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In this paper. we attempt to calculate the matrix elements of the central, tensor and
mutaal spin-orhit interactions in the (3;15/2)-“. (3:-15/2)2(25%)' and (3615/2)'(284)2 configurations
by Talmi‘s method. Based on the odd-group model, these results are applied to Ne? and
Na?. In jj coupling. by using nucleon-nucleon interactions with the Yukawa potential,
hitherto proposed by various authors to cxplain two-body and three-body data. we find it
impossible to explain the occurrence of the ground state wilh J=23/2 for the (3ds,)°
and (3d5,2)‘(23§)' configurations, Then we take into account the mixing of above threc
configurations and assume a two-body charge symmetric interaction which contains three
parameters g, x and y describing the spin dependence of the central force and the
relative strengths of the tensor and mutual spin-orbit forces, respectively. For both central
and tensor forces the Yukawa radial dependence is used, while the spin-orbit term is of
the kind proposed by Case & Pais. The three parameters g,x,y are determined by
fitting the ground-state angular momentum J=3/2 and magnetic moment u#=2, 217 n.m.

of Na®. Then we have a value of ~ 0.066x 10~#cm? for lthe quadrupole moment of NaZ,

I. Introduction

We investigatve the properties of 34- and 2s-shell nuclei on the basis of individual
particle model with harmonic oscillator wave functions. Mayer” has proposed by her
strong spin-orbit coupling “shell model” that the level order is 8ds 5, 253, 3dg5. In this
paper, we consider the (3ds5,2)° (3d5/2)’(2s,_‘)' and (3&5/2)'(25§)' configurations of like
particles in jj coupling and finally these interconfigurational mixing. In order to calculate
the matrix elements of the central and tensor interactions and the matual spin orbit

interaction introduced by Case and Pais,” the Talmi method® is extensively used. If we

1) M. G. Mayer, Phys, Rev. 75, 1969 (1949), 78,16 (1950), 78,22 (1950)
2) K. M. Case & A.Pais, Phys. Rev, 80, 203 (1950)
3) L Talmi, Helv, Phys. Acta 25, 185 (1952)
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assume that the even nucleons of even-group are coupled to zero spin, we can apply

these results to Ne? and Na®.

The (3dg;p)° configuration with various central potentials has been investigated by
Talmi®*% and Kurath®. They have shown that the occurrence of the spin 3/2 in the
ground state of these nuclei is unlikely to be due to the effect of Majorana forces il
we assume that the potential is a “deep hole” potential. Then we discuss the effect of
non-central interactions introduced to explain the two-and three-body problems, but we
cannot explain its occurrence by using just the same interactions as those given by many

authors,

For Na®, Mayer has concluded in view of its spin and magnetic moment that there are
3 protons in the 3dg, level and that the 254 level is empty. Indeed, = calculation of the
magnetic moment with j; coupling gives for this configuration a value of 2,87 nm.. in
fairly good agreement with the measured value of 2,217 n.m., while the quadrupole
moment in this configuration comes out to be zero. On the other hand, Sengupta" has
recently shown that a calculation of the magnetic and quadrupole moments gives for the
(3d5/2)%(25))" configuration results which are in good agreement with the experimental
values. Therefore, we perform the same calculation in the (3d5/2)3(2s§)' configuration
as in the (3d5/p)* configuration, and also we cannot explain the occurrence of the ground

state with J = 3/2,

From the fact that the ground state of F'® has a spin 1/2 and a magnetic moment in
very good agreement with the calculated one for the (2s))' configuration, we may assume
that the 3d5 5 and 25, levels have very chgely the same cnergy. With the above situation and
such crude wave functions as are used, we suppose that interconfigurational mixing mus!
playlan important part. Therefore, we consider the mixing of (3d5/2)% (3d5,2)?(25)) and
(3d5/3)"' (254)* conligurations, and sssume a two-hody charge-symmetric interaction which
contnins three parameters g,x,y describing the spin dependence of the central force and the
relative strengths of the tensor and mutual spin-orbit forces, respectively. These three
parameters are determined by fitting the ground-state epin and magnetic moment of Na®
and sign of its quadrupole moment. In consequence, we have for the quadrupole mement
a value of + 0.066x10"* cm? in good agreement with the measured value, and we have

shown that for the case of y = O there exist the constants of such an interaction which

4) L Talmi, Phys. Rev, 82, 101 (1951)
5) D. Kurath, Phys, Rev, 80, 98 (1950), 92, 1430 (1953)
6) S, Sengupta, Phys. Rev. 96, 235 (1954)
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are consistent with the deuteron data.

