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はしがき

本研究『分散制御における「独立設計」と「逐次設計」の統合』は日本学術振興会科学研究費補助金

(基盤研究 (C) 課題番号 16560389) により, 平成 16 年度から平成 18 年度までの 3 年間に渡って実
施されたものである. 本報告書は, その成果をまとめたものである.
本研究の基本課題は, 従来、まったく相異なる分散制御系の設計手順として提案されていた「独立

設計」と「逐次設計」を, 統一的に扱える理論を構築することである. その第一歩として, 分散型安
定化制御器のパラメトリゼーションについての成果をまとめたのが文献 [1]である. 安定化制御器の
パラメトリゼーションは, 安定化制御器の本質的な自由度を表現し , 制御系の性能限界を明らかにす
る上でそれ自体重要である. このパラメトリゼーションの結果を基に, 「独立設計」と「逐次設計」
を統合する「繰り返し独立設計」の基本的な枠組みを提案した. この「繰り返し独立設計」という枠
組みにおいて, balancing factor を用いることでサブシステムごとに異なる設計の難易度を考慮でき
ることを示した. さらに, balancing factor → 0 (あるいは ∞) の極限で、「独立設計」と「逐次設計」
を統一的に扱えることを理論的に示した. この成果をまとめたのが文献 [2] であり, 本研究課題の主
要な成果である.
また，関連研究として，分散制御系が有利とされる耐故障性を考慮した制御器の構造についても研

究を行った．耐故障性を有する制御器は行列としてのランクが許容する故障の数に応じて低下する傾

向があることを数値例を通して示した．また, 状態フィードバックに限定して、ある条件化で低ラン
クの制御器が得られることを理論的にも明らかにした．これらの成果をまとめたのが文献 [3～7] で
ある.
分散制御器は常にフルランクであり, 低ランク制御器の構造とは本質的に異なる. 文献 [3～7] の成
果は分散制御器の耐故障性における優位性を揺るがす成果でもある. 耐故障性と分散制御系の関連は
理論的にも実用的にも重要な課題であり, 今後の進展が期待される研究課題である.

研究組織

研究代表者: 瀨部 昇 (九州工業大学情報工学部助教授)

交付決定額 (配分額)

(金額単位: 円)
直接経費 間接経費 合 計

平成１６年度 1,000,000 0 1,000,000

平成１７年度 600,000 0 600,000

平成１８年度 600,000 0 600,000

総 計 2,200,000 0 2,200,000

i



研究発表

(ア) 学会誌発表

[1] Noboru Sebe, Explicit characterization of decentralized coprime factors, Automatica,
40-9, pp.1569-1574, 2004.

[2] Noboru Sebe, Unification of Independent and Sequential Procedures for Decentralized
Controller Design, Automatica, 43-4, pp.707-713, 2007. (掲載予定)

(イ) 口頭発表

[3] Noboru Sebe, A study on the structure of reliable controllers, 16th International Sym-
posium on Mathematical Theory of Networks and Systems (MTNS2004), Leuven, July
5-9, 6 pages, 2004.

[4] Noboru Sebe, Rank deficiency of reliable controllers, 10th IFAC/IFORS/IMACS/IFIP
Symposium on Large Scale Systems: Theory and Applications, Osaka, July 26-28, pp.542-
547, 2004.

[5] Noboru Sebe, Low gain property of rank deficient state feedback gain with k-out-of-
m integrity, 3rd International Symposium on Systems and Human Science: Complex
Systems Approaches for Safety, Security and Reliability (SSR2006), Vienna, March 6-8,
6 pages, 2006.

[6] Noboru Sebe, Structure of state feedback with k-out-of-m integrity, 5th IFAC Sympo-
sium on Robust Control Design, Toulouse, July 5-7, 6 pages, 2006.

(ウ) 出版物

[7] Noboru Sebe and Akinori Mochimaru, Structure of Reliable Controllers, In Systems and
Human Science –For Safety, Security, and Dependability– (T. Arai, S. Yamamoto and
K. Makino, eds.), Elsevier (Amsterdam, The Netherlands), pp.187-200, March 2005.

