A GENERALIZATION OF THE HANNER'S INEQUALITY AND THE TYPE 2 (COTYPE 2) CONSTANT OF A BANACH SPACE

By

Aoi Kigami, Yoshiaki Okazaki and Yasuji Takahashi

(Received November 28, 1994)

1. Introduction

We shall extend the Hanner's 2-element inequality in L^{p} to the n-element inequality and introduce the notions of Hanner cotype p (Hanner type p). We determine the cotype 2 (type 2) constant of the Banach space of Hanner cotype p (Hanner type p). But our results are restricted for only real valued L^{p} and the general complex valued cases are left open.

Let $1 \leqq p<\infty,(S, \Sigma, \mu)$ be a measure space with $\mu(S)=1$ and $L^{p}=L^{p}(S, \Sigma, \mu)$. The norm of L^{p} is given by $\|x\|=\left(\int|x(t)|^{p} d \mu(t)\right)^{1 / p}$.

Hanner [3] proved the following inequalities. For $x_{1}, x_{2} \in L^{p}$, it holds that for $1<p \leqq 2$

$$
\left\|x_{1}+x_{2}\right\|^{p}+\left\|x_{1}-x_{2}\right\|^{p} \geqq\left|\left\|x_{1}\right\|+\left\|x_{2}\right\|\right|^{p}+\left|\left\|x_{1}\right\|-\left\|x_{2}\right\|\right|^{p}
$$

and for $2 \leqq p<\infty$

$$
\left\|x_{1}+x_{2}\right\|^{p}+\left\|x_{1}-x_{2}\right\|^{p} \leqq\left|\left\|x_{1}\right\|+\left\|x_{2}\right\|\right|^{p}+\left|\left\|x_{1}\right\|-\left\|x_{2}\right\|\right|^{p} .
$$

Remark that, by the triangular inequality, $\left\|x_{1}+x_{2}\right\| \leqq\left\|x_{1}\right\|+\left\|x_{2}\right\|$ and $\left\|x_{1}-x_{2}\right\| \geqq$ $\left|\left\|x_{1}\right\|-\left\|x_{2}\right\|\right|$. If we neglect the second term of the right hand side, then a special case of the Clarkson's inequality [1] follows. We can rewrite the Hanner's inequality as follows. Let $\varepsilon_{1}, \varepsilon_{2}$ be the independent Rademacher random variables with the distribution $\varepsilon_{i}= \pm 1$ with probability $1 / 2$. Then the Hanner's inequality is given by

$$
\begin{array}{ll}
\mathrm{E}\left\|\sum_{i=1}^{2} \varepsilon_{i} x_{i}\right\|^{p} \geqq \mathrm{E} \mid \sum_{i=1}^{2} \varepsilon_{i}\left\|x_{i}\right\|^{p} & \text { for } 1<p \leqq 2, \text { and } \\
\mathrm{E}\left\|\sum_{i=1}^{2} \varepsilon_{i} x_{i}\right\|^{p} \leqq \mathrm{E} \mid \sum_{i=1}^{2} \varepsilon_{i}\left\|x_{i}\right\|^{p} & \text { for } 2 \leqq p<\infty,
\end{array}
$$

where E means the expectation with respect to the Rademacher distribution.
We shall extend the Hanner's inequality naturally as follows. Let $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}$ be the independent Rademacher sequence and $x_{1}, x_{2}, \cdots, x_{n} \in L^{p}$. We show that if all x_{i} are real valued then it holds that

$$
\begin{array}{ll}
\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p} \geqq \mathrm{E} \mid \sum_{i=1}^{n} \varepsilon_{i}\left\|x_{i}\right\|^{p} & \text { for } 1 \leqq p \leqq 2, \text { and } \\
\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p} \leqq \mathrm{E} \mid \sum_{i=1}^{n} \varepsilon_{i}\left\|x_{i}\right\|^{p} & \text { for } 2 \leqq p<\infty .
\end{array}
$$

The general complex valued cases are left open.
Let E be a Banach space with norm $\left\|\|, 0<s<\infty\right.$ and let $\left\{\varepsilon_{i}\right\}$ be the independent Rademacher sequence. Then E is called of cotype 2 if there exists a constant $C_{2, s}>0$ such that

$$
\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right)^{1 / 2} \leqq C_{2, s}\left(\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{s}\right)^{1 / s}
$$

for every n and every $x_{1}, x_{2}, \cdots, x_{n} \in E$. Denote by $C_{2, s}(E)$ the smallest constant in the inequality. $C_{2, s}(E)$ is called the cotype 2 constant of E. The Banach space E is called of type 2 if there exists a constant $T_{s, 2}>0$ such that

$$
\left(\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{s}\right)^{1 / s} \leqq T_{s, 2}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right)^{1 / 2}
$$

for every n and every $x_{1}, x_{2}, \cdots, x_{n} \in E$. Denote by $T_{s, 2}(E)$ the smallest constant in the inequality. $T_{s, 2}(E)$ is called the type 2 constant of E. It is well known that L^{p} is of cotype 2 for $1 \leqq p \leqq 2$ and of type 2 for $2 \leqq p<\infty$, see Hoffmann-Jørgensen [4], Lindenstrauss and Tzafriri [5].