2. Calculation of Energy Matrices
By writing down the complete set of states in the (m; m; mj?)-scheme classified by
M for each of the (3d59)* and (3ds5,5)?(2s,)! configurations. we see that for the (3ds,p)”
there are 3 independent states, namely those with J = 9/2. 5/2 and 3/2. and that for
thc‘(3d5,,2)?(2.vv.‘)' there are 5 indepcndent states with J = 4/2. 7/2. 5/2. 11/2 and 1/2.
Since in each single configuration censidered here only one state corresponds to each of
the total angular momenta, the matrices of both central and non-central forces can bhe
calculated with the aid of the theorem of trace invariance in the single configuration,
In order to calculate the matrix elements for interconfigurational mixing, starling [rom
the (n j m;}-scheme with the antisymmetrized eigenfunctions the J eigenfunctions in
each configuration are found by the method of Gray & Wills” using angular momentum
operators. and then matrix-elements of the two-body interaction operators are calculated
by the method of Condon & Shortey® using these J-eigenfunctions. Therefore the
calculation of thc matrices of two-body interaction operators is reduced to the calcu-

lation of the matrix elements in the (n I my m)-scheme :

3 J fe2Go0) wt (o) ¥ (2)ue (7 ) ua (7 o) e, W

g\a3
where u = r-! R”‘ (n) olm, (&) aml ((a)x”;-'(a), the subscripts on the u's referring to the
set of quantum numbers n, }, my, m,, Even for usual central forces the evaluation of these
matrix elemeats hy the Slater method is so laborious and complicated that it is imprecti-
cal and still more so for complicaed interactions, such as temsor and mutual spin-orbit
interactions. However, in this paper we employ the harmonic oscillator wave functicns
as single nucleon wave functions. Therefore, as Talmi® has shown, when we transform
two nucleon coordinates , and—;-, to the relative coordinate r and the coordinate of the
center of gravity R, we can express the wave function ¢:?'| (_;,)¢::‘;: (r2) of two nucleons

with definite quantum numders n, {, my and n, I, m, as a finite sum of products

N T - "

gbl\.L(R)d)"A(r) of eigen-functions of harmonic oscillators with the total mass M —= 2m and
the reduced mass ;¢ = m/2, respectively, where n,, n,, n and N are the number of nodes
which characterize these wave functions, and {,, 4, L. A and my. my, M, m are the

angular momenta and these z-components, respectively. Concerning what values of N, £,

7) N.M Greay & L.A. Wille, Phys. Rev. 38, 248 (1931

8) E. U, Condon & G. H. Shortley. Theory of Atomic S i i i
Carsbridon 1900, omic Spectra (Combridge Eniversity Pross,
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M and n, 4, m should appear in such an expansion, we have four restrictions : the

conservation law of the z-component of the orbital angular momentum, of the energy.
and of the parily and the symmetry requirement. Such expansions which will be ased
in the following are given in Appendix I of the paper I (Bull. Kyushu Inst. Tech., Math.
Natuor. Sci. No.1, 23, 1955).

Thus, when we carry out the summation over the spin coodinates and the integralion
with respect to the coordinates of the center of gravity and the angular part of the
relative coordinates, the evaluation of matrix elements (1) is reduced to the calculation

of integrals of the forms :

[ = J' TRy () V() ar (2a)
and
Laty woir = [ Rt (1) R () ¥ (1), (2b)
Here
v a
Ruy(r) =Npe™ 2 1oy (r)
where u—-]-. N, is a normalization factor, and v, is an associated Laguerre polynomi-

al. These integrals with n, n'+0 can be easily expressed as sums of integrals I, which

we shall write simply as I, in the following.

The wave functions of a single nucleon with given n,!,j=1 1 and m; is given hy

P 1y 1/ J D 3 i — g -
w(ntj=tymj|1) =)/ LB (nlmy = 13) 7 () +1/ 7 5 o (ntimg + 31217 )
or briefly
w(nlj ,-=l+.1_rmj[1) = fu(nlm; - 3 II)ZS(":) +i “("‘”‘j"'l‘u)lf(”u). @)

We define the direct integral J and the exchange integral X of any two-body intersction

V(12) in the (j, j» m;, mj)-scheme by ;

T, J, Pjyy Maly famjpi nyly jy myg, ryly qs mjy) A
ﬂr_sz“*("llrhm| i) a*{nylajamjp1 2)V (12)u (1, loJamje | V) u (s jomj, 2) %, d'r, 7‘
K(n 1y Jymjy, nply f, Mjas Mo ls Jamjy, ny b ju my,) i “

ﬂlﬂffu (mbodvmsy [L)u™ (malyigmia| 2)V (12) (nols fomje | 2)u (ndyj Jsmj, 1)a*r, a¥r,

When we introduce (3) into {4), we have a sum of matrix elcments of type (1) in the
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(nlmym y-scheme, the coefficients of which are products of f, g; (i=1.2, 3, 4) and as
s

mentioned above, these matrix elements can be casily expressed in terms of the Talmi
integrals.
2.1 The Matrices of Central Interactions

The general two body central interaction operator may be written
V(I?) ~-J (f) {w-{-h PH+b [’B+ m I)M}

