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1. Introduction

In the preceding paper [2], we extended the Hanner’s 2-element inequality in L?
to the n-element inequality and determined the type 2 (cotype 2) constant of
L?. However the main result in [2] was restricted to the real valued functions in L?
and the general complex case was left open. In this paper, we prove that the n-element
version of the Hanner’s inequality is also valid for the complex valued LP-functions.
Let ¢, &,,--,¢, be the independent Rademacher sequence and x,, x,,---x,eL?. We
prove that

E”z:lzleixi”ngIZ:;l & |l x; 117 for 1 <p<2, and
E[Y!  exP SEIY &lxllP  for 2<p<oo.

We prove a heredity property of Hanner cotype p(1 <p<2). If X is a Banach
space of Hanner cotype p, then L?(X) is of Hanner cotype p.

2. Hanner’s inequality

Let 1 £p < oo, (S, 2, u) be a probability space and L? = L”(S, 2, y). The norm
of L” is given by |x| =(flx(t)[?du(t))*’?. Hanner [1] proved the following
inequalities. For x;, x,eL?, it holds that for 1 <p <2

xy + X217+ lxy = X207 2 [llxy [ + 1x2 17 + [ lxg | = xa 17
and for 2<p<

g + X217 + g — X2 7 = lxg |+ X217+ Xl = ez P
In the case where p = 1, the Hanner’s inequality is just the triangular inequality. The
case p=2 is

Ixy + 212 + 1y =32 12 Z [llxg lf + o 12+ Tl | = lxz 12

the parallelogram law. The Hanner’s inequality is rewritten as follows. Let ¢,, ¢, be
the independent Rademacher random variables with the distribution ¢ = £ 1 with
probability 1/2. Then the Hanner’s inequality is given by

EIY? exlPZEIY2 &llx )P for 1<p<2 and
EIY. ex|?P SEY &llx ]l for 2<p< oo,
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where E means the expectation with respect to the Rademacher distribution.

In the preceding paper [2], we extended the Hanner’s 2-element inequality to the
n-element inequality as follows. Let &, ¢;,---,¢, be the independent Rademacher
sequence and X, X,,--x,€L”. Then if each x; is real valued function, then it holds
that

EY! ex P = EYT_  &lx|? for 1 <p<2, and
EIYI exllP SERN T elxl|P for 2<p<oo.

The general complex valued cases were left open in [2]. In this paper, we show that
the Hanner’s n-element inequality is valid also for complex valued functions
Xy, Xy X,€LP. To show the general complex case, we use the full real version of
the above Hanner’s n-element inequality.

LemMa 1. Let g, and g, be the independent Gaussian random variables with
mean 0 and variance 1 on a probability space (2, P). Let ¢:C — L?(2, P; R) be,
for z=u+ iveC,

@(2) (@) = ¢,(ug; (W) + vg,(w)),

where LP(Q, P; R) is the real valued L? space and c, be the constant ¢, = (f1g, (w)?
dP(w))"'/?. Then it hold that

1. ¢ is real linear, that is, @(sz, + 1z,) = s@(z,) + t@(z,) for z;, z,€C and s, teR,
and

2. ¢ is isometry, that is,

10@) |l Lo = ([10(2) (@) dP(@)? = |z| = J/u? + v

Proor. 1. is clear. To show 2, we calculate the LP-norm of ¢(z).
@) F = chfloug, (@) + vga ()P dP(w)
_(p(\/u +vz)PJ\
= (Ju? + o2y

where we have used the fact that the distributions of sg; +tg, (s> +t> =1, 5, teR)
and ¢, are identical, hence the last integral is ¢, ”. This proves the Lemma.

Lemma 2. Let p be 1 <p < o, ¢, &,,¢, be independent Rademacher random
variables and z,, z,,---,z, be complex numbers. then it holds that for 1 = p = 2

EIY i ezl Z EIY &lzll”,

and for 2 <p<
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E|Z?=18izi|p = EIZ?=1 g lzil .

PrOOF. Let ¢ be the mapping given in Lemma 1. We prove only the case
1<p<2 The case 2 <p < oo is analogous. We have

ElY i ezl =Elo(X i, &z)l”
=E[Y]_ eo)”
ZER . ele@)lI1
=EI} &lzll?,

where the above inequality is the Hanner’s inequality for the real L”-functions {¢(z,)}
(see [2]) and the last equality follows from Lemma 1.

