfying the following:
* For wu,veX with y<0(p(u,v)) <y+3J;, there exists veN such that
O(p(Tu, T')) < y.
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From the definition of y, we can take je N satisfying y < 6(p(T/x,T7y)) <y + 1.
Hence, there exists v e N such that

O(p(T"Hx, T"y)) < 7.

This contradicts (5). Therefore p(T"x,T™y) = 0 for some m e N. On the other hand,
since 7/2 > 0, from (C3), there exists d, € (0,7) such that

sup{lim sup O(p(T"u, T"u)) : 0(p(u,v)) < 62} < %,
n—ao
which is equivalent to the following:

If p(u,v) =0, then there exists N € N such that p(T"u, T"v) =0 for all n > N.
Since p(T™x,T™y) =0, there exists Ny € N such that p(7"x,7"y) =0 for all n > Nj.
In the same way, we can prove that there exists N, € N such that p(7"y, T"x) = 0 for
all n > N,. We put N = max{N;,N,}. Then p(T"x,T"y) =0 and p(T"y,T"x) =0
for all »n > N and hence

p(T"x, T"x) < p(T"x, T"y) + p(T"y, T"x) = 0.

So by Lemma 1, we obtain T"x = T"y and p(T"x,T"x) =0 for all n > N. Thus T is
an ACF. In the case T =0, we shall prove (C3)-(C6). By Lemma 3, we know that
(D3) implies (C3). Let us prove (C4). Fix ¢> 0 and put # = IEEO 0(¢). In the case
where 7 < 0(¢ + y) holds for every y > 0, from (D4), there exists f; > 0 satisfying the
following:

+ For w,veX with 5 <@(p(u,v)) <n+pf,, there exists veN such that

O(p(T"u, T"v)) < 7.

We can choose 83 > 0 satisfying 6(e+J3) <n+ ;. Fix x,ye X with ¢ < p(x,») <
¢+ 03. Then we have

7 <0(p(x,y)) <0(e+3d3) <n+p.

Hence there exists ve N with (p(T"x,T"y)) <#u. This implies p(T"x,T"y) <e. In
the other case, where there exists 4 > 0 such that n = (e + d4), we also fix x, y € X with
e < p(x,y) <e+ds. Then from (DS5), there exists ve N such that O(p(T"x,T"y)) <
O(p(x,y)). Thus O(p(T"x,T’y)) <#n holds. This implies p(T"x,T’y)) <e. It is
obvious that (D5) implies (C5). In order to show (C6), we prove the following, which
is stronger than (C6):

(C6)) For xe X and ¢ > 0, there exist 6 >0 and ve N such that

e< p(T'x,T'x) <e+d  implies p(T'oT'x,T'oT'x)<e

for all i,jeN.
Fix xe X and ¢ > 0 and put n = lir‘n0 0(t). Then from (D6), there exists f, > 0 and
K e N satisfying the following: ret
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© n<O0(p(T*x,T’x)) <n+p, implies O(p(TX o Tkx, TX o T?x)) <y for all
k,/ e N.
We can choose d4 > 0 satisfying 0(e +3J4) <5+ f,. Fix i,je N with e < p(T'x, T/x) <
&£+9d4. Then we have

1< 0(p(T'x, T'x)) < 0(c+361) <n+p,.
and hence
O(p(TX o T'x, TX 0 T/x)) < 1.

This implies p(TX o T'x, TX o T/x) <e. We have shown (C3)—(C6). By Theorem 3,
we obtain that 7 is an ACF. 0

As a direct consequence of Theorem 6, we obtain the following.

COROLLARY 1. Let X be a metric space with a t-distance p and let T be a mapping
on X. Assume that there exists a function 0 from [0, o0) into itself satisfying (A1), (D2),
(D3) and the following:

(E45)  For each & >0, there exists 0 > 0 such that for x,ye X with 0(p(x,y)) <

&+9, there exists ve N such that 0(p(T'x,T"y)) < e

(E6) For xe X and ¢ >0, there exist >0 and veN such that

O(p(T'x, T'x)) <e+06 implies O(p(T' o T'x, T o T'x)) < ¢

for all i,jeN.
Then T is an ACF.

Using Theorem 5 again, we shall prove the following.