Where Pp.Ppg and Py are Heisenherg, Bartlett and Majorana operators, respectively.
In the case of the odd-group model in which only interactions between like nucleons
are taken into account, there exists the relation Py - PpPp= - 1. It is therefore
enough to calculate the cases of Wigner and Majorana interactions. However, since both
Wigner and Majorana forces are spin-independent, when the summation over the spin
coordinates in (4) is carried out, for both interactions there remains the same sum of

the integrals of the form
. » d * - = d —>
Ty mys ) = [ [Tyt (R, () (7 m, (7)o, 5

with products of f;, g; as coefficients, except for a change in the order of the last two
quantum numbers in J (m, ma; ms mi). Consequently, the matrix elements of the Majorana
interaction are obtained from the Wigner by changing sign of the Talmi integrals [,
which arise from functions antisymmetric in the space coordinates of the two nucleons
(those of odd 4, like I,, Is, I, etc.). We list below the matrix elements which occur in

the (8d5,2)% (3d5/2)*(25y)" and (3d5,2)'(23,)? configurations and these interconfigurational

mixing.
Table I. The non-vanishing elemnts of the central interaction
Row and column The elements
(@) J=9/2
Diagonal elementa
2 1 137
(3d5/2) = g { g dat 10+ 411100~ F1.)
1117
+ (m—b)—zs‘{—j_g-(lu-i-h)-—%‘i(lﬁ-la)+~28£12}
3de 012 l¢6
(3d52)2(2s;): (w—k)[~5-{-13-(:..+14>+%<11+13>+§Ie}+24_§% ]

116
+ (m—b}[g{-lsr(lcl+I4)—g—(h +lad+ 319}~ gA+-§-B]
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Non-diagonal element

(3dsy2)— (Bdsj2)2(2s) Cwtm—h—5)L N po— ML= Thee gl

by F=17/2
(3d5/2)7 (251)' (w—h)[%{ & (ol +5+Is)+ 31| +24)
+ (m—b)[%[K<I..+u>—~—c11+za)+§1 o} +%8]

(e) J=5:2

Diagonal elements

(3ds/2)° (o-Bg| ot + T Ur N+ 5 1.}

+ (m—b), 5 {'E-(I"'l'll-)_'-“(lj'f'lg)+l5-'7—ln}

(3ds,2)7 (2s1)" (re "'h)[ {-1-6(10"}‘11) +'1§ (I1+1g)~ I“Iﬂl + 2:4—‘;5‘31
+ (m‘b)[‘s' '1'0 (lo+14) —1ﬁ(ll+ls)+“sils}“-§ff+%-3]

(3d5,2)' (253)? Gotm—h— b)~~{—l‘:‘—31,,—7911+1165512'—17513+§4Eu}

+w+h) (24 - ¢ B) +{(m—b) (—A+~§-B)

Non-diagonal elements

3 2 ] 7 3 l 7
(3ds/2)° — (3d5/2)* (2s1) —(t+m—tf— 15]/1% glo—g i+ ¥a—Is+ a’*}
(3‘15’2)3"(3d5/2)1(23_3_)2 (wd-m - b b)VZ{ o PR "1+§6‘?1" 3-::,51‘!-5-%41 }

(3d3/2)2(2s1)1— (3ds/2)'(25))? (w+m—h—b)

3, 1. .., T1,.9
51/21{ ylo= '1+=’=‘E’“+'a"*l

@ J=372

Diagonal elements
(345/2)3 (Nl h) {16 (In-}-l'.) +T(Il +18) }

+ (m—b) {E(I..+14)—--(1,+1,,)+—1591 .}

(345/2)2(2"-9' | (""‘h)[‘é‘{"lgo ([n-}-l#)-}'%g- (11+In)—-1220-12}+2‘4 35 ]
2 ~
S

£

119
+ =0 5lag ot -3ttty + 1)~ 2av
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Non-diagonal element

(3d5,2)'— (3d5/2)} (25y),  (we+m— b ”31051/213’" 4n+&1n — e g1
S @ Il |
(3d5/23)%(21)’ o-m[F Rt 10- 5 a1 -G ho}+ 24— 58]
+(m—b)[—§-{16 (ot 1 ~F- (410 +35012) - A+—BJ
S B ]
A=Fo(d, m)_3,1.,+ RN L T
B=G2(d2)=B 10— 11+ B30, 251, 18,

e ———————————

2.92. The Matrices of the Tensor Interaction

The usual form
3 — -
va0)=I () EeDen G oyl
of the tensor interaction operator can be written as :

Vr(r) =127 (r) {]/%[sl s?— %(st,s’_ +a'.s’i)]Y3 (4, ¢)

1 .
— B LTI, @) + (sl +sl DT (0, ¢)