Let E be a Banach space with norm $\|\|$. We say that E is of Hanner cotype $p(1 \leqq p \leqq 2)$ if it holds that

$$
\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p} \geqq \mathrm{E} \mid \sum_{i=1}^{n} \varepsilon_{i}\left\|x_{i}\right\|^{p}
$$

for every n and every $x_{1}, x_{2}, \cdots, x_{n} \in E$, where $\left\{\varepsilon_{i}\right\}$ are independent Rademacher random variables. We say that E is of Hanner type $p(2 \leqq p<\infty)$ if it holds that

$$
\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p} \leqq \mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i}\left\|x_{i}\right\|\right|^{p}
$$

for every n and every $x_{i}, x_{2}, \cdots, x_{n} \in E$.
We shall show that each Banach space of Hanner cotype $p(1 \leqq p \leqq 2)$ is of cotype 2 and determines the cotype 2 constant $C_{2, p}(E)$ explicitly. We shall show also that each Banach space of Hanner type $p(2 \leqq p<\infty)$ is of type 2 and determines the type 2 constant $T_{p, 2}(E)$ explicitly. These constants are in fact identical to the best constants in the Khinchin's inequality:

$$
\begin{aligned}
C_{2, p}(\mathbb{R})^{-1}\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2} & \leqq\left(\mathrm{E}\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right|^{p}\right)^{1 / p} \\
& \leq T_{p, 2}(\mathbb{R})\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2} .
\end{aligned}
$$

that is, identical to the cotype 2 and the type 2 constants of the real numbers \mathbb{R}. The correct values of $C_{2, p}(\mathbb{R})$ and $T_{p, 2}(\mathbb{R})$ are determined by Haagerup [2] and Szarek [6].

2. Generalization of Hanner's Inequality

Lemma 1. Let p be $1 \leqq p<\infty, \varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}$ be independent Rademacher random variables and $u_{1}, u_{2}, \cdots, u_{n}$ be real numbers. then it holds that $\mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i} u_{i}\right|^{p}=$ $\mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i}\right| u_{i}| |^{p}$.

A Generalization of the Hanner's Inequality and the Type 2 (Cotype 2) Constant of a Banach Space 31

Proof. Since $\left\{\varepsilon_{i}\right\}$ are symmetric and independent, $\left\{u_{i} \varepsilon_{i}\right\}$ and $\left\{\left|u_{i}\right| \varepsilon_{i}\right\}$ have the same distribution, hence the assertion follows.
Lemma 2 (Hanner [3]). Let $\alpha \geqq 0$ and $u \geqq 0$. Let $f(u)$ be

$$
f(u)=\left|u^{1 / p}+\alpha\right|^{p}+\left|u^{1 / p}-\alpha\right|^{p} .
$$

If $1 \leqq p \leqq 2$, then $f(u)$ is a convex function, and if $2 \leqq p<\infty$, then $f(u)$ is a concave function.

Proof. If $p=1$, then $f(u)$ is convex since

$$
f(u)= \begin{cases}2 \alpha & \text { for } 0 \leqq u \leqq \alpha \\ 2 u & \text { for } u \geqq \alpha\end{cases}
$$

In the case where $p>1$, the second defivative $f^{\prime \prime}(u)$ is given by

$$
f^{\prime \prime}(u)=\alpha(p-1) / p \cdot u^{1 / p-2}\left(\left|u^{1 / p}-\alpha\right|^{p-2}-\left|u^{1 / p}+\alpha\right|^{p-2}\right)
$$

which implies the assertions.
Lemma 3. Let $u_{1}, u_{2}, \cdots, u_{n} \geqq 0$ and let $F\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ be

$$
F\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i} u_{i}^{1 / p}\right|^{p} .
$$

Then regarding F as a function of each u_{i}, F is convex for $1 \leqq p \leqq 2$ and F is concave for $2 \leqq p<\infty$.

Proof. We can write

$$
F\left(u_{i}\right)=1 / 2 \cdot \mathrm{E}\left[\left|u_{i}^{1 / p}+\left(\sum_{j \neq i} u_{j}^{1 / p} \varepsilon_{j}\right)\right|^{p}+\left|u_{i}^{1 / p}-\left(\sum_{j \neq i} u_{j}^{1 / p} \varepsilon_{j}\right)\right|^{p}\right] .
$$

By Lemma 2, the integrant of the right hand side is a convex (resp. concave) function of u_{i} for $1 \leqq p \leqq 2($ resp. for $2 \leqq p<\infty)$, hence so is F.

