
 
Hybrid fault simulation with compiled and event-driven methods 

 
Kenjiro Taniguchi, Hideo Fujii, Seiji Kajihara, and Xiaoqing Wen 

Department of Computer Science and Electronics 
Kyushu Institute of Technology 

680-4 Kawazu, Iizuka 820-8502 Japan 
{taniguchi, fujii, kajihara, wen}@aries30.cse.kyutech.ac.jp 

 
1. Introduction 

Fault simulation for a logic circuit, that calculates the 
behavior of a faulty circuit for given test patterns, plays an 
important role in VLSI design processes [1,2]. The 
objectives of fault simulation is fault grading, test pattern 
generation, or fault diagnosis. Run time of fault simulation 
increases with the circuit size and the number of test 
patterns. While the reduction of test costs is a critical issue 
for logic circuit testing, it is required to develop a hi-speed 
fault simulator. 
 There are some methods to accelerate fault simulation. 
Parallel fault simulation is a simple and well-known 
method that assigns one test pattern or one faulty circuit to 
each bit of a word. If one word of a machine is 32 bits, 32 
patterns or 32 faulty circuits are simulated in parallel. 
Concurrent fault simulation [3] and deductive fault 
simulation [4] are the other acceleration methods. These 
methods calculate faults detectable at each line of the 
circuit and propagate the faults to outputs of the circuits.  
 Since the procedure of fault simulation consists of 
fault injection and logic simulation, keys for acceleration 
of fault simulation are shown as follows: 
(1) To employ a fast logic simulation method. 
(2) To avoid waste simulation such that faulty behavior is 

the same as the fault-free behavior.  
As a fast logic simulation method, compiled simulation is 
well-known, which predetermines the order of lines to be 
evaluated and implements it in the assembly program.   
In fault simulation, however, it is difficult to use compiled 
simulation efficiently, because we don’t have to compute 
the circuit behavior if a faulty circuit behaves the 
fault-free circuit. Event-driven simulation is more 
adequate for fault simulation because only difference 
between the fault-free circuit and faulty circuits can be 
simulated.  

In this paper, we propose a method to speed-up fault 
simulation. The proposed method takes a hybrid approach 
with compiled simulation and event-driven simulation. 
Compiled simulation is applied for fan-out free regions 
(FFRs). FFRs to be simulated are selected with the 
event-driven manner. Since the event-driven simulation 
contributes to avoidance of waste simulation and the 
compiled simulation contributes to reduction of memory 
access, the proposed method can reduce the simulation 
time effectively. Note that this work targets on 
combinational circuits or a full-scan sequential circuit, and 

the single stuck-at fault model is assumed. Experimental 
results for benchmark circuits show that the proposed 
method could reduce runtime in half compared with 
concurrent (event-driven) fault simulation. 

This paper is organized as follows. In Section 2, we 
define an FFR, and show the overview of the proposed 
simulation method. In Section 3, we give the proposed 
fault simulation method. In Section 4 we show 
experimental results and in Section 5 we conclude this 
paper. 
 
 
2. Preliminary 
2.1 FFR (Fanout Free Region) 

At first, we define an FFR (Fanout Free Region). FFR 
is a subcircuit in which every gate has only one output. An 
input of an FFR is a primary input or a fanout branch, and 
an output of an FFR is a primary output or a fanout stem. 
An example is given in Fig. 1. A circuit in Fig. 1(a) 
consists of two FFRs as shown in Fig. 1(b).  
Suppose that two faults fa and fb exist in a same FFR. If 
the effects of fa and fb are propagated to the output of the 
FFR, we can treat two faults as one fault on the output of 
the FFR. Therefore, simulation of each fault can be 
divided into two parts: one is from the fault site to the 
output of its FFR, and another is from the FFR output to 
primary outputs.  
 

 
(a)                    (b) 

Fig. 1: Example of FFRs 
 

 
 
2.2 Overview of the proposed simulation 
method 
 In this work we employ event-driven simulation, 
compiled simulation and parallel simulation. In fault 
simulation, critical path tracing is also used to check the 
possibility of fault propagation from a fault site to its FFR 
output. Faults are explicitly injected only at outputs of 

  



FFRs which are a fanout stem or a primary output. When 
a fault is injected at a fanout stem, the fault-free value of 
the fanout stem is inverted. It means that an event appears 
at fanout branches from the fanout stem. Once an event 
appears at an input of an FFR, a logic value of the output 
of the FFR is calculated with compiled fault simulation. If 
the logic value of the FFR output is different from the 
fault-free value, it is treated as a new event. But if the 
logic value of the FFR output is the same as the fault-free 
value, no event is created. This process is repeated as long 
as any event exists at a fanout.  
 