PR, 9+ el Y3 (0, p)] ©

where s,= s¢ + iSy, S- = 3x —isy. We substitute (§) for V (I2) in (4) and carry oul the
summation over the spin coordinates. Then there remains a sum of integrals on the space
coordinates with products of S B as coefficients, The angular integrations can be
easily done by use of the Gaunt formula® and the radial integrals can be immediately
written down in terms of I,. The exchange integral K(mj. mys my, m;) can be obtained
from the direct integral J(mj, mys o my, mj) by changing sign of I,s which arise
from functions antisymmetric in the space coordinates of the two nucleons, because only
that part of the wave function which Is in the triplet state of the two nucleons contri-

butes to the matrix elements of the temsor interaction, Therefore, the matrix element

- e

9) Caunt, Trans, Roy. Soc. London A, 228, 151 (1929)
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J — K in the (mj, mj)-scheme contains only the integrals I

with odd /. Owing to the

same reason, the results for a interaction which is multiplied by the Majorana operator

are derived from those for an ordinary interaction by changing sign. We list below the

matrix elements which occur in the configurations.

tional mixing.

Table II.

considered here and interconfigura-

The non-vanishing elements of the lensor interaction

e ————————————————————————

Row and column

The elments

(3d5/2)*

(34d572)2(2sy)"

(3ds/2)"— (3ds/3)%(2sy)"

(a) J=972
Diagonal elements
I]"- 3510

3
Y P v P

Non-diagonal element

6730, 1 5 1
- 25 gl ogles

Ia)

(3d5/2) 251)"

(3ds5/2)*

(3d5/2)%(2s1)"

(3dsr2)"— (3ds/2)3(2sy )

(3d5/2)3(2s3)' — (3ds/2) ' (283)*

) J=1/2

7, 3, .3
107177124 0 ln

(¢) J=5/2
Diagonal elements
7 7
‘5‘11"21'_-+ 5 Iy

.22
35

18

1n+20

Non-diagonal elements

-5V H-«

—25{‘HI '-“275'121-'2-13}

a0l1+- ‘I«.—a—f,,}

(3d5/2)*

(3d5/2)? (2s3)"

(b) J=3/2
Diagonal elements

3
-2 1

*11“ l“'f‘g-(lqu
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Non-diagonal element

. 8872 1, .5 ‘__1
(3ds/2)*~ (3d5/2)*(25y)" Y 0t ogle—gla)
(e) J=1/2
7 7
(3d5/2}2 (253)' wli-2lzt 1y

2.3 The Matrices of the Mutual Spin-orbit Interaction
The operator ,
—> —

Vso=J (r) (s +5P)L 4
where L= %, 4—- (f"""l) x (P2 - P )
can be written in the form :

Vso=J (M[HED+52) 4 +HEHD) 4ot (O47) 4], @
where 4 =A,+ iAyaA'_=Ax"‘ i/ly- The matrix elements ) for (6) can be easily calculated
with the help of the equations '
rm = )( .:t.m-i‘-l)]! mer . Y g

The K integrals in the (m;, m;)-scheme differ from the J only by the sign of the I,
arising from functions antisymmetric in the space coordinates of the two nucleons. The

reason for it is the same as in the case of the tensor interaction. The results are given
in Table 111,

Table III.  The non-vanishing elements of the mutual spin-orbit interaction

Row and column The elements

(a) J=972

Diagonal elements

(3ds/2)? 12—11—-9-1..%._,31‘l

2 149

(3d5/2)2 (25,)" < Is

EI - 71a-|-

Non-diagonal element

(3d5/2)?~ (3d5/2)*(2s;): %-1/%7 ali-§let 31
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) J =772
(345/2)* (253)" ' 1%_11 +51% fa
- (¢) J=5/2
Diagonal elements
(34ds5/2)° %’ 2t gl"
(3d5/2)* (253)" & 11— Top 1=+ gan!s
(3d5/2)' (293)* ‘gl""%"-'*'g%]"

Non-diagonal elements

2 /7,1, 3, 5
(3d5/2)*— (3d5/2)*(25)" - 5V & gli—glatgle
ai 1, 1, 1
(3d5/2)*(253)'— (3d5/2)' (24)° V2 ogla—glat gl
(d) J=3/2
Diagonal elemnts
(3ds/2) .  fpfi—hat 30
ey CIC

Non-diagonal element

(3d5/2)°— (3d5/2)2(2s)" W—m_g(-é-h - %194- -g Iy)
(e) J=1/2
(3ds/2)? (25y)" ~ Togla+ Lo+l

8. Numerical calculations with some two-body fitting interactions

In this chapter, based on the odd-group model results obtained in chap. 2 are applied

to Na” and Na®, and then we assume two-body nuclear interactions with the Yukawa

potential, hitherto proposed by varions authors to explain

two-body and sometimes
three-body data :
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—_ — —r{ry
y(a2) =G, ) - a2+ (g2 (o N5 @
Vc=*67.8MCV, I’n#]..lsx 10- l:‘cm, 8= 0.157;
—_y { P e | (®
V(lz)'"—y‘{_ 2,_( r/r',):trs':((r/r,) ) ’

Vc=49.35Mev. r V¢=18Mev, r,==L14x10-"cm, r;--1.6x10"%em;

31223631 .-'—5(—;2.:))/"2_ (_‘;l ;"2)

v2)=-r [t ja+m+a- ﬂ)pB}(e;;::')‘F r©37+0.63P4) 55", 1) ]

Vc=2-5.5Mev. 7]=]..4. T -‘»-1.9.)'0 = r¢ = 1.35x10"3cm;
1 4 -y = = —>
VepA2 =V p, *di(e;,‘) I (s 4 3, -
where x = r/rlo r, = 1.18)( 10"“0"‘!, ,:i:—:, (—r;._;:) X ('—);__I;l.) , VCP=24M8V.