Theorem 1. Let n be a natural number, $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}$ be independent Rademacher random variables and $x_{1}, x_{2}, \cdots, x_{n}$ be real valued functions in L^{p}.
(1) If $1 \leqq p \leqq 2$, then it holds that

$$
\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p} \geqq \mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i}\left\|x_{i}\right\|\right|^{p}
$$

(2) If $2 \leqq p<\infty$, then it holds that

$$
\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p} \leqq \mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i}\left\|x_{i}\right\|\right|^{p}
$$

Proof. (1) Suppose that $1 \leqq p \leqq 2$. By Lemma 1 , we have

$$
\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p}=\mathrm{E}\left(\int_{s}\left|\sum_{i=1}^{n} \varepsilon_{i}(\omega) x_{i}(t)\right|^{p} d \mu(t)\right)
$$

$$
\begin{aligned}
& =\int_{s} \mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i}(\omega) x_{i}(t)\right|^{p} d \mu(t) \\
& =\int_{s} \mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i}(\omega)\right| x_{i}(t)| |^{p} d \mu(t) \\
& =\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i}\left|x_{i}\right|\right\|^{p},
\end{aligned}
$$

where $\left|x_{i}\right|(t)=\left|x_{i}(t)\right|$. So we can assume in advance that each x_{i} is non-negative, $x_{i}(t) \geqq 0$. By Lemma 3 and by the Jensen's inequality, we have

$$
\begin{aligned}
& \int_{s} F\left(x_{1}(t)^{p}, x_{2}(t)^{p}, \cdots, x_{n}(t)^{p}\right) d \mu(t) \\
& \quad \geqq F\left(\int_{s} x_{1}(t)^{p} d \mu(t), \int_{s} x_{1}(t)^{p} d \mu(t), \cdots, \int_{s} x_{1}(t)^{p} d \mu(t)\right),
\end{aligned}
$$

where F is the function given in Lemma 3 (we have also used the assumption $\mu(S)=1)$. This is the inequality desired.
(2) The case where $2 \leqq p<\infty$ is obtained by the manner same to the case (1). In this case, F is concave and we obtain the converse inequality

$$
\begin{aligned}
& \int_{s} F\left(x_{1}(t)^{p}, x_{2}(t)^{p}, \cdots, x_{n}(t)^{p}\right) d \mu(t) \\
& \quad \leqq F\left(\int_{s} x_{1}(t)^{p} d \mu(t), \int_{s} x_{1}(t)^{p} d \mu(t), \cdots, \int_{s} x_{1}(t)^{p} d \mu(t)\right)
\end{aligned}
$$

by the Jensen's inequality. This completes the proof.
Remark. In the case where $p=1$, Hanner's 2 -element inequality

$$
\left\|x_{1}+x_{2}\right\|+\left\|x_{1}-x_{2}\right\| \geqq\left\|x_{1}\right\|+\left\|x_{2}\right\|+\left|\left\|x_{1}\right\|-\left\|x_{2}\right\|\right|
$$

does not imply any geometric information of the space L^{1}. In fact, this inequality holds for every Banach space. In fact, if we suppose that $\left\|x_{1}\right\| \geqq\left\|x_{2}\right\|$ without loss of generality, then this inequality is a consequence of the triangular inequality. On the contrary, our n-element inequality

$$
\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\| \geqq \mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i}\left\|x_{i}\right\|\right|
$$

does not hold for any Banach space. If this n-element inequality is valid in a Banach space E, then E is of cotype 2 since \mathbb{R} is of cotype 2 as follows:

$$
\begin{aligned}
\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\| & \geqq \mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i}\left\|x_{i}\right\|\right| \\
& \geqq C_{2,1}(\mathbb{R})^{-1}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right)^{1 / 2}
\end{aligned}
$$

3. Hanner Type and Hanner Cotype of Banach space

Theorem 2. (1) Let E be a Banach space of Hanner cotype $p(1 \leqq p \leqq 2)$. Then E is of cotype 2 and the cotype 2 constant $C_{2, p}(E)$ coincides with $C_{2, p}(\mathbb{R})$, where $C_{2, p}(\mathbb{R})$ is the best constant in the Khinchin's inequality.
(2) Let E be a Banach space of Hanner type $p(2 \leqq p<\infty)$. Then E is of type 2 and the type 2 constant $T_{p, 2}(E)$ coincides with $T_{p, 2}(\mathbb{R})$, where $T_{p, 2}(\mathbb{R})$ is the best constant in the Khinchin's inequality.

