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Abstract

Cycle is one of the most fundamental graph classes. For a given graph, it is inter-
esting to find cycles of various lengths as subgraphs in the graph. The Cayley graph
Cay(Sn, S) on the symmetric group has an important role for the study of Cayley
graphs as interconnection networks. In this paper, we show that the Cayley graph
generated by a transposition set is vertex-bipancyclic if and only if it is not the star
graph. We also provide a necessary and sufficient condition for Cay(Sn, S) to be
edge-bipancyclic.
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1 Introduction

A graph G with n ≥ 3 vertices is called pancyclic if it contains an l-cycle
for every 3 ≤ l ≤ n, where l-cycle means a cycle of length l. We say that
G is vertex-pancyclic if, for each vertex v of G and for every integer l with
3 ≤ l ≤ n, there is an l-cycle that contains v. Furthermore, a graph is called
edge-pancyclic if every edge lies on an l-cycle for every 3 ≤ l ≤ n. Since a
bipartite graph has no odd cycle, a bipartite graph with n vertices is bipan-

cyclic if it has an l-cycle for every even 4 ≤ l ≤ n. For bipartite graphs,
vertex-bipancyclicity and edge-bipancyclicity are defined similarly. From these
definitions, every edge-(bi)pancyclic graph is vertex-(bi)pancyclic, and every
vertex-(bi)pancyclic graph is (bi)pancyclic.
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An interconnection network is usually modeled by a graph, and pancyclicity is
related to the cycle embedding problem. In order to use parallel or distributed
algorithms for rings and paths, it is desired that a given network topology
contains cycles of various lengths. Pancyclicity has been investigated for many
interconnection networks such as arrangement graphs [5], pancake graphs [13],
cube-connected cycles [7], butterfly graphs [10] and so on.

Cayley graphs have been an important class of graphs in the study of intercon-
nection networks for parallel and distributed computing [1,4,9,12,15]. In par-
ticular, the star graph, which belongs to the class of Cayley graphs, has been
widely studied as an interconnection network topology by many researchers.
The star graph is defined as a Cayley graph with respect to the symmetric
group, and its generator set is a subset of transpositions. The bubble-sort
graph is also known as a class of Cayley graphs on the symmetric group and
its generator set is a subset of transpositions. Pancyclicity for star graphs was
studied in [11], and for bubble-sort graphs in [14].

This paper focuses on Cayley graphs generated by a subset of transpositions.
This class of Cayley graphs includes the star graphs and bubble-sort graphs.
Recently, some topological properties of this class have been studied [2,3]. We
show that a Cayley graph generated by a transposition set is vertex-bipancyclic
if and only if it is not a star graph. We also show a necessary and sufficient
condition for such Cayley graphs to be edge-bipancyclic. Our results generalize
the results of [11] and [14].

2 Preliminaries

Let Γ be a group and ∆ a subset of Γ such that it does not include the identity
element and ∆ = ∆−1. The Cayley graph of Γ with respect to ∆, denoted by
Cay(Γ, ∆), has vertex set Γ, and there is an edge (γ, γτ) for each γ ∈ Γ and
τ ∈ ∆. The symmetric group on {1, 2, . . . , n} is denoted by Sn. A Cayley
graph of the permutation group Γ generated by some subset of permutations
S is denoted by Cay(Γ, S).

Let S be a subset of transpositions on {1, 2, . . . , n}. The transposition graph of
S, denoted by T (S), is a graph with vertex set {1, 2, . . . , n} and two vertices i

and j are adjacent if and only if the transposition (i, j) is in S. On the contrary,
for a given graph G with vertex set {1, 2, . . . , n}, we define the set S(G) of
transpositions by S(G) = {(i, j) | (i, j) ∈ E(G)}. A vertex x of Cay(Sn, S)
is labeled by a string x = x1x2 · · ·xn, and the ith label of x is denoted by xi.
By the definition of Cayley graphs, if a transposition (i, j) is in S, a vertex
x = x1x2 · · ·xn is adjacent to y = y1y2 · · · yn when xi = yj, xj = yi and xk = yk

for all k 6= i, j. In this case, we say that the edge e = (x, y) is an (i, j)-edge.
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For an (i, j)-edge e and k 6= i, j, we denote by e[k] the kth label of the two
ends of e.