The explicit expressions for the Talmi integrals I, for the Yukawa potential have been
given by Talmi, while the corresponding expressions for the singular Yukawe potential in

(8) and the Case & pais potential in (10) are given in Appendix 1. There x =2
‘ ¥1To

and we can fix a value of w(i.e. of u) by using the formula for the nuclear radius ;
R=< 2> =MJ.M¢""'gr"”dr=£4ﬂ ’
o {4
; 00 g2 4y
ox ==1Vf‘fo e~ (l—mﬂ)rﬂ*‘dr
— g @+31-@+5 @D},

and R = 1.4x A% 10-" em,

For the 3d- and 2s-shells. we obtain the same result:

fe=

r"Vf 7 L]

where R = 4.0x 10" e¢m for A = 23,

At first, we calculate the encrgy levels with the nuclear interaction (7) containing only
central forces, discussed by Chew- and Goldberger™, In the (3d5,)* configuration the
ground state has J = 9/2 and the first excited state has J == 3/2 and the state with
J =5/2 is next to it. In the (3d5/2)?(23*)' configuration the state with Jé9/2 is lowest

10) G. F, Chew and M. L. Goldlerger, Phys, Rev. 73, 1409 (1948)
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and above it in order lie the states with J=7/2, 5/2, 3/2 and 1/2. As mentioned in
Chap. 1, we consider interconfigurational mixing of the (3d5/9)%  (3d5;2)*(2sy)' and
(8ed5,2) " (254)2 configurations. In this case, since it has been shown by the (d,p) stripping
reaction that the first excited state with J = 1/2 (2sé)of F? is higher by 0.536 Mev
than the ground state with J = 5/2 (3:!5/9, we assume that in the zeroth order the
(25,)-level of & single nucleon is higher by this value than the'3ds >-Icvel. By calculation

with the off-diagonal elements given in Table I, it turns out that the level order is

9/2, 3/2. 5/2, 7/2 and 1/2.

Next, we calculate the energy levels with the nuclear interaction (8) proposed hy
Christian & Noyest® ‘in lnﬁlyzing high ‘energy ﬁmton-protoh scattering. The central
force acts only on the singlet states of two nucleons owing %o Its Serber exchange
character, while the tensor force acts only on the triplet staics as pointed out in Chap.
2. If we take into account only the singlet interaction, the level order is 5/2, 8/2, 49/2
in the (3d5/2}3 configuration and 1/2, 3/2, 7/2 5/2, 9/2 in the (345/?)’(25!)'. Then we
calculate the contribation of the.tensor interactipn with the singular Yukawa radial
dependence by using Table II and Appendix I (b). The results are :
for the (3d55)° configuration,

Eg}2= F 0.2148, EST/2 = F 0.4531, Es:;l;z = ¥ 0.1427 (Mev) ; for the (3d59)%(2s),

configuration

Egjp= +0.0785, EJ )= % 0.28%3, ET =~ + 0.07, EL = ¥ 0.1541, ET= ¥0.4531 (Mev).
where the upper(or lower) sign corresponds to the upper (or lower) sign of the tensor
term of (8). These contributions have no magnitude enough to change the order of levels.
With the lower sign of the tensor term the level spacing between the first excited state
' with J = 3/2 and the ground state diminishes for both (3ds,,)?! and (3ds ,0) % (2s5,)!
configurations. Thus with the lower sign we consider inter-configs::/rza)tional mix::gz il('l l;)e
same way as in the case of (7). The off-diagonal elements of the tensor force are so
small that they have almost no influence on interconfigurational mixing.The state wilh
J = 1/2 is lowest and the first excited state have J — 3/2, above it lie the states with
J = 5/2, 9/2 and 7/2.

