# A DETERMINATION OF MOTIONS IN THE CENTRAL FORCE PROBLEM THROUGH CONSERVED QUANTITIES 

Fumiyo Fujiwara, Toshiharu Ikeda and Fumitake Mimura

(Received November 27, 1996)

## 1. Introduction

As an illustration of the new operative method (Mimura et al. [4,5]) which grew up from the application of a suitable version of Noether's theorem [6] to the composite variational principle (Caviglia [1,2]), it was derived a couple of independent conserved quantities (first integrals) for the motions of the following particle in the central force problem (see Whittaker [7], p. 243):

A single particle moving in a plane under a central force directed towards a fixed center in a resisting medium, where the force is proportional to the particle's distance from the center and the medium imposes a retarding force equal to $\beta$ times the velocity.

The origin is placed on the center of force and the position of particle at time $t$ is defined by polar coordinates $(r(t), \varphi(t))$ to have the differential equations of the motion (e.g. Djukic [3]):

$$
\begin{aligned}
& m\left(\ddot{r}-r \dot{\varphi}^{2}\right)+\beta \dot{r}+\sigma r=0 \\
& m(r \ddot{\varphi}+2 \dot{r} \dot{\varphi})+\beta r \dot{\varphi}=0,
\end{aligned}
$$

where $m(m>0)$ is the mass of particle and $\sigma(\sigma>0)$ is the central force constant. So by putting

$$
\mu=\frac{\beta}{2 m}, \quad \omega^{2}=\frac{\sigma}{m},
$$

it follows that

$$
\begin{align*}
& \ddot{r}+2 \mu \dot{r}+\omega^{2} r-r \dot{\varphi}^{2}=0  \tag{1}\\
& r \ddot{\varphi}+2 \dot{r} \dot{\varphi}+2 \mu r \dot{\varphi}=0, \tag{2}
\end{align*}
$$

which are the Euler-Lagrange equations with the Lagrangian

$$
L=\frac{1}{2} e^{2 \mu t}\left(\dot{r}^{2}+(r \dot{\varphi})^{2}-(\omega r)^{2}\right)
$$

The couple of conserved quantities of the equations (1) and (2) are $[4, \S 4 ; 5, \S 6]$

$$
\begin{equation*}
\Omega_{1}=e^{2 \mu t}\left(\frac{1}{2} \dot{r}^{2}+\frac{1}{2}(r \dot{\varphi})^{2}+\frac{1}{2}(\omega r)^{2}+\mu r \dot{r}\right), \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\Omega_{2}=e^{2 \mu t} r^{2} \dot{\varphi}, \tag{4}
\end{equation*}
$$

in which $\Omega_{1}$ was obtained by Djukic [3] under the symmetry for the gauge-variant Lagrangians, while the equation (2) can be put as

$$
\frac{d\left(r^{2} \dot{\varphi}\right)}{r^{2} \dot{\varphi}}=-2 \mu d t
$$

whose solution $r^{2} \dot{\varphi}=\Omega_{2} e^{-2 \mu t}\left(\Omega_{2}\right.$ : const.) leads to the appearance of $\Omega_{2}$ of (4). In this paper, we show that the conserved quantities (3) and (4) contribute to determine completely the motions of the particle in the central force problem.

## 2. A determination of motions through the conserved quantities

In the couple of the conserved quantities $\Omega_{1}$ and $\Omega_{2}$ of the equations of the motion, $\dot{\varphi}$ can be eliminated to see

$$
(r \dot{r})^{2}+2 \mu r^{3} \dot{r}+\omega^{2} r^{4}-2 \Omega_{1} e^{-2 \mu t} r^{2}+\left(\Omega_{2} e^{-2 \mu t}\right)^{2}=0,
$$

which is transformed, by a change of variable $x=e^{\mu t} r$, into

$$
\begin{equation*}
(x \dot{x})^{2}+\left(\omega^{2}-\mu^{2}\right) x^{4}-2 \Omega_{1} x^{2}+\Omega_{2}^{2}=0 ; \tag{5}
\end{equation*}
$$

while (4) is also into

$$
\begin{equation*}
x^{2} \dot{\varphi}=\Omega_{2} \tag{6}
\end{equation*}
$$

The motions of the particle in the considering central force problem can be determined completely by the equations (5) and (6).

