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1. Introduction

As an illustration of the new operative method (Mimura et al. [4, 5]) which grew
up from the application of a suitable version of Noether’s theorem [6] to the composite
variational principle (Caviglia [1, 2]), it was derived a couple of independent conserved
quantities (first integrals) for the motions of the following particle in the central force
problem (see Whittaker [7], p. 243):

A single particle moving in a plane under a central force directed towards a fixed
center in a resisting medium, where the force is proportional to the particle’s distance
from the center and the medium imposes a retarding force equal to f times the velocity.

The origin is placed on the center of force and the position of particle at time
t is defined by polar coordinates (r(t), @(t)) to have the differential equations of the
motion (e.g. Djukic [3]):

m@F — r¢?) + BF + or = 0,
m(ro + 2r@) + pfro =0,

where m(m > 0) is the mass of particle and o (6 > 0) is the central force constant. So
by putting

p=L =2
2m m
it follows that
) P4 20 + 0r —rg? =0,
2 r¢ + 29 + 2urg =0,

which are the Euler-Lagrange equations with the Lagrangian
L=3e®(7* + (r¢)* — (or)?).
The couple of conserved quantities of the equations (1) and (2) are [4, §4; 5, §6]

) Q) = e + 3(rg)* + Hwr)* + prr),
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@ 2, = &1,

in which ©, was obtained by Djukic [3] under the symmetry for the gauge-variant
Lagrangians, while the equation (2) can be put as

whose solution r?¢p = Q,e” 2" (2,: const.) leads to the appearance of Q, of (4). In
this paper, we show that the conserved quantities (3) and (4) contribute to determine
completely the motions of the particle in the central force problem.

2. A determination of motions through the conserved quantities

In the couple of the conserved quantities ©, and €, of the equations of the
motion, ¢ can be eliminated to see

(rF)* + 2ur3F + 0%r* — 2Q,e7 2412 4 (Q,e” 242 = (),
which is transformed, by a change of variable x = e*'r, into
(5) (xx)? + (w? — pH)x* —2Q2,x* + Q2 =0;
while (4) is also into
6) xX*p=0Q,.

The. motions of the particle in the considering central force problem can be determined
completely by the equations (5) and (6).

1. We first settle the case with Q, # 0 which implies by (6) that ¢ # 0, i.c., the
particle is moving out of the straight. Then, 2, and Q, lie in the root which comes
from the equation (5):

) xx = /(0 — ud)x* +20,x* — 23,

satisfying the conditions: 2, > 0 if w? — p? >0, and Q} — (0? — u*)Q% > 0.
1.1. Q,#0 and ®? — u? > 0. By putting

A e 5 L T
a=- 2 2 ’ T2
W —u W —u

the equation (7) is written as
XX = & \/0)2 — u? \/az —(x2 - b)2.

If a = 0, this equation has a solution x*> = b; and if a # 0, by using a variable y = x?2

il
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it leads to
d
4:})*,::!:2 wz—uzdt,
Ja& = —by
which is integrated:
L y—b 3 _ 2
sin” ' Y— = &+ Z\ﬂo —pt+a (o: const.).
a

Consequently, together with y = x> = b for a = 0, the solution y can be put as (replace
+ o with o)

y= ﬂ:asin(2\/&)2—?t+a)+b,

in which the minus sign is nonessential, since the constant o can be replaced with o + 7.
Here note that the constants a and b(b > 0) satisfy b2 — a? = Q%/(w* — u?) > 0, so
that y > b+ a>0. For the solution, by a change of variable t = 2,/w? — ,uit + a,
the equation (6) with Q, = + \/(b* — a®)(w? — i?) is transformed into

2 _ 2
W_p NPT (g, 20,
dr 2(a sint + b)

which is integrated:

@ = £ tan"! +k (k: const.).

In this way, the motion of the particle is determined:

T:e_‘"\/a sin 2vVw? — p?t + ) + b

b tan (Jw? — @t + 3
, b tan ( wbzut2+2a)+a+k @, 20).
Vb —a

12. Q,#0 and w? — u?> <0. By using the above b and

@ = L tan~

N e

a =
“2_w2

B

the equation (7) is written as

xx =+ /1 — 0? J/(x* — b? — a*;

which, by the variable y = x?, leads to
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P —— + 2 ﬂz—wzdt.