 
3. Details of the proposed method 
3.1 Compiled Simulation 
 Primary inputs or fanout brances are input lines of 
FFRs, and primary outputs or fanout-stems are output 
lines of FFRs. The other lines are internal lines of FFRs. 
To achieve the speed-up of fault simulation, compiled 
simulation are applied inside FFRs. To realize this, we 
make logical formula for each FFR as one function. For 
example, we consider an FFR of Fig. 2. The input lines of 
the FFR are a, b and c. The output line of the FFR is e. 
Using un-compiled simulation, the value of line d is 
derived after accessing a fanin list of the AND gate and 
then the value of line d is calculated from the values of 
line a and line b. And the value of line e is derived from 
the values of line d and line c after accessing a fanin list of 
the OR gate. 

On the other hand, in the compiled method a function 
(or a subprogram), where expression e=(a∧b)∨c is 
described, is prepared for the value of line e. It means that 
we don’t have to access the fanin lists of the AND gate 
and the OR gate to calculate a value of line e during 
simulation. Hence the simulation speed goes up. 
 

d

a

c

b ed

a

c

b e

 
 

Fig. 2: Example of an FFR 
 

A disadvantage of compiled simulation for fault 
simulation was that fault injection is difficult. In the above 
example in Fig. 2, fault injection to line d is impossible 
because a value of line d is calculated in the 
predetermined function. Since the proposed method 
injects faults at outputs of FFRs, such a problem can be 
avoided.  
 

3.2 Function for calculating an FFR value 
 We explain a method of creating a function from a 
FFR. The basic rules are described in the following. 
• Scan all lines of the FFR from the output to inputs 

with a depth-first manner. 
• When we meet an input of a gate first, we output “(“. 
• When we go back to another input of the gate, we 

output the symbol of the gate(e.g. ∧,∨).  
• When we go back to the output of the gate, we 

output “)“. 
We give an example for the FFR in Fig.2 as follows. 
1. Start from line e and output the output line”e=”. 
2. Go to input line d of OR gate and output “(“. 
3. Go to input line a of AND gate and output “(“. 
4. Output ”a”. 
5. Go to another input line b of the AND gate and 

output the symbol “∧”. 
6. Output ”b”. 
7. Go back to output line d of the AND gate, and output 

“)“. 
8. Go to another input line c of the OR gate, and output 

the symbol “∨”. 
9. Output ”c”. 
10. Go back to output line e of the OR gate, and output 

“)“. 
As a result, we can derive the function “e=(( a∧b)∨c)” .  
 
 
3.3 Fault simulation 
 Creating a function of each FFR is done at a 
preprocessing phase. A fault list is created at the 
preprocessing phase too. The main phase of fault 
simulation is given in the following. 
1. Logic simulation for a given test pattern is performed 

to calculate fault-free values of each line. 
2. If there is a fault in a FFR which can be sensitized 

and propagate to the output of the FFR, set an event 
to the output of the FFR. If not, stop this procedure. 
Note that when more than one FFR has an event, 
choose one that is the closest to primary inputs. 

3. If an event exists at a primary output, mark the fault 
as “detected”, and remove the event. If an event exists 
at a fanout stem, then call a function of the FFRs 
which include a fanout branch of the fanout stem and 
calculate the output value of the FFRs. 

4. If the output value is different from the fault-free 
value, set a new event to the output of the FFR.  

5. Return to 2. 
 We illustrate the overall procedure of fault simulation 
in Fig. 3.  
 



preprocess

netlist

test vector

functions

read netlist

convert FFR 
to function

read netlist

make faultlist

set inputvectors

propagate values

set fault

propagate effect of fault

fault simulation

fault list

preprocess

netlistnetlist

test vectortest vector

functionsfunctions

read netlistread netlist

convert FFR 
to function

convert FFR 
to function

read netlist

make faultlist

set inputvectors

propagate values

set fault

propagate effect of fault

read netlistread netlist

make faultlistmake faultlist

set inputvectorsset inputvectors

propagate valuespropagate values

set faultset fault

propagate effect of faultpropagate effect of fault

fault simulation

fault listfault listfault list

 
 