1. We first settle the case with $\Omega_{2} \neq 0$ which implies by (6) that $\dot{\varphi} \neq 0$, i.e., the particle is moving out of the straight. Then, $\Omega_{1}$ and $\Omega_{2}$ lie in the root which comes from the equation (5):

$$
\begin{equation*}
x \dot{x}= \pm \sqrt{-\left(\omega^{2}-\mu^{2}\right) x^{4}+2 \Omega_{1} x^{2}-\Omega_{2}^{2}} \tag{7}
\end{equation*}
$$

satisfying the conditions: $\Omega_{1}>0$ if $\omega^{2}-\mu^{2} \geq 0$, and $\Omega_{1}^{2}-\left(\omega^{2}-\mu^{2}\right) \Omega_{2}^{2} \geq 0$.
1.1. $\Omega_{2} \neq 0$ and $\omega^{2}-\mu^{2}>0$. By putting

$$
a=\frac{\sqrt{\Omega_{1}^{2}-\left(\omega^{2}-\mu^{2}\right) \Omega_{2}^{2}}}{\omega^{2}-\mu^{2}}, \quad b=\frac{\Omega_{1}}{\omega^{2}-\mu^{2}}
$$

the equation (7) is written as

$$
x \dot{x}= \pm \sqrt{\omega^{2}-\mu^{2}} \sqrt{a^{2}-\left(x^{2}-b\right)^{2}} .
$$

If $a=0$, this equation has a solution $x^{2}=b$; and if $a \neq 0$, by using a variable $y=x^{2}$,
it leads to

$$
\frac{d y}{\sqrt{a^{2}-(y-b)^{2}}}= \pm 2 \sqrt{\omega^{2}-\mu^{2}} d t
$$

which is integrated:

$$
\sin ^{-1} \frac{y-b}{a}= \pm 2 \sqrt{\omega^{2}-\mu^{2}} t+\alpha \quad(\alpha: \text { const. }) .
$$

Consequently, together with $y=x^{2}=b$ for $a=0$, the solution $y$ can be put as (replace $\pm \alpha$ with $\alpha$ )

$$
y= \pm a \sin \left(2 \sqrt{\omega^{2}-\mu^{2}} t+\alpha\right)+b
$$

in which the minus sign is nonessential, since the constant $\alpha$ can be replaced with $\alpha+\pi$. Here note that the constants $a$ and $b(b>0)$ satisfy $b^{2}-a^{2}=\Omega_{2}^{2} /\left(\omega^{2}-\mu^{2}\right)>0$, so that $y \geq b \pm a>0$. For the solution, by a change of variable $\tau=2 \sqrt{\omega^{2}-\mu^{2}} t+\alpha$, the equation (6) with $\Omega_{2}= \pm \sqrt{\left(b^{2}-a^{2}\right)\left(\omega^{2}-\mu^{2}\right)}$ is transformed into

$$
\frac{d \varphi}{d \tau}= \pm \frac{\sqrt{b^{2}-a^{2}}}{2(a \sin \tau+b)} \quad\left(\Omega_{2} \gtrless 0\right),
$$

which is integrated:

$$
\varphi= \pm \tan ^{-1} \frac{b \tan \left(\frac{1}{2} \tau\right)+a}{\sqrt{b^{2}-a^{2}}}+k \quad(k: \text { const. })
$$

In this way, the motion of the particle is determined:

$$
\begin{aligned}
& r=e^{-\mu t} \sqrt{a \sin \left(2 \sqrt{\omega^{2}-\mu^{2}} t+\alpha\right)+b}, \\
& \varphi= \pm \tan ^{-1} \frac{b \tan \left(\sqrt{\omega^{2}-\mu^{2}} t+\frac{1}{2} \alpha\right)+a}{\sqrt{b^{2}-a^{2}}}+k \quad\left(\Omega_{2} \gtrless 0\right) .
\end{aligned}
$$

1.2. $\Omega_{2} \neq 0$ and $\omega^{2}-\mu^{2}<0$. By using the above $b$ and

$$
a=\frac{\sqrt{\Omega_{1}^{2}-\left(\omega^{2}-\mu^{2}\right) \Omega_{2}^{2}}}{\mu^{2}-\omega^{2}}
$$

the equation (7) is written as

$$
x \dot{x}= \pm \sqrt{\mu^{2}-\omega^{2}} \sqrt{\left(x^{2}-b\right)^{2}-a^{2}}
$$

which, by the variable $y=x^{2}$, leads to

$$
\frac{d y}{\sqrt{(y-b)^{2}-a^{2}}}= \pm 2 \sqrt{\mu^{2}-\omega^{2}} d t .
$$

So that, through the integration:

$$
\cosh ^{-1} \frac{y-b}{a}= \pm 2 \sqrt{\mu^{2}-\omega^{2}} t+\alpha \quad(\alpha: \text { const. })
$$

the solution $y$ can be put as (replace $\pm \alpha$ with $\alpha$ )

$$
y=a \cosh \left(2 \sqrt{\mu^{2}-\omega^{2}} t+\alpha\right)+b,
$$

where the constants $a(a>0)$ and $b$ satisfy $a^{2}-b^{2}=\Omega_{2}^{2} /\left(\mu^{2}-\omega^{2}\right)>0$, so that $y \geq a+b>0$. Accordingly, by the variable $\tau=2 \sqrt{\mu^{2}-\omega^{2}} t+\alpha$, the equation (6) with $\Omega_{2}= \pm \sqrt{\left(a^{2}-b^{2}\right)\left(\mu^{2}-\omega^{2}\right)}$ leads to

$$
2 \frac{d \varphi}{d \tau}= \pm \frac{\sqrt{a^{2}-b^{2}}}{a \cosh \tau+b} \quad\left(\Omega_{2} \gtrless 0\right) .
$$

Moreover, by a change of variable $\phi=\tanh \left(\frac{1}{2} \tau\right)$, this equation is transformed into

$$
\frac{d \varphi}{d \phi}= \pm \frac{\sqrt{(a+b) /(a-b)}}{\phi^{2}+(a+b) /(a-b)},
$$

which is integrated:

$$
\varphi= \pm \tan ^{-1} \frac{(a-b) \phi}{\sqrt{a^{2}-b^{2}}}+k \quad(k: \text { const. }) .
$$

Therefore the motion of the particle is determined:

$$
\begin{aligned}
& r=e^{-\mu t} \sqrt{a \cosh \left(2 \sqrt{\mu^{2}-\omega^{2}} t+\alpha\right)+b}, \\
& \varphi= \pm \tan ^{-1} \frac{(a-b) \tanh \left(\sqrt{\mu^{2}-\omega^{2}} t+\frac{1}{2} \alpha\right)}{\sqrt{a^{2}-b^{2}}}+k \quad\left(\Omega_{2} \gtrless 0\right) .
\end{aligned}
$$

1.3. $\Omega_{2} \neq 0$ and $\omega^{2}-\mu^{2}=0$. By putting

$$
a=\sqrt{2 \Omega_{1}}, \quad b=\frac{\Omega_{2}}{a}=\frac{\Omega_{2}}{\sqrt{2 \Omega_{1}}}
$$

the equation (7) is written as

$$
\frac{x d x}{\sqrt{x^{2}-b^{2}}}= \pm a d t
$$

Then, through the integration

$$
\sqrt{x^{2}-b^{2}}= \pm a t+\alpha
$$

$x^{2}$ can be put as (replace $\pm \alpha$ with $\alpha$ )

$$
x^{2}=(a t+\alpha)^{2}+b^{2} .
$$

Accordingly, by a change of variable $\tau=a t+\alpha$, the equation (6) with $\Omega_{2}=a b$ is transformed into

$$
\frac{d \varphi}{d \tau}=\frac{b}{\tau^{2}+b^{2}}
$$

which is integrated:

$$
\varphi=\tan ^{-1} \frac{\tau}{b}+k \quad(k: \text { const. }) .
$$

Therefore the motion of the particle is determined:

$$
\begin{aligned}
& r=e^{-\mu t} \sqrt{(a t+\alpha)^{2}+b^{2}} \\
& \varphi=\tan ^{-1} \frac{a t+\alpha}{b}+k
\end{aligned}
$$

2. In the following case with $\Omega_{2}=0$, we leave the particular solution $r=0$ of (1) and (2) out of consideration, since it means that the particle stays at the origin (center of force). Then (6) implies $\dot{\varphi}=0$, i.e., the particle is moving straight towards the origin with coordinate $r(t)$ on the line. In this case, (1) leads to the equation of linearly damped one-dimensional harmonic oscillator. And the equation (7) is reduced to

$$
\begin{equation*}
\dot{x}= \pm \sqrt{-\left(\omega^{2}-\mu^{2}\right) x^{2}+2 \Omega_{1}} . \tag{8}
\end{equation*}
$$