本報告書は, 以上の成果をまとめたものである.

ii



目次

1. Explicit characterization of decentralized coprime factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Unification of Independent and Sequential Procedures

for Decentralized Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3. Structure of Reliable Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4. A study on the structure of reliable controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5. Rank deficiency of reliable controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6. Low gain property of rank deficient state feedback gain with k-out-of-m integrity . . . . . . . . 37
7. Structure of state feedback with k-out-of-m integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iii



iv



Explicit characterization of decentralized coprime factors �

Noboru Sebe a,1

a Department of Artificial Intelligence,
Kyushu Institute of Technology,

680-4, Kawazu, Iizuka, Fukuoka, 820-8502 Japan

Abstract

This paper is concerned with the parametrization of all the decentralized stabilizing controllers. The auxiliary diagonal system,
which is defined by the diagonal elements of Bezout factors, plays important roles in the parametrization of decentralized
controllers. This paper gives an explicit characterization of the auxiliary system.

Key words: Decentralized control, Coprime factorization, Parametrization, State-space realization, Transfer functions

1 Introduction

This paper is concerned with the parametrization of all
the decentralized stabilizing controllers.

For centralized control systems, the parametrization of
all stabilizing controllers is proposed by Youla et al.
(1976). The parametrization has brought us great ad-
vantages in progress of control theory. It clarifies the
structure of stabilizing controllers and the restrictions
on the performance. It also helps the derivation of H∞
controllers [6,5,7], and the derivation of the conditions
for the strong stabilization problem and the simultane-
ous stabilization problem [18], etc. The parametrization
helps to develop design procedures not only for prob-
lems with frequency domain specifications but also for
those with time domain specifications. Boyd and Barratt
(1991) propose to design a free parameter Q(s), which
appears affinely in the parametrization, by the convex
optimization. It should be noted that the state space rep-
resentation of the Bezout factors [12] has also achieved
the progress in control theory.

For the decentralized control systems, the decentralized
Bezout identity and its stable factors, called “d-coprime

� The original verion of this paper was presented at the
IFAC 2002, July 2002, Barcelona, Spain.

Email address: sebe@ai.kyutech.ac.jp (Noboru Sebe).
1 He was a visiting scholar at LAAS-CNRS, 7 Avenue du
Colonel Roche, 31077 Toulouse, France. This work has been
done during his stay at LAAS-CNRS. His stay at LAAS-
CNRS was sponsored by the Japanese Ministry of Education,
Science, Sports and Culture.

factors,” have been proposed [9,4]. The decentralized
Bezout identity has a special structure and the diago-
nal parts of the coprime factors represent the auxiliary
diagonal system. With this auxiliary diagonal system,
parametrizations of decentralized controllers have been
also proposed. Although the decentralized Bezout iden-
tity and the auxiliary diagonal system play important
roles in the parametrization of decentralized controllers,
the explicit characterization has not been given.

From the viewpoint of controller design, the character-
ization of the auxiliary diagonal systems is very impor-
tant. Unlike the centralized case, there are no practi-
cal methods to design decentralized controllers based
on the parametrization. The first reason is that there
are constraints on the parameters. The second reason is
that the connection between the d-coprime factors and
their state space representation is not clarified. Thus,
there are no computer-oriented computational methods
for the parametrization of decentralized controllers.

In this paper, a state space representation of decentral-
ized stable factors is given and the characteristics of the
diagonal parts of the decentralized stable factors, i.e.,
the auxiliary diagonal systems are clarified.

Notation.
In this paper, static matrices are used in state space rep-
resentations of transfer function matrices. And transfer
function matrices themselves are also used in this paper.
For the sake of simplicity, the variable s is dropped in
many cases. To avoid misunderstanding, matrices A, B,
C, D, E, F , I and O denote static matrices (especially
I and O denote an identity and a zero matrices respec-
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Fig. 1. Decentralized control system

tively) and the other matrices denote transfer function
matrices throughout this paper.