Finally, we investigate the energy levels with the nuclear interaction (9) discussed by

Christian and Harti» in analyzing high energy proton-neutron scattering, and the

12) R. S Ghristian and H. P, Noyes, Phys. Rev. 79, 85 (1951)
12) R. S. Chiistan aud E, W, Hart, Phys. Rev. 77,441 (1950)
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contribution of the mutual spin- .orbit introaction (10) introduced by Case & Pais in order
to preserve charge symmetry of nuclear forces in analyzing high energy nucleon-nucleon
scattering. The level order with the singlet interaction energy (i.e. the centrsl) is the
same as in the case of (8). A change of the central range gives rise to little change in

their sp littings. The contributions of the tensor force have no meagnitude enough to change

the order of levels. The results are :

for (3d5,2)*

T
El,=0.1488, EL,=0.3123, EJ,=0.0963 (Mev) :

for (3d5/ﬂ’(23,})'
T T _ T _ - T
Eg 5= —0.0645, E7/2—0.2091. E5/2— -0.0387, 3/2—-0 133, E, =0.3123 (Mev).
We calculate the contributions of the mutusl spin-orbit interaction by using Table III
and Appendix I (a).
For (3d5,2)*

E§f, = —0.2868, sg;= —0.0646, ESE = —0.3681 (Mev),
and for (3d5/2)2(2s§)'

EGy=—0.2905, ESh= —o.080, ESl= —0.2988, EGl,= —0.1841, E{F=0.150 (Mev).
By adding the Case & Pais spin-orbit force (10) to the interaction (9), also, the levels
in each configuration does not change in order. In interconfigurational mixing the off-

diagonal elements of non-central forces are very smaller than those of the central force,

and then the level order is the same as in the case of the interaction 8).

By the way, we consider the nuolear interaction

vOn=h+rad v () rsa( )],

r/r‘

where V. = —46.1 Mev, y= 0.54, Te = 1.18x10""em, ry= 1.69x 10~"cm.

This interaction has been initially proposed by Pease and Feshbach™ on the e
problem, and improved by Feynman® to explain hxgh energy neutron-proton scattering.
With this interaction, owing to Paul! principle, the contributions to the _energy levels
atise from only the central part. The result Is the same as in above two cases.

Thus, in both jj coupling and its interconfigurational mixing, based on the odd-group

13) P.L.Pease and HFeuhlnch.'i’hyl. Rev, 31.‘142 (1951), 88, 945(1952)
14) R.P Feynman, I.eem?eu on high enorgy pbenomena and meson thories ar C.IT (1962)
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model. we cannot explain the occurrence of the ground state with J = 3/2 by using some
nuclear interactions with Yukawa potential, hitherto proposed by various authors to

explain two-body and sometimes three-body data.

4. Fitting the Na” data
Because of the reasons, mentioned in the end of Chap.1. we shall attempt here. with
interconfigurational mixing of the (3d5/9)% (3d5/9)?(2s))' and (3d5,5)'(2s))® configur-
ations. o relate the known groud state data of Na”™ to the interaction constants of a

mixed interaction.

We shall assume a two-body charge-symmetric interaction of the form

r/a

V(12) = I/;(_‘!;-_E?),[{l_gl'z_;_ (&/2) ((';I . ;")}(e-r/-)

I R ) o PR E R U T Che

where £ L = (ro~r) x (o—p), @ = 1.35% 10" om, & = 1.18x 10~ em.

From fitting the deuteron data™ we may suppose that }_ have a value between about
20 and 30 Mev. Apart from this overall constant Ve (11) contains three parameters
g-x.y which describe the spin dependence of the central force, and the relative
strengths of the tensor and mutual spin-orbit forces, respectively. The purpose of the

calculations of this chapter is to find values for &%y which are consistent with the
ground state data of Na®.

Since we perform the calculations with interconfigurational mixing. we need an
'nppropriatc assumption about how far the 25, level of asingle nucleon is from its 3dso
level in the zeroth approximation. From the ground state data of F** we may suppose
that the %ds5,5 and 2s) levels have very closely the same energy. On the other hand, it
has becn shown by the (d.p) stripping reaction'® that the first excited state with J =='1/2
of " is higher by 0,536 Mev than its ground state with J = 5/2. Hence as a value
AE s — 25) by which the 25y level is higher than the 3d5,; level, we take two

values : 0,2 and 0.5 Mev. If we further assume that V., have an approximate value

between 20 and 30 Mev, the former value of AkK (8dg /2 — 28) (which we shall denote

" 15) H. Feshbach and ], i .
1596 (1954; and J, Schwinger, Phys, Rev. B2, 194 (1851); w. J. Robinson, Phys, Rev. 93,

16) F. Ajeenberg and T. Lauritzen, Rev. Mod. Phys. 24, 321 (1952)
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by Case I) corresponds to ebout 0.008 ¥, the latter (Case II) to 0.02 V. In order.to

calculate the relative level positions, we evaluate the energy matrices of the two-body

interaction (11) and add 4E and 24E to the diagonal elements which correspond to

the(3d5/7)3(2si)‘ and (3d5/2)’(25!)= configurations, respectively, so that ¥ will not enter.

The ground state of Na® is known to have J = 3/2, a magnetic moment of p=21217
n.m., and a quadrupole moment of Q=0.1x10~%em?". The interaction (11) allows mixing
of the two states (3ds,2)%3 {(3d5,2)%(25))'}s2 with J = 3/2. Thus the ground state wave

function ¥, can be written as
Wg—_-ae{F[(Bds/z)’a/z:l+,?9f[{(345/2)2(2a|!)‘}3 2], with a>0 @+ =1 @

The magnetic moment is given by the expectation value of the operator
/;_—E‘(n." 8 + m; &) n.m_, ®

- where m‘; and m_'; are the z-components of .the orbital and spin angular momentum ope-
rators of the nucleons, respectively, and gj and g; are the gyromagnetic ratios of orbit

and spin, respectively.
g =1, gV =0, gF =5.087, gV = —3.827.