For a transposition set S which generates a permutation group, the following
lemma holds:

Lemma 1 ([8],pp.52) Let S be a set of transpositions from Sn. Then S is

a generating set for Sn if and only if T (S) is connected.

From the Lemma 1, this paper treats the Cayley graphs generated by trans-
positions which induce a connected graph.

Assume that S is a subset of transpositions, and (i, j) and (s, t) are disjoint
transpositions. In other words, edges (i, j) and (s, t) have no common vertex
in the transposition graph T (S). Then any (i, j)-edge is contained some 4-
cycle in the Cayley graph Cay(Sn, S). In fact, for an (i, j)-edge e = (u, v) of
Cay(Sn, S), there exists a 4-cycle uvxy, where u and v are adjacent to y and
x by the (s, t)-edges, respectively. Then the edge f = (x, y) is an (i, j)-edge.
From this observation, for an (i, j)-edge e, the edge f is called the coupled

pair-edge of e with respect to (s, t), and the pair of (s, t)-edges (u, y) and
(v, x) are called the coupler. For two disjoint transpositions (i, j) and (s, t),
the coupled pair-edge of e with respect to (s, t) is uniquely determined.

Let uvxy be a 4-cycle and e = (u, v) and f = (x, y) be coupled pair-edges.
Let C1 and C2 be cycles such that V (C1) ∩ V (C2) = ∅ and C1 and C2 have
the edge e and the edge f , respectively. We can construct a cycle of length
|V (C1)| + |V (C2)| from C1 and C2 by adding the coupler of e and f , and
removing e and f . This procedure is said that C1 and C2 are merged by pair-
edges e and f .

A sequence of cycles C1, C2, . . . , Cn is a merge sequence if V (Ci) ∩ V (Cj) = ∅
for i 6= j and there are coupled pair-edges ei ∈ Ci and fi+1 ∈ Ci+1 for all
1 ≤ i ≤ n − 1. For a merge sequence, we can construct a cycle of length
∑n

i=1 |Ci| by merging the cycles consecutively.

An edge e is a pendant edge if it is incident to an end-vertex. A tree T is
a star K1,n−1 if every two edges are adjacent. A tree T is a double-star if it
contains exactly one non pendant edge. The following lemma guarantees that
a transposition tree has a non-adjacent edge pair when it is not a star.

Lemma 2 Let T be a tree with n vertices. Then, there is a pair of non-

adjacent edges in T if and only if T is not a star K1,n−1.

If T (S) is a tree, we say that it is a transposition tree. If T (S) is a star K1,n−1,
then Cay(Sn, S) is called the n-dimensional star graph and is denoted by STn.
If T (S) is a path with n vertices, then Cay(Sn, S) is called the n-dimensional
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bubble-sort graph and is denoted by BSn.

Pancyclicity of graphs are widely investigated by many researchers. The follow-
ing lemmas are known results for pancyclicity of the Cayley graphs generated
by transpositions.

Lemma 3 ([11]) Every edge in the star graph STn is contained in an l-cycle

for every even 6 ≤ l ≤ n!.

Lemma 4 ([14]) For n ≥ 4, the bubble-sort graph BSn is vertex-bipancyclic.

Lemma 5 ([14]) For n ≥ 5, the bubble-sort graph BSn is edge-bipancyclic.

A bipartite graph is hamiltonian laceable if it has a Hamiltonian path between
any pair of vertices in different partite sets.

Theorem 6 ([16]) For any transposition tree T , the Cayley graph Cay(Sn, S(T ))
is Hamiltonian laceable for n ≥ 4.

The next theorem indicates that the labeling of the transposition graph does
not affect the structure of the Cayley graph generated by the transposition
graph.

Theorem 7 ([6]) Let S and S ′ be two sets of transpositions on {1, 2, . . . , n}.
The Cayley graphs Cay(Sn, S) and Cay(Sn, S

′) are isomorphic if and only

if T (S) and T (S ′) are isomorphic.

From the definition of Cay(Sn, S) and Theorem 7, we obtain the following
result.