Fig. 3: Procedure of fault simulation 
 
 
4. Experimental results 
 We implemented the proposed method using C 
programming language on a PC (OS: FreeBSD 4.11 
Release, CPU: Pentium4 530J (3.0GHz), memory: 
512MB), and applied to combinational parts of ITC’99 
benchmark circuits. We first made an experiment of logic 
simulation by the proposed method and a traditional 
method that calculate logic values by accessing the net list 
for each gate. About input vectors, we used 10,000 
random patterns. We show experimental results in Table1. 
The first three columns in Table1 show the circuit name, 
the number of lines and the number of gates. The 
following two columns show CPU time in seconds, about 
the proposed method and the traditional method. The last 
two columns show the reduction time and the percentage 
of reduction by the proposed method. By introducing 
compiled simulation, the run time of logic simulation was 
reduced to a few percents of the traditional method. 

We also give experimental results of fault simulation 
by the proposed method and the traditional method. The 
method of fault simulation is based on PPSFP (parallel 
pattern single fault propagation). About input vectors, we 
used 1,000 random patterns. And during fault simulation, 
no fault dropping was done, we show results in Table2. 
The first three columns in Table2 show the circuit name, 
the number of lines and the number of gates. The 
following two columns show CPU time in seconds, about 
the proposed method and the traditional method. The last 
two columns show the reduction time and the percentage 
of reduction by the proposed method. 
 
 
 
 
 

5. Conclusion 
We proposed a speed-up method of fault simulation 

based on a compiled approach and an event-driven 
approach. Though it had been difficult for fault simulation 
to use the compiled approach, the proposed method 
allowed it by partitioning the functions of compiled codes 
into FFRs. Experimental results for ITC’99 benchmark 
circuits showed that fault simulation time was reduced in 
half compared with a traditional PPSFP method. Now this 
fault simulation can be applied only for combinational 
circuits. So we are extending this fault simulation to one 
for sequential circuits. 
 
 
References 
[1] M. Abramovici, M. A. Breuer, A. D. Friedman, Digital 
Systems Testing and Testable Design, Piscataway, New 
Jersey: IEEE Press, 1990. 
[2] M. L. Bushnell, and V. D. Agrawal, Essentials of 
Electronic Testing for Digital, Memory & Mixed-Signal 
VLSI Circuits, Kluwer Academic Publishers, 2000.  
[3] E. G. Ulrich, T. Baker, “The concurrent simulation of 
nearly identical digital networks,” Proc. of Design 
Automation Workshop, vol. 6, pp. 145-150, 1973.  
[4] D.B. Armstrong, “A deductive method for simulating 
faults in logic circuits,” IEEE Trans. on Computer, vol. 
C-21, No. 5, pp. 464-471, 1972.



 
 
 
 
 

Table1: Results of logic simulation 
 

circuits # of lines # of gates traditional proposed reduction time %
b04s 1373 512 0.27 0.06 0.21 77.78
b07s 1015 362 0.21 0.04 0.17 80.95
b11s 1190 437 0.23 0.03 0.20 86.96
b12 2517 904 0.52 0.08 0.44 84.62
b14s 11645 4444 10.84 0.26 10.58 97.60
b15s 21804 8338 22.54 0.45 22.09 98.00
b17s 60253 22645 69.41 1.31 68.10 98.11
b20s 23045 8875 24.14 0.52 23.62 97.85
b21s 24053 9259 25.48 0.53 24.95 97.92
b22s 36707 14282 40.95 0.78 40.17 98.10

circuit information simulation time evaluation

 
 
 
 

Table2: Results of parallel pattern simulation 
 

circuits # of lines # of gates traditional proposed reduction time %
b04s 1373 512 1.79 1.12 0.67 37.43
b07s 1015 362 1.38 0.96 0.42 30.43
b11s 1190 437 2.60 1.57 1.03 39.62
b12 2517 904 2.60 1.73 0.87 33.46
b14s 11645 4444 132.30 58.59 73.71 55.71
b15s 21804 8338 253.86 103.19 150.67 59.35
b17s 60253 22645 761.21 338.96 422.25 55.47
b20s 23045 8875 286.36 137.02 149.34 52.15
b21s 24053 9259 318.04 156.67 161.37 50.74
b22s 36707 14282 489.14 231.27 257.87 52.72

circuit information simulation time evaluation

 
 

 


	Home: 
	PP: 
	PV: 
	NP: 
	NV: 