2 Preliminaries

This paper considers the decentralized control of a linear
time-invariant plant P (s) with n control channels given
by

ẋ = Ax +
n∑

i=1

Biui, (1)

yi = Cix +
n∑

j=1

Dijuj , (i = 1, . . . , n) (2)

where x, ui and yi are the state, the i-th local inputs
and the i-th local outputs of the plant, respectively. In
this paper, packed matrix forms are used to represent
realizations of systems, and the above realizations are
represented by

P (s) =

⎡
⎢⎢⎢⎢⎢⎣

A B1 · · · Bn

C1

... Dij

Cn

⎤
⎥⎥⎥⎥⎥⎦ . (3)

The decentralized control problem is to find n local con-
trollers

Ki(s) =

⎡
⎣Aki Bki

Cki Dki

⎤
⎦ , (i = 1, . . . , n) (4)

to stabilize the given plant.

If a decentralized controller K(s), defined as

K = diag{K1,K2, . . . ,Kn}, (5)

stabilizes the given plant P (s), then, obviously P (s) and
K(s) have the doubly coprime factorization [18]. Fur-

thermore, according to the structure of the decentral-
ized stabilizing controllers, some of the doubly coprime
factorizations can be given as

P = NM−1 = M̃−1Ñ , (6)
K = XY −1 = Ỹ −1X̃, (7)[

Ỹ −X̃

Ñ M̃

][
M X

−N Y

]
=

[
I O

O I

]
(8)

where

X = diag {X1,X2, . . . , Xn}, (9)
Y = diag {Y1, Y2, . . . , Yn}, (10)
X̃ = diag {X̃1, X̃2, . . . , X̃n}, (11)
Ỹ = diag {Ỹ1, Ỹ2, . . . , Ỹn}. (12)

As the coprime factors of K(s) have the diagonal struc-
tures (9)-(12), the next lemma holds.

Lemma 1 [4] The coprime factors in (8) also satisfy

[
Ỹ −X̃

Ñd M̃d

][
Md X

−Nd Y

]
=

[
I O

O I

]
, (13)

where N , M , Ñ and M̃ are partitioned according to the
sizes of inputs and outputs, and

Nd = diag {N11, N22, . . . , Nnn}, (14)
Md = diag {M11,M22, . . . ,Mnn}, (15)
Ñd = diag {Ñ11, Ñ22, . . . , Ñnn}, (16)
M̃d = diag {M̃11, M̃22, . . . , M̃nn}. (17)

Date and Chow (1994) call this doubly coprime factor-
ization as “d-coprime factorization.” With this doubly
coprime factorization, they give a parametrization of
decentralized stabilizing controllers, and show the con-
nection to the other attempts on the parametrization
[10,9,13].

To show the importance of Nd, Md, Ñd, M̃d, another
parametrization of decentralized controllers is reviewed
here.

Lemma 2 [15] All the decentralized controllers which
stabilize the given plant P (s) are parametrized as

(T̃ Ỹ − Q̃Ñd)−1(T̃ X̃ + Q̃M̃d), (18)

where(
det(T̃ Ỹ − Q̃Ñd) �≡ 0,

T̃ + Q̃R ∈ U , T̃ , Q̃ ∈ D

)
, (19)
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and

R = ÑMd − M̃Nd. (20)

(U denotes the set of unimodular matrices and D denotes
the set of stable block diagonal transfer function matri-
ces.)

Definition 3 For given P (s) and K(s), define the aux-
iliary diagonal system Pd(s) as

Pd = NdM
−1
d (= M̃−1

d Ñd), (21)

where Nd, Md, Ñd, M̃d are defined in (14)-(17).

The auxiliary system Pd(s) plays an important role in
the parametrization of decentralized stabilizing con-
trollers given by Lemma 2. If the parameter T̃ is fixed as
T̃ = I, then (18) becomes a parametrization of decen-
tralized controllers which stabilize the auxiliary system
Pd(s). And the constraint (19) becomes I + Q̃R ∈ U ,
which is the condition for the simultaneous stabilization
(Vidyasagar, 1985). Thus the constraint (19) ensures
that decentralized controllers stabilize both the actual
system P (s) and the auxiliary system Pd(s) simultane-
ously.

