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1. Introduction

We shall extend the Hanner’s 2-element inequality in L” to the n-element inequality
and introduce the notions of Hanner cotype p (Hanner type p). We determine the
cotype 2 (type 2) constant of the Banach space of Hanner cotype p (Hanner type p).
But our results are restricted for only real valued L? and the general complex valued
cases are left open.

Let 1 <p< oo, (S, Z, ) be a measure space with u(S) =1 and L" = L*(S, I, w).
The norm of L? is given by [|x| = ([ |x(t)]”du(t))''".

Hanner [3] proved the following inequalities. For x,, x,eL”, it holds that for
l<p=2

Ixy + %217 + [y = X217 Z HIxg |+ I P+ Tl = Tz P
and for 2<p<
Ix; 4 %17+ xy = X 1P S HIxg |+ I P+ Tlx = Iz P

Remark that, by the triangular inequality, [|x; + x| < |x; | + Ix,[l and [x; — x;] 2
Ix, Il = lIlxz]l]. If we neglect the second term of the right hand side, then a special
case of the Clarkson’s inequality [1] follows. We can rewrite the Hanner’s inequality
as follows. Let ¢, &, be the independent Rademacher random variables with the
distribution ¢, = + 1 with probability 1/2.  Then the Hanner’s inequality is given by

EIY2 exl?ZEIY . &lxllP  for 1<p=<2 and
BIYE ex P SEIYZ &lxlPP  for 25p<oo,

where E means the expectation with respect to the Rademacher distribution.

We shall extend the Hanner’s inequality naturally as follows. Let &, &5, ++,&, be
the independent Rademacher sequence and x,, X,,-,X,€LF. We show that if all x;
are real valued then it holds that

EIY ex|?ZE[X i &lxlll” for 1<p<2 and
E|Y!  exlPSER L alxll?  for 2=p <.
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The general complex valued cases are left open.

Let E be a Banach space with norm | ||, 0 < s < oo and let {¢;]} be the independent
Rademacher sequence. Then E is called of cotype 2 if there exists a constant Cy>0
such that

Qi 1P < Co (BILE e |9

for every n and every x;, x,,---,x,€ E. Denote by C, ((E) the smallest constant in
the inequality. C, ((E) is called the cotype 2 constant of E. The Banach space E is
called of type 2 if there exists a constant T, , > 0 such that

(E ”Z:‘=1 & X; ”s)l/s = 7;,2(2?:1 I x; ”2)1/2

for every n and every x,, x,,---,x,e E. Denote by T, ,(E) the smallest constant in
the inequality. T, ,(E) is called the type 2 constant of E. It is well known that L?
is of cotype 2 for 1 <p <2 and of type 2 for 2 < p < 0, see Hoffmann-Jorgensen
[4], Lindenstrauss and Tzafriri [5].

Let E be a Banach space with norm | |. We say that E is of Hanner cotype
p (1 £p =2 if it holds that

EBIYI  ex P Z EIY &lx] P

for every n and every x,, x,, -, x,€ E, where {e;} are independent Rademacher random
variables. We say that E is of Hanner type p (2 < p < o0) if it holds that

BIY_ axll” SE|XI allx|?

for every n and every x;, x,,---,x,€E.

We shall show that each Banach space of Hanner cotype p (1 <p<2)is of
cotype 2 and determines the cotype 2 constant C, ,(E) explicitly. We shall show also
that each Banach space of Hanner type p (2 <p < o) is of type 2 and determines
the type 2 constant T,,(E) explicitly. These constants are in fact identical to the
best constants in the Khinchin’s inequality:

C2 (R NT I, @) S EIX0 ael?)”
< T, (R, ad)'.

that is, identical to the cotype 2 and the type 2 constants of the real numbers R. The
correct values of C, ,(R) and T, ,(R) are determined by Haagerup [2] and Szarek [6].

2. Generalization of Hanner’s Inequality

LemMMA 1. Let p be 1 <p < w, &, &,--,¢, be independent Rademacher random
variables and wuy, u,,---,u, be real numbers. then it holds that E|Z:’:1 gulP =

E|Z?:1 & lul 7.
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PrROOF. Since {¢;} are symmetric and independent, {u;e;} and {|u;|e;} have the
same distribution, hence the assertion follows.

LEMMA 2 (Hanner [3]). Let « 20 and u=0. Let f(u) be
fw)=u?+ al” + |u'/? —af’.

If 1 <p <2, then f(u) is a convex function, and if 2 < p < oo, then f(u) i$ a concave
function.

Proor. If p =1, then f(u) is convex since

20 for 02u=<a
u) = - =
fw {214 for uz=a.

In the case where p > 1, the second defivative f”(u) is given by
[ =alp— 1)/p- w7 2(|u'P — a|P 72 — |ul/? + P73,
which implies the assertions.
LEmMMA 3. Let uy, u,,---,u, 20 and let F(u,, u,,---,u,) be
Fluy, ug,--,uy) = BIY 7 i/ PIP.