LemMA 3 (Hanner [1]). Let « =20 and u=0. Let f(u) be
S =1u'? + ol + [u'/P — o

If 1 <p <2, then f(u) is a convex function, and if 2 < p < oo, then f(u) is a concave
function.

Lemma 4. Let uy, up,---,u, =0 and let F(u,, u,,---,u,) be
F(ul’ ”29"3“") = E|2?=18iui1/p|p‘

Then regarding F as a function of each u;, F is convex for 1 <p <2 and F is concave
for 2 < p < 0.

Proor. The Lemma follows from Lemma 3. See also Kigami, Okazaki and
Takahashi [2].

THEOREM 1. Let n be a natural number, ¢, &,,+-,¢, be independent Rademacher
random variables and x,, x,,---,x, be functions in LF.
() I 1< p<=2, then it holds that

EIY0 exil” 2 BIY I ellx P
(2) If 2 <p < oo, then it holds that
EIY L ex P < ERN alixllP.
Proor. (1) Suppose that 1 < p<2. By Lemma 2, we have
E Y exl? = E(f 120 e@)xi(0)P dult))
:‘[ E|Z,~—18‘(w)x‘(t)|pdﬂ(t)
2 LEIYI, e Xl 17 du()
=E ”Zi=1 8i|xil Hp’
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where |x;|(t) =|x;(t)]. So we can suppose that each x; is a non-negative function,
x{(t)2 0. By Lemma 3 and by the Jensen’s inequality, we obtain that

ISF(xl(t)p’ xz(t)pa"'>xn(t)p) d.u(t)
g F(j‘sxl(t)pd#(tx _fs xz(t)pdﬂ(t),"',js xn(t)pd,u(t))’

where F is the function given in Lemma 4. This proves (1).
(2) The case where 2 <p < oo is obtained by the manner same to the case
(1). In this case, F is concave and we obtain the converse inequality

§oF ey (0, 20, %, (00) da(t)
< F(f,x, 0 du(0), [, dp(t), -, §, %, ()" du(n)),
by the Jensen’s inequality. This completes the proof.
REMARK. In the case where p = 1, Hanner’s 2-element inequality
Fxy + X200 + 1%y = x2 0l 2 x| + I lF+ 1ixg | — X2

is nothing but the triangular inequality. So this 2-element inequality is valid in all
Banach spaces. But the n-element inequality

BN exll? ZEIX] eillx P

is not necessarily valid in all Banach spaces. If this n-element inequality is valid for
every n, then the Banach space is of cotype 2, see [2].

3. Hanner type and Hanner cotype

Let X be a Banach space. Denote by L?(X) = L*(S, Z, u; X) the Banach space
of X-valued L?-functions f(t): $ » X with norm

1/p
Ilfllu(xﬁq IIf(t)Hi-du(t)> :
S

Let X be a Banach space with norm || ||. We say that X is of Hanner cotype
p (1 =p<2)if it holds that

Bl exl® ZEIX &llx P

for every n and every x,, x,,---,x,€ X, where {¢;} are independent Rademacher random
variables. We say that X is of Hanner type p (2 < p < o) if it holds that

BIY i exl? SE[Xi allx| P

for every n and every x,, x,,---,x,€ X. By Theorem 1, L” is of Hanner cotype p for
1 < p <2 and of Hanner type p for 2 < p < w.
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THEOREM 2. If X is a Banach spéce of Hanner cotype p (resp., Hanner type p),
then LP(X) is of Hanner cotype p (resp., Hanner type p).

Proor. For f,, f5, -, f,€ LP(X), we have

EIYT efill oo = EJIY I, eifi@) 1P du(e))
=[EIY, &N du@)
2 [N &l /117 du)
=E(JIX &l L1 du()
=EIY &Filllre
2 EIY0 &l Filire?

where the two inequalities above follow from the fact that X and LP(R) are of Hanner
cotype p (the assumption on X and Theorem 1) and F; is the real function
F,(t) = | f:(t)|. This completes the proof.

PrOPOSITION 1. Let 1 £p<r<2 Then L is of Hanner cotype p and LP(L")
is of Hanner cotype p. B

ProoOF. L' is isometrically imbeddable into L? since 1 < p < r < 2, so the assertion
follows.
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