Proposition 8 Let T be a graph with vertex set {1, 2, . . . , n}. We choose an

end-vertex t, and let r be the vertex adjacent to t. For i = 1, 2, . . . , n, let Vi

be the set of vertices of Cay(Sn, S(T )) such that vt = i. Then, each induced

subgraphs 〈Vi〉 are isomorphic to Cay(Sn−1, S
′), where S ′ = S(T ) \ {(r, t)}.

Theorem 9 Let T be a transposition tree on {1, 2, . . . , n} and suppose that

(r, t) is a pendant edge of T . For any k ≤ n, if there exists a cycle C of length

at least (k−1)(n−1)!+2 in Cay(Sn, S(T )), then C contains at least k edges

generated by the transposition (r, t).

PROOF. Without loss of generality, we may assume t is an end-vertex in
T . Since (r, t) is a pendant edge, we can partition V (Cay(Sn, S(T ))) into
V1 ∪ V2 ∪ · · · ∪ Vn, such that v ∈ Vi if vt = i for each 1 ≤ i ≤ n. We assume
that there exists a cycle C of length l ≥ (k − 1)(n − 1)! + 2. Since C has
l ≥ (k − 1)(n − 1)! + 2 vertices, C must include at least k vertices such that
each vertex belongs to k distinct partitions. To connect two vertices belonging
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to different partitions Vi, Vj, i 6= j, we must use (r, t)-edges since all edges that
connect vertices belonging to different partitions are (r, t)-edges. Therefore, C

contains at least k (r, t)-edges. 2

3 Hamilton cycles in Cayley graphs

We introduce the notion of 2-edge hamiltonian. This property is very impor-
tant to construct desired cycles in Section 4. A graph is 2-edge hamiltonian if,
for any two edges, it has a Hamilton cycle that contains these two edges. In
this section, we show that Cayley graphs Cay(Sn, S) are 2-edge hamiltonian.
We consider first the case of the star graphs, after that we consider the cases
of other Cayley graphs.

Lemma 10 The star graph STn is 2-edge hamiltonian for n ≥ 3.

PROOF. Prove by induction on n. When n = 3, ST3 is isomorphic to a
6-cycle.

When n = 4, from the symmetry of the star graph, it is sufficient to show
that there exists a set of Hamilton cycles C1, C2, . . . , Ck for some k such that
every Hamilton cycle includes an edge (1234, 2134) and

⋃k
i=1 E(Ci) includes

all (1, 2)-edges and (1, 3)-edges. The following two Hamilton cycles C1 and C2

can form a desired set.

C1 =1234, 2134, 3124, 4123, 1423, 2413, 4213, 1243,

2143, 3142, 4132, 1432, 3412, 4312, 1342, 2341,

3241, 4231, 2431, 3421, 4321, 1324, 2314, 3214,

and
C2 =1234, 2134, 3124, 1324, 2314, 3214, 4213, 1243,

2143, 4123, 1423, 2413, 3412, 4312, 1342, 3142,

4132, 1432, 2431, 3421, 4321, 2341, 3241, 4231.

Assume that the statement holds for some integer k ≥ 4. Let α, β be edges in
STk+1. By the symmetry of the star K1,k, we may assume that α is a (1, 2)-
edge and if the generators of α and β are the same, β can be a (1, 2)-edge.
Otherwise, we may assume that β is a (1, 3)-edge.

Let V1∪V2∪· · ·∪Vk+1 be a partition of V (STk+1) such that v ∈ Vi if vk+1 = i.
From Proposition 8, each induced subgraph 〈Vi〉 is isomorphic to STk. If α[k+
1] = β[k+1] in STk+1, by the induction hypothesis, there is a Hamilton cycle C
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xk+1x2x3 · · ·xk−1x1xk