Then regarding F as a function of each u;, F is convex for 1 < p <2 and F is concave
for 2<p < 0.

ProOF. We can write
Fu)=1/2-E[lul? + (¥, ,u}Pep)l? + [ul/? — (X ;.,u;7e)IP1.

By Lemma 2, the integrant of the right hand side is a convex (resp. concave) function
of u; for 1 < p <2 (resp. for 2 < p < ), hence so is F.

TueOREM 1. Let n be a natural number, ¢,, ¢,,-+-,¢, be independent Rademacher
random variables and x,, x,,---,x, be real valued functions in LF.

(1) If 1 £p <2, then it holds that

E (Y exl? ZEI I &l
(2) If 2 £ p < oo, then it holds that

EY exlP SERX [ el
ProOF. (1) Suppose that 1 <p <2. By Lemma 1, we have

E|Y_ axll” = E(f 2o al@)x () du(ﬂ)
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= f E|Y7_, &i(0)x(0)[P du(t)

= f E[Y -, &) x,(0)] 17 dpu(t)

=EIY7_ alxllP,

where |x;|(¢) = |x;(t)|. So we can assume in advance that each x; is non-negative,
x;(t) 20. By Lemma 3 and by the Jensen’s inequality, we have

J Fley (), %200+, x, (1)) dua(t)

g F(\[ xl(t)pd.u(t)’ j xl(t)pdl't(t)"“’ J‘ xl(t)pd:u(t)>=

where F is the function given in Lemma 3 (we have also used the assumption
u(S) =1). This is the inequality desired.

(2) The case where 2 < p < oo is obtained by the manner same to the case
(1). In this case, F is concave and we obtain the converse inequality

J Fx(t)", x,(t)7, -+, x, (1)) dp(2)

= F(J x ()P du(t), fxl(t)"du (t),-",f xl(t)"dﬂ(l)>,

by the Jensen’s inequality. This completes the proof.
REMARK. In the case where p =1, Hanner’s 2-element inequality
Xy + x4+ l1xy =l 2 [x 0 + Ixall + x| — Ixa )|

does not imply any geometric information of the space L'. In fact, this inequality
holds for every Banach space. In fact, if we suppose that ||x, || = ||x,| without loss
of generality, then this inequality is a consequence of the triangular inequality. On
the contrary, our n-element inequality

EIYr exill ZE[Y e llxll

does not hold for any Banach space. If this n-element inequality is valid in a Banach
space E, then E is of cotype 2 since R is of cotype 2 as follows:

E ||Z:!=1 x| 2 E |Z?:1 & |l x|
2 Cy (R (T X1
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3. Hanner Type and Hanner Cotype of Banach space

THEOREM 2. (1) Let E be a Banach space of Hanner cotype p (1 < p =<2). Then
E is of cotype 2 and the cotype 2 constant C, ,(E) coincides with C, ,(R), where
C, ,(R) is the best constant in the Khinchin’s inequality.

(2) Let E be a Banach space of Hanner type p (2 < p < o). Then E is of type
2 and the type 2 constant T, ,(E) coincides with T, ,(R), where T, ,(R) is the best
constant in the Khinchin’s inequality.

ProoF. (1) By Theorem 1 and by the Khinchin’s inequality, we have

EI X exiD? z EIX allx )
2 Cy (R )2,

This implies, by the minimality of C, ,(E), that C, ,(E) £ C, ,(R). Conversely, if we
imbedd R isometrically into E, we have C, ,(E) < C, ,(R) by the minimality of C, ,(R).
(2) By Theorem 1 and by the Khinchin’s inequality, we have

(X0 a2 < BIXE el 7)Y
< T R)(E Il 2.

By the minimality of T,,(E), it follows that T,,(E) < T,,(R). If we imbedd R
isometrically into E, we have T,,(R) < T, ,(E) by the minimality of T, ,(R). This
completes the proof.

COROLLARY. Let LP(R) be the space of all real functions in L.
() If 1 <p<2 then C, (LP(R) = C, ,(R).
(2) If 2<p< oo, then T,,(L"(R)) = T, »(R).

4. Concluding Remarks

Our extensions of Hanner’s inequality (Theorem 1) are valid only for real functions
in LP. The original result of Hanner is valid for complex valued case. So the
extension of Theorem 1 to the complex valued case is left open. To show the complex
valued case it is sufficient (and also necessary) to prove the next inequalities in C. Let
Z(, Z3,--,Z, be complex numbers in C. Then

(1) if 1<p=<2 then E[Y1 ezl 2 EIXL &lzll,

(2) if 2<p< oo, then E|Y!_ &zIP S E|Y1_ &lzll”.

For example, in the case where n =3

|2y + 25 + 2317 + |z + 2, — 237 + |2y — 22 + 23)P + 2y — 2, — z5]°
2 () lzy |+ lzal + |23l P + 1z, ] + 122] = 25117

+ lzil = 22l +Hzal P+ Hzo | = lz2] = (23] 7.
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According to the computer serch, these inequalities seem true.
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