It is easy to see that ‖Q̃‖∞ < (‖R‖∞)−1 is a sufficient
condition for I +Q̃R to be an unimodular matrix, where
‖·‖∞ denote the H∞-norm of (·). Thus, under the above
condition on Q̃, it would be able to tune Q̃ similarly to
the convex optimization methods for centralized control
systems. Note that this procedure designs controllers for
the auxiliary system Pd(s). The auxiliary system Pd(s)
would be important for decentralized controller design.

Date and Chow (1994) shows that Pd(s) is uniquely de-
termined by given P (s) and K(s). But what is the sys-
tem Pd(s)? Does Pd(s) have a real meaning? The char-
acteristics of the auxiliary system Pd(s) has not been
clarified yet. The reasons are

• The auxiliary system Pd(s) is defined not only by the
given P (s), but also an initially given decentralized
controller K(s).

• The definition of Pd(s) is complicated, extracting the
diagonal elements from the coprime factors and re-
constructing the system as a fraction of the elements.

The purpose of this paper is to reveal the property of
the auxiliary system Pd(s).

3 Main Results

Definition 4 For given P (s) and K(s), define the aux-
iliary systems Hi(s) as transfer functions from ui to yi,

P (s) ��

�

�

2
4 K1 O

. . .
O Ki−1

3
5

2
4 Ki+1 O

. . .
O Kn

3
5

�

�
ui yi

Fig. 2. Block diagram of Hi(s)

where all the local loops are closed by K(s) except the i-
th loop. The block diagram of Hi(s) is shown in Fig. 2.
With the systems Hi(s) (i = 1, . . . , n), let us define the
system H(s) as

H = diag {H1,H2, . . . , Hn}. (22)

In most designs of decentralized control systems, espe-
cially in design procedures called “independent designs,”
controllers are designed for “non-interactive models”
of plants, which consists of decoupled subsystems. For
these design procedures, it is very important to evaluate
the effect from the other loops to ensure the stabil-
ity and/or the robust stability of closed-loop systems.
Thus, the many classical and modern design procedures
[14,1,8,17] use Hi(s) to analyze the (robust) stability of
closed-loop systems. Furthermore, these design proce-
dures also use the (robust) stability conditions on the
difference between Hi(s) and Pii(s) as design specifi-
cations for each local loop. With the additional design
specifications, designed controllers (robustly) stabilize
the given plant. The auxiliary system H(s) is important
for designs of decentralized controllers.

Theorem 5 For a given plant P (s) and a decentralized
stabilizing controller K(s), let us define the auxiliary sys-
tems Pd(s) and H(s) as (21) and (22) respectively. Then,

Pd(s) = H(s). (23)

PROOF. See Appendix.

Now, let us discuss about designs of decentralized con-
trollers based on the parametrization, and the meaning
of Theorem 5. Date and Chow (1993) have suggested
the direction of design of decentralized controllers based
on the parametrization shown in Lemma 2. The proce-
dures are basically designing local controllers for each
subsystems of Pd, and are placed in the “independent

3



design.” Unlike the ordinary (one-shot) “independent
design” procedures, the design procedures based on the
parametrization would be iterative design procedures,
i.e., updating decentralized controllers iteratively. There
have been some researches on the iterative independent
design procedures (Date and Chow, 1994; Miyamoto and
Vinnicombe,1997; Sebe,1998).

On the other hand, Theorem 5 shows that the Pd is the fi-
nal step of a sequential design, i.e., the design procedures
using Pd are deeply concerned with the ’sequential de-
sign.’ According to these facts, Theorem 1 might be the
key result to connect the independent and the sequential
design procedures, even though these two design proce-
dures are much different from each other. Consequently,
based on Theorem 5, an iterative independent design
procedure is proposed as a unification of these two de-
sign procedure [16]. This unified approach includes both
the independent and the sequential design procedures as
special cases of it. Furthermore, a modification of the it-
erative independent design procedure is also considered
to take into account the H∞ performance specifications
[16].

The other contribution of Theorem 5 is the reduction
of computational complexity and the improvement of
accuracy on computation of Pd. As shown in the proof of
Theorem 5 and the numerical example, the calculation
of Pd by coprime factorization requires the reductions of
unobservable modes. From the viewpoint of numerical
computations, such reductions are not preferable. This
numerical problem can be avoided by Theorem 5.