So that, through the integration:

—b
cosh 1Y =42/ —o*t+a (a: const.),

a

the solution y can be put as (replace + o with a)
y=acosh(2/u? — w?*t +a)+ b,

where the constants a(a > 0) and b satisfy a? — b2 = Q2/(u®> — w?) >0, so that
y=>a+b>0. Accordingly, by the variable © =2./u?> — w?t + a, the equation (6)
with Q, = + /(a®> — b?)(i? — 0?) leads to

2o, Ve obt

dt acoshr+5

(2,20).
Moreover, by a change of variable ¢ = tanh (37), this equation is transformed into

dp _, Ja+bhia—b
) $> + (a+ b)/(a—b)’

which is integrated:

o (a=b¢

@=*tan™' ~_ +k (k: const.).

Therefore the motion of the particle is determined:

r=e""/q cosh Vi — 0>t + ) + bs

_, (a— b) tanh (V1 — o’ t + }0) N

@ = * tan
a? — b?

ko (©Q,20).

1.3. @, #0 and ®® — p? =0. By putting

the equation (7) is written as
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Then, through the integration
\/x»2 —bp2=zta + o,
x? can be put as (replace + a with o)
x? = (at + a)® + b2.

Accordingly, by a change of variable 7 =at + «, the equation (6) with Q, = ab is
transformed into

do b

dt 2+ b%
which is integrated:

@ =tan ! % +k (k: const.).

Therefore the motion of the particle is determined:

r= e*‘“\/(ait;vm,

_lat+9§

¢ = tan + k.

2. In the following case with Q, =0, we leave the particular solution r =0 of
(1) and (2) out of consideration, since it means that the particle stays at the origin
(center of force). Then (6) implies ¢ = 0, i.e., the particle is moving straight towards
the origin with coordinate r(t) on the line. In this case, (1) leads to the equation of
linearly damped one-dimensional harmonic oscillator. And the equation (7) is reduced
to

®) X =% /(0 - @A)x? +2Q,.

21. Q,=0and w? —p?*>0. Since 2, >0 in the root of (8), by putting

the equation (9) leads to

whose solution
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o1 X 2
sin™! = = + . /w? — p?t + a (a: const)
a

is arranged in » = e *x to obtain (the minus sign is omitted as remarked in 1.1)

r=ae "sin(/w? — u*t + a).

22. Q,=0 and w? — p? <0. By putting

the equation (8) leads to
dx _
Uxiia

in which + a® correspond respectively to 2, 2 0, while a = 0 if 2, = 0. The respective
integrations

+ /12— w?dt,

L X T .
sinh '~ =+ . /p?> —w?t+a (x: const), if Q,>0;
a

x .
cosh™' =+ /pu?> —w?t+a (a: const), if Q, <0;
a

V- w2t

X =ae” (o: const.), if Q,=0;

are arranged respectively in r = ¢ #x to obtain

r=+ae “sinh (/12 -0’ t+a), if Q, >0;

r=ae " cosh (/42 — * t + a), if ,<0;
r=oe MetvriTelt if Q,=0.

23, Q2,=0 and w?—u*=0. In this case, from % = +./2Q, immediately
follows the solution

r=+ e‘“‘(\/2_SZt + a) (o: const).

Thus the motions of the particle in the considering central force problem are
determined completely. In conclusion, the results are summalized:

THEOREM. Let a single particle of mass m(m > 0) with polar coodinates (r(t), ¢(t))
is moving under a central force or(o: const., ¢ > 0) directed towards the origin in a
resisting medium which imposes a retarding force equal to B(B: const., B > 0) times the
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velocity.

When initial position (ro, ©o) and velocity (Fo, ¢o) of the particle are given, the
conserved quantities 2, and Q, can be evaluated by substituting the data for (3) and
(4). And then the motions of the particle are determined completely as follows, where
K = (4ma — B?)/4m? and K > 0 implies that 2, > 0.