xk−1xk+1x1x2 · · ·xk−2xk

xkxk+1x1x2 · · ·xk−2xk−1

xk−2xk+1x1x2 · · ·xkxk−1

xk−1xk+1x1x2 · · ·xk−3xkxk−2

xk−3xk+1x1x2 · · ·xk−1xkxk−2

xkx2 · · ·xk−1x1xk+1

x1x2 · · ·xk−1xkxk+1

xk+1x2x3 · · ·xkx1

x2xk+1x3 · · ·xkx1

x1xk+1x3x4 · · ·xkx2

x3xk+1x1x4 · · ·xkx2

xi+1xk+1x1x2 · · ·xi−2xi−1xi+2 · · ·xkxi

xi−1xk+1x1x2 · · ·xi−2xi+1xi+2 · · ·xkxi

〈Vxk+1
〉

〈Vx1
〉

〈Vx2
〉

〈Vxi
〉

〈Vxk−2
〉

〈Vxk−1
〉

〈Vxk
〉

Fig. 1. A path P in STk+1

that contains edges α and β in 〈Vα[k+1]〉. From the cycle C, we choose a (1, k)-
edge x = (x1x2 · · ·xk+1, xkx2x3 · · ·xk−1x1xk+1) such that x[k + 1] = α[k + 1],
where x is neither α nor β. By Theorem 9, such edge exists.

A path P on STk+1 that contains an edge x shown in Figure 1 can be defined
based on the edge x.

The path P contains exactly one edge exi
from each 〈Vxi

〉 where 1 ≤ i ≤ k−1.
By the induction hypothesis, there exists a Hamilton cycle in each 〈Vxi

〉 that
includes exi

. A path P ′ of k × k! + 2 vertices can be obtained by replacing exi

by the corresponding Hamilton cycle in 〈Vxi
〉 for 1 ≤ i ≤ k−1 and for 〈Vxk+1

〉,
we choose a cycle C as a Hamilton cycle.

Both end-vertices of P ′ are included in 〈Vxk
〉 and no internal vertices of P ′ is

contained in 〈Vxk
〉. Since the distance between two end-vertices of P ′ in 〈Vxk

〉
is odd and by Theorem 6, there exists a path Q that contains all vertices in
〈Vxk

〉 and end-vertices are the same as end-vertices of P ′. Connecting P ′ and
Q leads to a Hamilton cycle in STk+1 that contains edges α and β.

Let α[k+1] 6= β[k+1] in STk+1. If β is a (1, 3)-edge, we choose a (1, k)-edge x

such that x1 = β[k + 1] in 〈Vα[k+1]〉. In other case, that is, if β is a (1, 2)-edge,
we choose a (1, k)-edge x such that x2 = β[k + 1]. By the induction, there
exist such edges and a Hamilton cycle in 〈Vxk+1

〉 that includes edges α and x.
Then, make a path P similar to the case α[k + 1] = β[k + 1].
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To complete the proof, we must show that β is not contained in P . If β is
contained in P and β is a (1, 3)-edge, then x2 must be β[k + 1]. However, we
assumed x1 = β[k+1] and therefore a contradiction occurs. Similarly, another
case contradicts our assumption, thus β is not contained in P .

We will pay attention to the construction of a Hamilton cycle in 〈Vβ[k+1]〉.
By induction hypothesis, we can obtain a Hamilton cycle in 〈Vβ[k+1]〉 that
contains an edge β and the corresponding edge in P . A Hamilton path Q in
〈Vxk

〉 exists and therefore a Hamilton cycle in STk+1 that contains edges α

and β is obtained. 2

Theorem 11 Let T be a tree with the vertex set {1, 2, . . . , n}. Then Cay(Sn, S(T ))
is 2-edge hamiltonian for n ≥ 3.

PROOF. If T is a star, the theorem follows from Lemma 10. If T is a path,
it was already proved that BSn is 2-edge hamiltonian [14]. Hence we assume
that T is neither a star nor a path.

Prove by induction on n. When n = 3, a tree of three vertices is a path (and a
star). When n = 4, a tree of four vertices is either a star or a path. For some
positive integer n = k ≥ 4, we assume that the statement holds, and consider
the case n = k + 1.

Let T be a tree of k + 1 vertices such that it is neither a star nor a path. Let
α = (u, v) and β = (x, y) be any edges in Cay(Sk+1, S(T )). Without loss of
generality, we may assume that u = 12 · · ·k(k + 1).