2.1. $\Omega_{2}=0$ and $\omega^{2}-\mu^{2}>0$. Since $\Omega_{1}>0$ in the root of ( 8 ), by putting

$$
a=\sqrt{\frac{2 \Omega_{1}}{\omega^{2}-\mu^{2}}}
$$

the equation (9) leads to

$$
\frac{d x}{\sqrt{a^{2}-x^{2}}}= \pm \sqrt{\omega^{2}-\mu^{2}} d t
$$

whose solution

$$
\sin ^{-1} \frac{x}{a}= \pm \sqrt{\omega^{2}-\mu^{2}} t+\alpha(\alpha: \text { const. })
$$

is arranged in $r=e^{-\mu t} x$ to obtain (the minus sign is omitted as remarked in 1.1)

$$
r=a e^{-\mu t} \sin \left(\sqrt{\omega^{2}-\mu^{2}} t+\alpha\right) .
$$

2.2. $\Omega_{2}=0$ and $\omega^{2}-\mu^{2}<0$. By putting

$$
a=\sqrt{\frac{2\left|\Omega_{1}\right|}{\mu^{2}-\omega^{2}}},
$$

the equation (8) leads to

$$
\frac{d x}{\sqrt{x^{2} \pm a^{2}}}= \pm \sqrt{\mu^{2}-\omega^{2}} d t
$$

in which $\pm a^{2}$ correspond respectively to $\Omega_{1} \gtrless 0$, while $a=0$ if $\Omega_{1}=0$. The respective integrations

$$
\begin{array}{ll}
\sinh ^{-1} \frac{x}{a}= \pm \sqrt{\mu^{2}-\omega^{2}} t+\alpha & (\alpha: \text { const. }), \\
\text { if } \Omega_{1}>0 \\
\cosh ^{-1} \frac{x}{a}= \pm \sqrt{\mu^{2}-\omega^{2}} t+\alpha & (\alpha: \text { const. }), \\
\text { if } \Omega_{1}<0 \\
x=\alpha e^{ \pm \sqrt{\mu^{2}-\omega^{2}} t} & (\alpha: \text { const. }), \\
\text { if } \Omega_{1}=0 ;
\end{array}
$$

are arranged respectively in $r=e^{-\mu t} x$ to obtain

$$
\begin{array}{ll}
r= \pm a e^{-\mu t} \sinh \left(\sqrt{\mu^{2}-\omega^{2}} t+\alpha\right), & \text { if } \Omega_{1}>0 \\
r=a e^{-\mu t} \cosh \left(\sqrt{\mu^{2}-\omega^{2}} t+\alpha\right), & \text { if } \Omega_{1}<0 ; \\
r=\alpha e^{-\mu t} e^{ \pm \sqrt{\mu^{2}-\omega^{2}} t}, & \text { if } \Omega_{1}=0 .
\end{array}
$$

2.3. $\Omega_{2}=0$ and $\omega^{2}-\mu^{2}=0$. In this case, from $\dot{x}= \pm \sqrt{2 \Omega_{1}}$ immediately follows the solution

$$
r= \pm e^{-\mu t}\left(\sqrt{2 \Omega_{1}} t+\alpha\right) \quad(\alpha: \text { const })
$$

Thus the motions of the particle in the considering central force problem are determined completely. In conclusion, the results are summalized:

Theorem. Let a single particle of mass $m(m>0)$ with polar coodinates $(r(t), \varphi(t))$ is moving under a central force $\sigma r(\sigma:$ const., $\sigma>0)$ directed towards the origin in a resisting medium which imposes a retarding force equal to $\beta(\beta$ : const., $\beta>0)$ times the
velocity.
When initial position $\left(r_{0}, \varphi_{0}\right)$ and velocity $\left(\dot{r}_{0}, \dot{\varphi}_{0}\right)$ of the particle are given, the conserved quantities $\Omega_{1}$ and $\Omega_{2}$ can be evaluated by substituting the data for (3) and (4). And then the motions of the particle are determined completely as follows, where $K=\left(4 m \sigma-\beta^{2}\right) / 4 m^{2}$ and $K \geq 0$ implies that $\Omega_{1}>0$.