4 Numerical Example

In this section, a numerical example is given to verify
the result. Let a given plant P (s) and a decentralized
(static) stabilizing controller K(s) be

P (s) =

⎡
⎣ s−3

(s−1)(s−2)
−1

(s−1)(s−2)

2
(s−1)(s−2)

s
(s−1)(s−2)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0 −1 1 0

2 3 0 1

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

K(s) =

[
1 0

0 4

]
.

From Definition 4, H1(s) and H2(s) are

H1(s) =
s + 1

s2 + s + 2
, H2(2) =

s + 1
s2 − 2s − 1

. (24)

Assume the d-coprime factors of K(s) be

X̃ = X = diag{1, 4}, Ỹ = Y = diag{1, 1}. (25)

Then, the d-coprime factors of P (s), which satisfy Be-
zout identity (8) are given by

⎡
⎢⎢⎣

M

N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s2+s+2
s2+2s+3

1
s2+2s+3

−8
s2+2s+3

s2−2s−1
s2+2s+3

s+1
s2+2s+3

−1
s2+2s+3

2
s2+2s+3

s+1
s2+2s+3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Extracting the diagonal elements from the above co-
prime factors, the elements of the auxiliary diagonal sys-
tem Pd(s) are given by

N11M
−1
11 =

s + 1
s2 + s + 2

, (27)

N22M
−1
22 =

s + 1
s2 − 2s − 1

. (28)

The systems (27) and (28) are identical to H1(s) and
H2(s) in (24) respectively. Please note that the stable
unobservable modes −1±√

2i, which correspond to the
poles of the closed-loop system, are reduced in (27) and
(28). Theorem 5 enables to avoid the cancellations in the
calculations of Hi(s).

5 Conclusion

An explicit characterization of auxiliary diagonal sys-
tems which appears in the decentralized coprime factors
is given in this paper. This characterization will provide
additional insights into the parametrization of decen-
tralized controllers.

The result also brings advantages in computational as-
pects, such as the reduction of computational complex-
ity and the improvement of accuracy.
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Appendix

Lemma 6 Assume state space representations of the
given systems are

K(s) =

⎡
⎣Ak Bk

Ck Dk

⎤
⎦ , P (s) =

⎡
⎣A B

C D

⎤
⎦ . (29)

And let a realization of the left coprime factors of K(s)
(= Ỹ −1X̃) be

[Ỹ X̃] =

⎡
⎣Ak − FkCk Fk −(Bk − FkDk)

−Ck I Dk

⎤
⎦ , (30)

where Ak−FkCk is a stable matrix. Then, a realization of

the right coprime factors

[
M

N

]
of the givem plant P (s)

which satisfy Bezout identity

Ỹ M + X̃N = I, (31)

are given by

⎡
⎢⎢⎢⎢⎢⎣

A − BE−1DkC −BE−1Ck BE−1

BkẼ−1C Ak − BkDE−1Ck −Fk + BkDE−1

−E−1DkC −E−1Ck E−1

Ẽ−1C −DE−1Ck DE−1

⎤
⎥⎥⎥⎥⎥⎦,

(32)

where

E = I + DkD, Ẽ = I + DDk (33)

Note that this lemma is an extension of the result in Nett
et al. (1984).

Proof of Theorem 5. Date and Chow (1994) have al-
ready mentioned that the d-coprime factors (8)-(17) are
unique except the multiplication of block-diagonal uni-
modular matrices. As any block-diagonal unimodular
matrices do not alter the auxiliary system Pd(s), Pd(s) is
uniquely determined by the given plant and its stabiliz-
ing decentralized controller. Thus, the proof of Theorem
5 is only to perform the calculation shown in Date and
Chow (1994) by state space representations, and to show
that the auxiliary system Pd(s) is identical to H(s). For
the sake of simplicity, we will develop the results for a
2-channel system. Results for the n-channel systems can
be derive analogously, and hence, will be omitted here.