Applying the operator (13) to the wave function (12), we obtain for the magnetic

~ moment of Na®
#=287a® 4+ 1.7758° = 1.775 + 1.095a2.
This expression gives, on inserting the known value of x,
@=0.63534, f=+0.77224, “

In order to remove the arbitrariness of sign of B, we can use sign of the quadrupole

momen Q. The quadrupole moment is given by the expectation value of the operator.
0=4G4~ 1), ®
Using the wave function (12), the quadrupole moment of Na? is found to be

0= %2 o5 -,/ Sag], | )

where <rPSN=R'=1¢x 10-%¢m?, and by using the relation o? + f2=1, we plot @
8gainst o in Fig. 1. At @=<0.635, Q is negative or positive according to whether g is

positive or negative. However, since the messured valoe is 4 0.1x10-%cm?, B8 mast be
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negative. Thus.
a = 0.63534. B = —0.77224. (147

By introducing (14" into (16}, we obtain, for the quadrupole moment of Na®, a value

of Q = + 0.066 X 10~*cm?, which is in good agreement with the measured value.

From the tables I, 1I. III and Appendix II
- we can write down the matrix of (11) for

J=23/2 in interconfigurational mixing as 2

- o
T

function of g. z, y, The conditicn that this

102G {cm™)
™

matrix should have an eigen-vector {a. f} then

=]

ol 03 cr %00

»
N
T

results in two equations in the four unknowns

&

g % yand 4, the corresponding eigen-value.

Hence fora fixed g,we can find the parameter
Fig! QUADRUPOLE MOMENT y as a function of x, and plot against x the

levels not only for J = 3/2 matrix but for each J value. At first, for Case I this is done

in each of g = 0.5, 0.67, 0.83 and 1 in Fig. 2. The only regions of x in which the analysis

has sense are those in which the eigen-value 1, to which the ground state properties

of Na? have heen fitted, lies lowest.

Fig. 2. shows that in every case considered here 1 lies lowest in a region of A>T,

decided by a value of . and that ¥y is positive and increases with increasing g, while

f 6f |
i 1
b 4- :
ob— 1 |
- ~2 ;
s, 2| |
S Ta [« £y d
2 . O'Oi " \
Wy s - :
=3 o s
0 - el ! *
Ss z !
2. 2-4i|- l
N = [ I
T 3—5»- {
&, W
g" 8=05 1 8=067
I i ;
T T R TR TR 9 65 10 1§ 1 '
RELATIVE STRENGTH OF TENSOR FORCE, XC RELATIVE STRENGTH OF TEMZE’DORCE.Zi

Fig.2.0. LEVEL PLOTTING AGAINST T Fig.2.b LEVEL PLOTTING AGAINST X
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in this region y is positive 6n the whole, though sometimes negative. On the other
hand, if the spin-orbit term of the kind suggested by Case & Pais is presented in the
nuclear interaction, a sign of y must be negative. The reason for it is as follows. If
the spin-orbit term were attractive in the D, state of the deuteron. its strong singularity
would greatly counteract the centrifugal repulsion. This would allow a large D, admixture
in the deunteron ground state, in contradiction with the information obtained from the
magnetic moment and quadrupole moment measurements. However, if the spin-orbit term
were repulsive in this state, it would add to the already large centrifugal repulsion and
hence have little effect on the deuteron ground state. Therefore, it seems to be most
reasonable to assume the spin-orbit term repulsive in the 2D, state. In order that the
spin-orbit term is repulsive in the 3D, state of the deuteron, y must be negative, because

(fi-t) = —3and §. 1<, O in the D, state of the N-P system and (1/x)d/dx(e~"/x) is
atlractive. ‘

As a result of calculation. we can easily find Xg 8 critical value of », for each value
of gz. and a value of y at Te=xg. |

& L7 B
Case I. a 0.5 0.042 1.172
Case 1. 0.67 0.914 —0.045
Case I ¢ 0.83 1.788 —0.025
Case I d 1.0 2.748 1.069 .



50 H. NAGAT N. HAYANO Y. YAMAJl

y increases linearly with increasing x. Hence, for cases (I. @) and (I. d) y is always
positive and considerably large in the region of z in which 2 lies lowest, while for
cases (I. b) and (L. ¢) there exists a range in which y is negative or zero in this region.
Therefore, for y to be negative or zero, we must take cases (I. b) and (I. ¢). In these

cases, the regions of z in which A lies Jowest and moreover y is negative are :

Case 1. & 0.918 > = > 0.914, O0>y>—0.045
Case I. ¢ 1.784 > x > 1.783, 0>y>—0.025.