Since T is not a path, it has at least 3 pendant edges. Thus there is at least
one pendant edge e such that it corresponds to the generators of neither α

nor β. From Theorem 7, we can assume that e = (k, k + 1), where k + 1
is an end-vertex of T . Moreover, since T is not a star, there is at least one
end-vertex which is not adjacent to the vertex k. We assume that one of those
vertex is 1 and a vertex adjacent to 1 is 2. Other vertices in T are labeled
arbitrarily. As a result, the tree T has pendant edges (1, 2) and (k, k + 1) and
Cay(Sk+1, S(T )) has (1, 2)-edges and (k, k + 1)-edges.

Let V1 ∪ V2 ∪ · · · ∪ Vk+1 be the partition of the vertex set of Cay(Sk+1, S(T ))
such that v ∈ Vi if vk+1 = i. By Proposition 8, the induced subgraph 〈Vi〉 is
isomorphic to Cay(Sk, S(T ) \ {(k, k + 1)}.

To construct a Hamilton cycle, we choose some edges by the following proce-
dure.

(1) For i = 1, 2, . . . , k+1, let ei be a (1, 2)-edge in 〈Vi〉 such that e1[k] = k+1
and ei[k] = i − 1 for i ≥ 2.
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Fig. 2. Edges ei and fi in Cay(Sk+1, S(T )).

(2) For i = 1, 2, . . . , k, let fi be the coupled pair-edge of ei+1 with respect to
(k, k +1), and for i = k +1, fk+1 the coupled pair-edge of e1 with respect
to (k, k + 1). By the definition of ei, fi is a (1, 2)-edge in 〈Vi〉.

(3) Let e′1 be a (1, 2)-edge in 〈V1〉 such that e′1[k] = k, and let f ′

k be the
coupled pair-edge of e′1 with respect to (k, k + 1).

Figure 2 illustrates the 2k + 4 edges in the subgraphs 〈Vi〉, i = 1, 2, · · · , k + 1.

Since the transposition (k, k + 1) is not a generator of α and β, uk+1 = vk+1

and xk+1 = yk+1. Hence it is sufficient to prove two cases for uk+1 = xk+1 and
uk+1 6= xk+1.

Case1: uk+1 = xk+1

In this case, the edges α and β are in 〈Vk+1〉. By the induction hypothesis,
there is a Hamilton cycle Ck+1 of 〈Vk+1〉 that contains edges α and β.

Since k+1 ≥ 5 and Theorem 9, Ck+1 has a (1, 2)-edge f ′

k+1 that is neither
α nor β. Let p = f ′

k+1[k] and e′p be the coupled pair-edge of f ′

k+1 with respect
to (k, k + 1) in 〈Vp〉. In 〈Vp〉, there exists a Hamilton cycle Cp that contains
edges e′p and fp.

For i ∈ {1, 2, . . . , k + 1} \ {1, k + 1, p, k}, 〈Vi〉 has a Hamilton cycle Ci in
〈Vi〉 such that it contains ei and fi. If p 6= 1, let C1 be a Hamilton cycle in
〈V1〉 that contains e′1 and f1. If p 6= k, let Ck be a cycle in 〈Vk〉 that contains
ek and f ′

k.
For cycles Ci for 1 ≤ i ≤ k + 1, we define a merge sequence as follows:

Ck+1, Cp, Cp+1, . . . , Ck, C1, C2, . . . , Cp−1,

and thus we can construct a Hamilton cycle of Cay(Sk+1, S(T )) that con-
tains α and β. Figure 3 shows the construction of a Hamilton cycle when
α[k + 1] = β[k + 1].

Case2: uk+1 6= xk+1

Let xk+1 = yk+1 = t 6= k + 1. If t = 1, from the induction hypothesis,
there exists a Hamilton cycle Ck+1 in 〈Vk+1〉 that contains α and ek+1. For
2 ≤ i ≤ k, we can obtain Hamilton cycles Ci including edges ei and fi.
A Hamilton cycle C1 in 〈V1〉 contains edges β and f1 which is a coupled
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〈Vk+1〉 〈Vp〉 〈Vp+1〉

fp+1 ep−1fp ep+1f ′

k+1
e′p

α

β

〈Vp−1〉

Fig. 3. A Hamilton cycle in Cay(Sk+1, S(T )) that contains given edges α and β.

pair-edge of e2 with respect to (k, k + 1). A merge sequence is defined as
follows:

C1, C2, . . . , Ck, Ck+1.