Proof. (1) By Theorem 1 and by the Khinchin's inequality, we have

$$
\begin{aligned}
\left(\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p}\right)^{1 / p} & \geqq\left(\mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i}\left\|x_{i}\right\|\right|^{p}\right)^{1 / p} \\
& \geqq C_{2, p}(\mathbb{R})^{-1}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right)^{1 / 2}
\end{aligned}
$$

This implies, by the minimality of $C_{2, p}(E)$, that $C_{2, p}(E) \leqq C_{2, p}(\mathbb{R})$. Conversely, if we imbedd \mathbb{R} isometrically into E, we have $C_{2, p}(E) \leqq C_{2, p}(\mathbb{R})$ by the minimality of $C_{2, p}(\mathbb{R})$.
(2) By Theorem 1 and by the Khinchin's inequality, we have

$$
\begin{aligned}
\left(\mathrm{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p}\right)^{1 / p} & \leqq\left(\mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i}\left\|x_{i}\right\|\right|^{p}\right)^{1 / p} \\
& \leqq T_{p, 2}(\mathbb{R})\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right)^{1 / 2} .
\end{aligned}
$$

By the minimality of $T_{p, 2}(E)$, it follows that $T_{p, 2}(E) \leqq T_{p, 2}(\mathbb{R})$. If we imbedd \mathbb{R} isometrically into E, we have $T_{p, 2}(\mathbb{R}) \leqq T_{p, 2}(E)$ by the minimality of $T_{p, 2}(\mathbb{R})$. This completes the proof.

Corollary. Let $L^{p}(\mathbb{R})$ be the space of all real functions in L^{p}.
(1) If $1 \leqq p \leqq 2$, then $C_{2, p}\left(L^{p}(\mathbb{R})\right)=C_{2, p}(\mathbb{R})$.
(2) If $2 \leqq p<\infty$, then $T_{p, 2}\left(L^{p}(\mathbb{R})\right)=T_{p, 2}(\mathbb{R})$.

4. Concluding Remarks

Our extensions of Hanner's inequality (Theorem 1) are valid only for real functions in L^{p}. The original result of Hanner is valid for complex valued case. So the extension of Theorem 1 to the complex valued case is left open. To show the complex valued case it is sufficient (and also necessary) to prove the next inequalities in \mathbb{C}. Let $z_{1}, z_{2}, \cdots, z_{n}$ be complex numbers in \mathbb{C}. Then
(1) if $1 \leqq p \leqq 2$, then $\mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i} z_{i}\right|^{p} \geqq \mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i}\right| z_{i}| |^{p}$,
(2) if $2 \leqq p<\infty$, then $\mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i} z_{i}\right|^{p} \leqq \mathrm{E}\left|\sum_{i=1}^{n} \varepsilon_{i}\right| z_{i}| |^{p}$.

For example, in the case where $n=3$

$$
\begin{aligned}
& \left|z_{1}+z_{2}+z_{3}\right|^{p}+\left|z_{1}+z_{2}-z_{3}\right|^{p}+\left|z_{1}-z_{2}+z_{3}\right|^{p}+\left|z_{1}-z_{2}-z_{3}\right|^{p} \\
& \quad \geqq(\leqq)| | z_{1}\left|+\left|z_{2}\right|+\left|z_{3}\right|\right|^{p}+\left|\left|z_{1}\right|+\left|z_{2}\right|-\left|z_{3}\right|\right|^{p} \\
& \quad+\left|\left|z_{1}\right|-\left|z_{2}\right|+\left|z_{3}\right|\right|^{p}+\left|\left|z_{1}\right|-\left|z_{2}\right|-\left|z_{3}\right|\right|^{p} .
\end{aligned}
$$

According to the computer serch, these inequalities seem true.

References

[1] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
[2] U. Haagerup, The best constants in the Khinchine inequality, Studia Math. 70 (1982), 231-283.
[3] O. Hanner, On the uniform convexity of L^{p} and ℓ^{p}, Arkiv för Mat. 3 (1956), 239-244.
[4] J. Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Aarhus Univ. Preprint Series 15 (1972/73), 1-96.
[5] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Springer-Verlag, Berlin-HeidelbergNew York, 1979.
[6] S. J. Szarek, On the best constants in Khinchin inequality, Studia Math. 58 (1976), 197-208.

Department of Control Engineering and Science Kyushu Institute of Technology
Kawazu, Iizuka 820, Japan
Department of Control Engineering and Science Kyushu Institute of Technology
Kawazu, Iizuka 820, Japan
and
Department of System Engineering Okayama Prefectural University
Kuboki, Soja 719-11, Japan