In the case with $\Omega_{2} \neq 0$, i.e., the particle is moving out of the straight, then two-dimensional motions are determined as

$$
\begin{array}{ll}
r=e^{-\mu t} \sqrt{a \sin (2 \sqrt{K} t+\alpha)+b,} & \text { if } K>0 ; \\
\varphi= \pm \tan ^{-1} \frac{b \tan \left(\sqrt{K} t+\frac{1}{2} \alpha\right)+a}{\sqrt{b^{2}-a^{2}}}+k & \left(\Omega_{2} \gtrless 0\right), \\
r=e^{-\mu t} \sqrt{a \cosh (2 \sqrt{-K} t+\alpha)+b,} & \\
\varphi= \pm \tan ^{-1} \frac{(a-b) \tanh \left(\sqrt{-K} t+\frac{1}{2} \alpha\right)}{\sqrt{a^{2}-b^{2}}}+k & \left(\Omega_{2} \gtrless 0\right), \\
r=e^{-\mu t} \sqrt{(a t+\alpha)^{2}+b^{2}}, & \text { if } K<0 ; \\
\varphi=\tan ^{-1} \frac{a t+\alpha}{b}+k, & \text { if } K=0 ;
\end{array}
$$

where $a$ and $b$ are the constants:

$$
\begin{array}{ll}
a=\frac{\sqrt{\Omega_{1}^{2}-K \Omega_{2}^{2}}}{K}, \quad b=\frac{\Omega_{1}}{K}, & \text { if } K>0 \\
a=\frac{\sqrt{\Omega_{1}^{2}-K \Omega_{2}^{2}}}{-K}, \quad b=\frac{\Omega_{1}}{K}, & \text { if } K<0 \\
a=\sqrt{2 \Omega_{1}}, \quad b=\frac{\Omega_{2}}{\sqrt{2 \Omega_{1}}}, \quad \text { if } K=0 .
\end{array}
$$

respectively; while the constants $k$ and $\alpha$ are specified by the initial data.
Particularly in the case with $\Omega_{2}=0$, i.e., the particle is moving straight towards the origin with a coordinate $r(t)$ on the line, then one-dimensional motions are determined as

$$
\begin{array}{lll}
r=a e^{-\mu t} \sin (\sqrt{K} t+\alpha), & \text { if } K>0 \\
r= \pm a e^{-\mu t} \sinh (\sqrt{-K} t+\alpha) & \left(\Omega_{1}>0\right), & \\
r=a e^{-\mu t} \cosh (\sqrt{-K} t+\alpha) & \left(\Omega_{1}<0\right), \quad \text { if } K<0 ; \\
r=\alpha e^{-\mu t} e^{ \pm \sqrt{-K} t} & \left(\Omega_{1}=0\right), &
\end{array}
$$

$$
r= \pm e^{-\mu t}(a t+\alpha), \quad \text { if } K=0
$$

where $a$ is the constant:

$$
\begin{array}{ll}
a=\sqrt{\frac{2 \Omega_{1}}{K}}, & \text { if } K>0 ; \\
a=\sqrt{\mp \frac{2 \Omega_{1}}{K}} \quad\left(\Omega_{1} \gtrless 0\right), & \text { if } K<0 ; \\
a=\sqrt{2 \Omega_{1}}, & \text { if } K=0 ;
\end{array}
$$

respectively; while the constant $\alpha$ is specified by the initial data.
Remark 1. In the case of $K<0$ with $\Omega_{2} \neq 0$, by replacing the constant $\alpha$ with $\pm \log \left(2 \alpha^{2} / a\right)\left(\Omega_{2} \gtrless 0\right)$, we have the other appearance of $r$ :

$$
r=e^{-\mu t} \sqrt{\alpha^{2} e^{ \pm 2 \sqrt{-K} t}+(a / 2 \alpha)^{2} e^{\mp \sqrt{-K} t}+b} \quad\left(\Omega_{2} \gtrless 0\right) .
$$

Remark 2. Let $\Omega_{2} \rightarrow 0$ in the case with $\Omega_{2} \neq 0$. Then, $a \rightarrow \Omega_{1} / K=b$ if $K>0$, $a \rightarrow \mp \Omega_{1} / K=\mp b\left(\Omega_{1} \gtrless 0\right)$ if $K<0$ and $b \rightarrow 0$ if $K=0$; accordingly the angle $\varphi$ in each case of $K$ converges to a constant. And, in view of that for $K>0$ with $a=b=\Omega_{1} / K$ :

$$
a \sin (2 \sqrt{K} t+\alpha)+b=\frac{2 \Omega_{1}}{K} \sin ^{2}\left(\sqrt{K} t+\frac{1}{2} \alpha+\frac{1}{4} \pi\right)
$$

and for $K<0$ with $a=\mp b=\mp \Omega_{1} / K\left(\Omega_{1} \gtrless 0\right)$ :