In the case with Q, #0, ie., the particle is moving out of the straight, then
two-dimensional motions are determined as

r=e " /asin@JKt+a)+b,

i if K>0;
bt Kt+3
po i PEn/Ki Db, (2, 20),
\/BZ —a?
r=e " /acosh(Q/— Kt+a)+b,
v v o if K<O0;
—b)tanh (/- Kt +3%
= ﬂ:tan'l(a )tanh (/ +2a)+k (2, 20),
a2 _ b2
r=e " /(at + g)izilibfi,
Vi if K=0;
t+ o
=tan ! ——— +k,
¢ b
where a and b are the constants:
@K, _©
a:\/gli 2o b=""1, if K>0;
K K
Py e
QZS/:L__MJ, b="1, if K<0;
— K K
/7'* QZ .
a=./282,, b=—+- if K=0.

V20,
respectively; while the constants k and o are specified by the initial data.
Particularly in the case with Q, =0, ie., the particle is moving straight towards
the origin with a coordinate r(t) on the line, then one-dimensional motions are determined
as

r=ae““sin(\/Kt+oc), if K>0;
r=+ae Msinh(/—Kt+a (2,>0),
r=ae *cosh(y/— Kt +a) (Q,<0), if K<O0;

r=oe Me*tV K (Q,=0),
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r=+te "at + ), if K=0;

where a is the constant:

a= |24 if K>0;
K
20 . .

a= [FZ2X2 (@,20), if K<O0;
K

a=./2Q,, i K =0;

respectively ; while the constant o is specified by the initial data.

ReEMARK 1. In the case of K < 0 with 2, # 0, by replacing the constant « with
+ log (2¢%/a) (2, 2 0), we have the other appearance of r:

r = e-m\/“zeizﬁm + (a/za)ze?r\/—*xz b (@, = 0).

ReMARK 2. Let £, -0 in the case with Q, #0. Then, a—»Q2,/K =b if K >0,
a—>FQ,/K=Fb(2,20)if K<0and b—-0 if K=0; accordingly the angle ¢ in
each case of K converges to a constant. And, in view of that for K >0 with
a=b=0,/K:

20
asin(2./Kt+a)+b = —K—lsinz(\/ftjt%oc+%n);

and for K <0 with a=Fb=FQ,/K (2, 20):
29, . 2 - 1
acosh(2.,/— Kt+a)+ b= ——[—{smh V=Kt + 30 (2, >0),

2Q —
acosh(2./—Kt+<x)+b=vkicoshz(\/—Kt+%a) (R, <0),

the particle’s distance r in each case converges respectively to that (up to the sign)
in each case with ©, =0 except the case of K <0 with 2, =0. However we can
avoid the peculiarity by means of the appearance of r in the remark 1 (the case of
K <0 with 2, #0). In fact, for a= ¥b= F Q,/K (2, = 0), the terms in the root
lead to

2 2
a’ — [0 J—
azetzv—xr+4a2 eT2V-Kt | b=(aei~/—Kt+2(x;<e+~/_Kt> (@2, 20),

which turns into

a*sinh? (/- Kt+7y), if >0,
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a?cosh? (/ — Kt +7), if 2, <0,

where a = \/ZF 222,/k) (2, 20) and y = *+ log(2a/a) (€2, 2 0). Thus the respective
motions with 2, = 0 can be regarded as the limiting case: 2, — 0 of that with Q, # 0.

Let a single particle of mass m = 1, moving against a medium with retarding
force constant f = 2, have the initial position (r,, ¢,) = (1, 0) and velocity (Fy, @) =
(—1,5). Then 2,=5, and u, o, K, 2, are determined according to the following
central force constants o:

g B u @ K Q,
6 2 4 5 20
4 2|1 2 3 14
2 21 V2 113
o2 | 1 0o 125
02 2|1 15 —o8 121
o 2|1 0 112

For the values of ¢ and f =2, the trajectories of the particle determined in the
theorem are as follows.

~\
o

2 0.4 0.6 0.8 1

c=16 f= c=4 fB=2

Figure: The motions of a particle under a central force
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Figure (continued)
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