THEOREM 7. Let X be a metric space with a t-distance p and let T be a mapping on
X.  Assume that there exists a function 0 from [0, 0) into itself satisfying (A1), (D3)-
(DS) and the following:

(F2) 0 is nondecreasing and continuous

(F6) For xe X and &> 0, there exist 6 >0 and ve N such that

e<0(p(T'x, T'x)) < e+ implies O(p(T o T'x, T" o T'x)) < &

for all i,jeN.
Then T is an ACF.

Proor. It is sufficient to prove the following because we have shown the remainder
in the proof of Theorem 6:
+ (C6) holds in the case lim0 0(t) = 0.
=+
We choose a strictly decreasing sequence {y,} in (0,00) satisfying y; < 6(1) and
lim, y, =0. We can put
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o, = max{t: 0(t) =y,}

for ne N. Then {«,} is a strictly decreasing sequence in (0, 1) satisfying the following:
- {6(a,)} is a strictly decreasing sequence.
- lim, «, = 0.
O(a,) < 6(2) for all neN and ¢ >0 with «, <z
Fix xe X. From (F6), there exist sequences {J,} and {4,} such that 0 <J, and 1, e N
for ne N, and

0(o) < O(p(T*x, T?x)) < O(orn) + 6y implies O(p(T* o T x, T* o T'x)) < 0(x,)

for all k,/,n e N. Since 0 is continuous, we can choose a sequence {f,} in (0, co) such
that

0oy + B,) < 0(0ty) + 0y
for all neN. Fix i,j,ne N with
a, < p(T'x, T'x) < op + f,
Then we have
O(o,) < O(p(T'x, T'x)) < O(otn + B,) < O(a) +
and hence O(p(T* o T'x, T* o T'x)) < 6(x,). This implies p(T* o T'x, T* o T/x) <
o,. We have shown (C6). O

As a direct consequence of Theorem 7, we can obtain the following.

COROLLARY 2. Let (X,d) be a metric space and let T be a mapping on X. Let f
be a locally integrable function from [0,00) into itself satisfying [, f(t)dt >0 for all
s>0. Assume (B3) and the following hold:

(G4) For each ¢ > 0, there exists 6 > 0 such that for x,y € X with

d(x,7)

e<J f()dt < e+,
0

there exists ve N such that

d(T'x,T"y)

J f(ndt <e.

0

(G5) For x,ye X with x # y, there exists veN such that

d(x,y)

f(ndt < J f(p)dt.

J'd(T"x,T”y)
0

0

(G6) For xe X and ¢ > 0, there exist 6 >0 and v eN such that
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d(Tix,T/x) d(T¥oT x,TVoT/x)
&< J f(dt<e+0 implies J f(Hdr <¢
0 0

for all i,jeN.
Then T is an ACF.

We finally give an example which shows that we cannot omit the continuity of ¢ in
Theorem 7.

ExampLE 1. Define a complete subset X of the Euclidean space R by X =
{xn : n e N}, where

"1
w=3s

for neN. Define a mapping 7T on X by Tx, = x,. for ne N. Define a function ¢
from [0,00) into itself by

0 if 1=0,
o) = { 11/ +1) if1>0

for te[0,00), where [1/1] is the maximum integer not exceeding 1/¢. Then all the
assumptions of Theorem 7 except the continuity of # are satisfied, that is, (A1), (D2)-
(DS) and (F6) hold. However, T is not an ACF,

Proor. We note

0 ifr=0,
1 ifl<y

1/2 if1)2<r<1,
1/3 if1/3<1<1/2,
1/4 if 1/4<1<1/3,

o(t) =

for £e€[0,00). Thus, (Al) and (D2) clearly hold. For all x, y € X, lim, d(T"x, T"y) =
0 holds, which implies (D3)-(D5). Since

n+1
lim 7"x, = lim x,.; = lim Zl = o0,
n—0o0 n—0 n—o0 ]:l J

the sequence {7"x} in X is not a Cauchy sequence. So by Theorem 4, T is not an
ACF. Let us prove (F6). Fix xe X and ¢>0. In the case where ¢> 1, we put
6=1. Then there is no (i, j) e N? satisfying & < 0(d(T'x, T/x)) < ¢+6. In the other
case, where 0 <e <1, there exists /€N such that 1/(/+1)<e<1//. We put
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8:=1//—&>0. Then there is no (i,)eN? satisfying &< 0(d(T'x,T'x)) <e+9
because

(6(r) : 1€ [0, 0)} = {0YU{1/n:neN}.

Therefore (F6) holds. 1
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