$$
\begin{array}{ll}
a \cosh (2 \sqrt{-K} t+\alpha)+b=-\frac{2 \Omega_{1}}{K} \sinh ^{2}\left(\sqrt{-K} t+\frac{1}{2} \alpha\right) & \left(\Omega_{1}>0\right), \\
a \cosh (2 \sqrt{-K} t+\alpha)+b=\frac{2 \Omega_{1}}{K} \cosh ^{2}\left(\sqrt{-K} t+\frac{1}{2} \alpha\right) & \left(\Omega_{1}<0\right),
\end{array}
$$

the particle's distance $r$ in each case converges respectively to that (up to the sign) in each case with $\Omega_{2}=0$ except the case of $K<0$ with $\Omega_{1}=0$. However we can avoid the peculiarity by means of the appearance of $r$ in the remark 1 (the case of $K<0$ with $\left.\Omega_{2} \neq 0\right)$. In fact, for $a=\mp b=\mp \Omega_{1} / K\left(\Omega_{1} \gtrless 0\right)$, the terms in the root lead to

$$
\alpha^{2} e^{ \pm 2 \sqrt{-K} t}+\frac{a^{2}}{4 \alpha^{2}} e^{\mp 2 \sqrt{-K} t}+b=\left(\alpha e^{ \pm \sqrt{-K} t}+\frac{\Omega_{1}}{2 \alpha K} e^{\mp \sqrt{-K} t}\right)^{2} \quad\left(\Omega_{2} \gtrless 0\right),
$$

which turns into

$$
a^{2} \sinh ^{2}(\sqrt{-K} t+\gamma), \quad \text { if } \Omega_{1}>0
$$

$$
a^{2} \cosh ^{2}(\sqrt{-K} t+\gamma), \quad \text { if } \Omega_{1}<0
$$

where $a=\sqrt{\mp\left(2 \Omega_{1} / k\right)}\left(\Omega_{1} \gtrless 0\right)$ and $\gamma= \pm \log (2 \alpha / a)\left(\Omega_{2} \gtrless 0\right)$. Thus the respective motions with $\Omega_{2}=0$ can be regarded as the limiting case: $\Omega_{2} \rightarrow 0$ of that with $\Omega_{2} \neq 0$.

Let a single particle of mass $m=1$, moving against a medium with retarding force constant $\beta=2$, have the initial position $\left(r_{0}, \varphi_{0}\right)=(1,0)$ and velocity $\left(\dot{r}_{0}, \dot{\varphi}_{0}\right)=$ $(-1,5)$. Then $\Omega_{2}=5$, and $\mu, \omega, K, \Omega_{1}$ are determined according to the following central force constants $\sigma$ :

| $\sigma$ | $\beta$ | $\mu$ | $\omega$ | $K$ | $\Omega_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 16 | 2 | 1 | 4 | 15 | 20 |
| 4 | 2 | 1 | 2 | 3 | 14 |
| 2 | 2 | 1 | $\sqrt{2}$ | 1 | 13 |
| 1 | 2 | 1 | 1 | 0 | 12.5 |
| 0.2 | 2 | 1 | $1 / \sqrt{5}$ | -0.8 | 12.1 |
| 0 | 2 | 1 | 0 | -1 | 12 |

For the values of $\sigma$ and $\beta=2$, the trajectories of the particle determined in the theorem are as follows.

$\sigma=16 \quad \beta=2$


$$
\sigma=4 \quad \beta=2
$$

Figure: The motions of a particle under a central force


Figure (continued)

## References

[1] G. Caviglia, Composite variational principles, added variables, and constants of motion, Internat. Theoret. Phys. 25 (1985), 139-146.
[2] G. Caviglia, Composite variational principles and the determination of conservation laws, J. Math. Phys. 29 (1988), 812-816.
[3] Dj. S. Djukic, A procedure for finding first integrals of mechanical systems with gauge-variant Lagrangians, Int. J. Non-Linear Mechanics 8 (1973), 479-488.
[4] F. Mimura and T. Nôno, A method for deriving new conservation laws, Bull. Kyusyu Inst. Tech. Math. Natur. Sci. 42 (1995), 1-17.
[5] F. Mimura, T. Ikeda and F. Fujiwara, A geometric derivation of new conservation laws, Bull. Kyusyu Inst. Tech. Math. Natur. Sci. 43 (1996), 37-55.
[6] E. Noether, Invariante Variationsprobleme, Nach. Kgl. Wiss. Göttingen Math.-Phys. Kl. II 1918 (1918), 235-257.
[7] E. T. Whittaker, A treatice on the analytical dynamics of particles and rigid bodies, Cambridge University Press (1970).

Department of Mathematics
Kyusyu Institute of Technology
Tobata, Kitakyushu, 804, Japan