If t = k, from the induction hypothesis, there exists a Hamilton cycle
Ck+1 in 〈Vk+1〉 that contains α and fk+1. For 2 ≤ i ≤ k − 1, we can obtain
Hamilton cycles Ci including edges ei and fi. A Hamilton cycle C1 in 〈V1〉
that contains edges e1 and f1 which are coupled pair-edges of fk+1 and e2,
respectively, with respect to (k, k + 1). A Hamilton cycle Ck in 〈Vk〉 that
contains edges β and ek which is a coupled pair-edge of fk−1 with respect
to (k, k + 1). A merge sequence is defined as follows:

Ck+1, C1, C2, . . . , Ck.

If t 6= 1 and t 6= k, we can obtain a desired Hamilton cycle by the following
cycles.
• Let γ be a (1, 2)-edge in 〈Vt+1〉 such that γ[k] = t − 1, and γ′ be the

coupled pair-edge of γ with respect to (k, k+1) in 〈Vt−1〉. By the induction
hypothesis, there is a Hamilton cycle Ct+1 of 〈Vt+1〉 that contains edges
ft+1 and γ, and a Hamilton cycle Ct−1 of 〈Vt−1〉 that contains et−1 and γ′.

• Let δ be a (1, 2)-edge in 〈Vt〉 such that δ[k] = 1 and it is different from β

(by Theorem 9, such edge exists). By the induction hypothesis, there is a
Hamilton cycle Ct of 〈Vt〉 that contains β and δ.

• Let δ′ be the coupled pair-edge of δ with respect to (k, k + 1) in 〈V1〉.
By the induction hypothesis, there is a Hamilton cycle C1 of 〈V1〉 that
contains f1 and δ′.
Then we can define a merge sequence Ck+1, Ck, . . . , Ct+1, Ct−1, Ct−2, . . . , C1, Ct.

Figure 4 shows the constructed Hamilton cycle of Cay(Sk+1, S(T )) that
contains α and β when α[k + 1] 6= β[k + 1]. 2

When the transposition graph G is not a tree, we consider the spanning tree
that includes two edges that corresponds to the transpositions of edges in the
Cayley graph. Then from Theorem 11, the following result is obtained.

Corollary 12 Let G be a connected graph with vertex set {1, 2, . . . , n}. Then

Cay(Sn, S(G)) is 2-edge hamiltonian for n ≥ 3.
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〈Vk+1〉 〈Vk〉 〈Vk−1〉

ek−1 ft+1ek fk−1
ek+1 fkα

〈Vt+1〉

〈Vt〉 〈V1〉 〈V2〉

et−1f1 e2δ δ′

β

〈Vt−1〉

γ′

γ

f2

Fig. 4. A Hamilton cycle in Cay(Sk+1, S(T )) that contains given edges α, β.

4 Bipancyclicity of Cayley graphs

This section shows that the bipancyclic property of the Cayley graph generated
by a transposition set. Now we prove the case when the transposition graph
is a tree. When the transposition graph is not a tree, it is sufficient to prove
the bipancyclic property by considering a spanning tree of the transposition
graph.

Theorem 13 For a tree T with vertex set {1, 2, . . . , n} such that n ≥ 3, every

edge lies on an even cycle of length l ≥ 6 in the Cayley graph Cay(Sn, S(T )).

PROOF. Since every Cayley graph is vertex-transitive, it is sufficient to
prove for n − 1 edges incident to the vertex x = 123 · · ·n. Prove by induction
on n. For n = 3, Cay(S3, S(T )) is ST3 and forms a 6-cycle. For n = 4, the
tree with 4 vertices is either a star or a path. In both cases, the statement
has been shown in [11] and [14], respectively. We assume that the statement
holds for all n ≤ k. Let T be a tree with k + 1 vertices. If T is a star K1,k,
then the statement holds from Lemma 3. We consider other cases. We choose
an end-vertex in T and put it a label k + 1. The vertex adjacent to the vertex
k +1 is labeled by k. Since T is not a star, there is a pendant edge that is not
incident to the vertex k. The end-vertex of such edge may be labeled by 1 and
another vertex that is incident to the edge may be labeled by 2. Other vertices
in T are labeled arbitrarily. By those labeling, (1, 2)-edges and (k, k+1)-edges
are in Cay(Sk+1, S(T )).