Finally, in order to investigate how a change of AE (3d5,3 — 2s)) has an effect on the
behaviour of the levels and the three force constants g, =z, y, assuming AE =0.02V,
(Case 1I) instead of 0.008 V. (Case I), we perform the calculation in the same way as
in case 1. If we take an approximate value of ¥, = 25 Mev, this corresponds to that the
25, —level of a single pucleon is higher by 0.5 Mev than the 3dy 3 level. The level plotting
against x is done in each of g=0.67 and 0.83 in Fig. 8. The result is almost the samc
as in case I and insensitive to the value of AK. which is to be practically smzll. The

ranges of x in which A lies lowest and moreover y is negative are :

T 005 10 5 %D
RELATIVE STRENGTH OF TENSOR FGRCE;.,'JSC
Fi 4 9.6 LEVEL PLOTTING AGAINST X

Case Il. a & = 0.67, 0.916 > x > 0.90, 0>y > —0.347 ; .
Case II. % £=0.83, 1.781 > x > 1.733, 0>y>—1.011.
s.
B
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In order to compare these interactions, fitting the Na?' data. with those interactions
containing only central and tensor forces which have been in detail discussed on the
deuteron problem. we have particularly investigated the interaction with y = 0. According

to cases (I. ¢) and (II. b), we obtain
g = 0.83, x = L78, y =0

Then, if we further take a valuc of V. = 35.5 Mev so as to obtain correct binding energy
of the deuteron £ = 2.23 Mev, wc obtain for it quadrupoele moment () and percentage

of D state I,
Q = 2.60 x 10-7cm?, Pp =42,

Hence we sce that so far as concerns,the triplet interaction. our interaction is fairly
consistent with the deuteron ground state dats. On the other hand, from low energy
neutron-proton scattering it is known o be ;: (1—2g) ~35.5 Mev for r,=1.35 x 10~'3cm,
while ~5.8 Mev in our case. This depth of the singlet potential is too small to explain
the low energy neutron-proton scattering. On the contrary, if we take g = 2.6 to explain
the low energy n-p sc'ntl‘t'cring,' it turns out easily from Figs. 2 and 3 that g is too large
to be adjusted to the deuteron data. The negative y is so small in magnitude that we
cannot attribute the doublet splitting required by the ;j coupling shell model to it. In
this paper do not take into account configurations of nﬁclcons of even group in unfilled

shells, but it is hoped to include these in future work.

Appendix 1. Talmi integrals

(a). I(#) for the Case-Pais Potential

11=l’31[-172;__ 24’7,:—1 - (1—¢(n))e"’]

1._.;%1[1_/2? .‘EL‘.’{.}%’L:& — (2u2+5) (1—-¢(u))e"‘2:|

I“=TV0%[V4"T 4/!"+26#;:;r2“f‘"'—4 ~ 35+ 28u%+4t) (L $()) e |

u:.% Vﬂ}_ éﬂ”+52ﬂ"+3£5u#"+96ﬂ"'—12 ~ (315+ 378112 4- 84 411 4 8 0) (1—¢(u))e"“J
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(). I(n) for the singular Yukaws potential

Lo=2Vol2(1—¢(u))es

Ii=— ;i Volz[l/—l"'l-‘* G+ a2) A—d(m))e” :}

la=— o Vol [1/*‘ (p2+5 ) — (43024 ) A—4 ())e |

Iy=— Vol’[vf—(p“+7nﬂ+qm) 4 Rt B st 0 - d0)er” |
Ii=— Vol{ — W7+ #5+Tp"+—§—n) (}1%5+125 2-i-ﬁ.u“+14/1“-!-ﬂ“)

(1—¢cn))e"’]
where

d(x)= %f:exp(-—t’) dat, A=V ro

Appendix. 1.
(a). Wave functions for (345,)° in jj conpling

¥ 9/2,9/2= (5/2,3/2,1/2)
¥s2,52==1/v"2 {(5/2. 1/2, —1/2) — (5/2, 3/2, —3/2)}
¥ 32,32 = VEL (3/2, 1/2 —1/2) +V/'5721 (5/2,1/2, —3/2) +V/8721 (5/2, 3/2, —5/2) .

(b). Wave functions for (3d5,5)?(2s1,5)' in jj coupling

V92,92 = (5/2,3/2.1/2)

¥12,7/2=1vT70 (5/2.1/2,1/24) — v/ B]9 (5/2,3/2, —1:2)

¥ss2.52=3vTE (3/2,1/2,1/25) —1/5718 (5/2, —1/2,1/2,)

7 3/2,3/2 = 1/2/35(3/2, —1/2,1/25) —31/'3 [1v/35(3/2, 172, —1/24) —V/177(5/2, —3/2, 1:2y)
+VE5/2, —1/2, —1/25)

V2=V {A/2 —1/2,1/20) — (3/2, —3/2,1/2) + (5/2—5/2,1/29) } .