The vertex set V (Cay(Sk+1, S(T ))) is partitioned into V1 ∪ V2 ∪ · · · ∪ Vk+1

such that v ∈ Vi if vk+1 = i. From Proposition 8, each 〈Vi〉 is isomorphic to
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the Cayley graph Cay(Sk, S(T ) \ {(k, k + 1)}). By the induction hypothesis,
for each edge e adjacent to x except (k, k + 1)-edge is contained in an l-cycle,
6 ≤ l ≤ k!.

Now we suppose that k! + 2 ≤ l ≤ (k + 1)!. Let l = qk! + r where 1 ≤ q ≤
k + 1 , 0 ≤ r < k!. Although the method of constructing cycles described
below can not handle the case when r = 4, therefore we show that case after
the general method is shown.

Let Ck+1 be a Hamilton cycle in 〈Vk+1〉 that contains edges e and ek+1 as
mentioned in Theorem 11. Similarly, let Ck, Ck−1, . . . , Ck−q+2 be Hamilton
cycles in 〈Vk〉, 〈Vk−1〉, . . . , 〈Vk−q+2〉, respectively, such that each cycle Ci con-
tains fi and ei. From Theorem 11, those cycles exist. By the assumption,
there exists a r-cycle Ck−q+1 that contains an edge fk−q+1 in 〈Vk−q+1〉 where
r ≥ 6. By the case r = 2, we choose an edge fk−q+1 as Ck−q+1. By merging
cycles Ck+1, Ck, Ck−1, . . . , Ck−q+2, Ck−q+1, we can construct a cycle of length
l = qk! + r where r 6= 4 that contains an edge e.

Next, we show the existence of cycles of length l = qk!+4 where 1 ≤ q < k+1.
Let Ck+1 be a (k! − 2)-cycle which contains an edge e. By the induction
hypothesis, such cycle exists. From Theorem 9, there exists a (1, 2)-edge f

different from e in Ck+1. Let p = f [k] and ep be a coupled pair-edge of f with
respect to (k, k + 1) in 〈Vp〉.

(1) If q ≤ k+1−p, let Cp, Cp+1, . . . , Cp+q−2 be Hamilton cycles in 〈Vp〉, 〈Vp+1〉, . . . , 〈Vp+q−2〉,
respectively, such that each cycle Ci contains fi and ei as mentioned in
Theorem 11, and Cp+q−1 be a 6-cycle which contains ep+q−1 in 〈Vp+q−1〉.
By the induction hypothesis and Theorem 11, those cycles exist. By merg-
ing cycles Ck+1, Cp, Cp+1, . . . , Cp+q−1, we can construct a (qk! + 4)-cycle
that contains an edge e.

(2) If q > k + 1− p, let Cp, Cp+1, . . . , Ck−1, C2, C3, . . . , Cq−k+p−2 be Hamilton
cycles in 〈Vp〉, 〈Vp+1〉, . . . , 〈Vk−1〉, 〈V2〉, 〈V3〉, . . . , 〈Vq−k+p−2〉, respectively,
such that each cycle Ci contains fi and ei as mentioned in Theorem 11,
and Ck be a Hamilton cycle in 〈Vk〉 which includes edges f ′

k and ek.
Let C1 be a Hamilton cycle in 〈V1〉 which includes edges e′1 and f1 and
Cq−k+p−1 be a 6-cycle which contains eq−k+q−1 in 〈Vq−k+p−1〉. By the in-
duction hypothesis and Theorem 11, those cycles exist. By merging cycles
Ck+1, Cp, Cp+1, . . . , Ck, C1, C2, . . . , Cq−k+p−1, we can construct a (qk!+4)-
cycle that contains an edge e.

For a (k, k+1)-edge that is adjacent to x, we partition the vertex set V (Cay(Sk+1, S(T )))
into V1 ∪ V2 ∪ · · · ∪ Vk+1 such that v ∈ Vi if v1 = i, and apply the above dis-
cussion similarly. Therefore, every edge in Cay(Sn, S(T )) lies on a cycle of
length l ≥ 6. 2
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〈Vn〉 〈Vn−1〉 〈Vn−2〉 〈Vn−q〉

en−2 fn−qfn−2
en−1fn−1

en
e

Fig. 5. A l = q(n − 1)! + r cycle in Cay(Sn, S(T )) that contains an edge e.

Figure 5 shows a cycle of length l = q(n− 1)!+ r, r 6= 4 that contains an edge
e in Cay(Sn, S(T )).

By Theorem13, Lemma 3 and Lemma 5, we obtain the following theorem.

Theorem 14 If a tree T is neither a star nor a double-star, the Cayley graph

Cay(Sn, S(T )) is edge-bipancyclic.

PROOF. Let T be a tree with n vertices, neither a star nor a double-star.
Then, for any edge e in T , there exists an edge disjoint from e. It means that
for any transposition in S(T ), there exists a disjoint transposition, and any
edge lies on a 4-cycle derived from such pair of disjoint transpositions. From
Theorem 13, we conclude that the statement holds. 2

For any pendant edge in double-star, it is easy to verify that there exists an
edge disjoint from such edge. From this fact, the following corollary is obtained.

Corollary 15 Let T be a double-star with n vertices. Then, any edge in

Cay(Sn, S(T )) generated by a transposition corresponding to some pendant

edge in T is contained in even cycle.

The rest of this section considers the case when the transposition graph is not
a tree. Before we state the main theorem, we show an useful lemma.

Lemma 16 Cay(S3, S(K3)) is edge-bipancyclic.

PROOF. Cay(S3, S(K3)) is isomorphic to complete bipartite graph K3,3

and the desired result follows. 2

We have the following characterizations of the bipancyclicity of the Cayley
graph generated by a transposition set.
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Theorem 17 Let G be a connected graph with V (G) = {1, 2, . . . , n}. The

Cayley graph Cay(Sn, S(G)) is edge-bipancyclic if and only if G is neither a

star nor a double-star.

PROOF. From Theorem 13, it is sufficient to show that there exists a 4-cycle
which includes the given edge in Cay(Sn, S(G)). First, we show the sufficiency
of the statement.

Let G be a connected graph with n vertices, neither a star nor a double-
star. Let e be a (u, v)-edge in Cay(Sn, S(G)). Since G is neither a star nor a
double-star, if (u, v) does not lie on some cycle in G, there exists an edge f

that is not adjacent to the edge e. Let (u, v) lie on some cycle in G. Then if
the length of the cycle is at least 4, there exists an edge f . If the length of the
cycle is 3, from Lemma 16, e is contained in some 4-cycle in Cay(Sn, S(G)).
The necessity is shown by its contrapositive.

If G is a star, Cay(Sn, S(G)) does not contain any 4-cycle. If G is a double-
star, edges in Cay(Sn, S(G)) generated by the transposition which corre-
sponds to the edge in G which connects two non end-vertices are not contained
in the 4-cycle. 2

Theorem 18 Let G be a connected graph with V (G) = {1, 2, . . . , n}. The

Cayley graph Cay(Sn, S(G)) is vertex-bipancyclic if and only if G is not a

star.

PROOF. From Theorem 17, it is sufficient to show the case when G is a
double-star. From Lemma 2, for any vertex v in Cay(Sn, S(G)), there ex-
ists a 4-cycle that contains v. On the contrary, if there exists a 4-cycle in
Cay(Sn, S(G)), then there exists a pair of disjoint edges in G. If a graph G

is not a star, such pair exists in G. 2

From Theorem 17 and Theorem 18, we obtain the next results for the trans-
position set.

Corollary 19 Let S be a transposition set on {1, 2, . . . , n}. Then the Cayley

graph Cay(Sn, S) is edge-bipancyclic if and only if the transposition graph

T (S) is neither a star nor a double-star.

Corollary 20 Let S be a transposition set on {1, 2, . . . , n}. Then the Cayley

graph Cay(Sn, S) is vertex-bipancyclic if and only if the transposition graph

T (S) is not a star.
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