Let us assume

K(s) =

⎡
⎣Ak Bk

Ck Dk

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

Ak1 O Bk1 O

O Ak2 O Bk2

Ck1 O Dk1 O

O Ck2 O Dk2

⎤
⎥⎥⎥⎥⎥⎦ , (34)
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P (s) =

⎡
⎣A B

C D

⎤
⎦ =

⎡
⎢⎢⎣

A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎥⎥⎦ . (35)

Let us also assume

Fk = diag{Fk1, Fk2}, (36)

where Aki − FkiCki are stable matrices.

From Lemma 6, the right coprime factors of the given
P (s), which satisfy (8), can be given by (32). Extracting
the (1, 1) blocks from M and N , the state space repre-
sentation of M11 and N11 is

[
M11

N11

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A − BE−1DkC −BE−1Ck BE−1

[
I

O

]

BkẼ−1C Ak − BkDE−1Ck −
[

Fk1

O

]
+ BkDE−1

[
I

O

]

−[I O]E−1DkC −[I O]E−1Ck [I O]E−1

[
I

O

]

[I O]Ẽ−1C −[I O]DE−1Ck [I O]DE−1

[
I

O

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, the state space representation of N11M
−1
11 is given

by

N11M
−1
11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A − B2E
−1
22 Dk2C2 O −B2E

−1
22 Ck2 B

[
I

−E−1
22 Dk2D21

]

∗ Ak1 − Fk1Ck1 ∗ ∗
Bk2Ẽ

−1
22 C2 O Ak2 − Bk2D22E

−1
22 Ck2 Bk2Ẽ

−1
22 D21

C1 − D12E
−1
22 Dk2C2 O −D12E

−1
22 Ck2 D11 − D12E

−1
22 Dk2D21

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(37)

where

E22 = I + Dk2D22, Ẽ22 = I + D22Dk2. (38)

Neglecting the unobservable modes associated with the
eigenvalues of Ak1 − Fk1Ck1, (37) can be reduced to

N11M
−1
11 =

⎡
⎢⎢⎣

A − B2E
−1
22 Dk2C2 −B2E

−1
22 Ck2 B1 − B2E

−1
22 Dk2D21

Bk2Ẽ
−1
22 C2 Ak2 − Bk2D22E

−1
22 Ck2 Bk2Ẽ

−1
22 D21

C1 − D12E
−1
22 Dk2C2 −D12E

−1
22 Ck2 D11 − D12E

−1
22 Dk2D21

⎤
⎥⎥⎦ .(39)

It is easy to verify that the realization (39) is identical
to that of H1(s). Similarly, N22M

−1
22 = H2(s) holds. �

It should be noted that the above calculation requires
not only the reduction of the unobservable modes which

correspond to the eigenvalues of Akj − FkjCkj (j �= i),
but also the stable pole-zero cancellations which corre-
spond to the poles of the closed-loop system. From the
viewpoint of numerical computations, such a reduction
is not preferable. This numerical problem can be avoided
by Theorem 5.
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Unification of Independent andSequentialProcedures for

DecentralizedControllerDesign

Noboru Sebe a
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Abstract

This paper is concerned with decentralized control problems. There are two typical procedures to design decentralized con-
trollers, ‘independent’ and ‘sequential’ design procedures. As the concepts and the techniques in these two approaches are too
different from each other, there have been no attempts to unify these approaches. This paper proposes an iterative independent
design procedure for decentralized control systems, which is a unified approach to these conventional approaches.

Key words: Decentralized control, Multivariable control systems, Coprime factorization, Parametrization, H∞ control,
Interactions, Structured singular value.

1 Introduction

Decentralized control systems are the systems with the
constraints on the controller structure. This paper fo-
cuses on the decentralized control systems with block
diagonal controllers. To design decentralized controllers,
there are two typical procedures called ‘independent’
and ‘sequential’ design procedures. Although there are
some attempts to design decentralized controller base
on matrix inequality approaches (Zhai et al., 2001;
D’Andrea and Dullerud, 2003; Ebihara et al., 2004),
these two design procedures are still very useful for the-
oretical analysis and practical design for decentralized
control systems. In this paper, a unified approach of
these two design procedures is proposed.

The independent design procedure constructs local con-
trollers for corresponding local subsystems or diagonal
approximation of the given plant. Each local controller
is designed independently to the other local controllers
(Rosenbrock, 1969; Araki and Nwokah, 1975; Grosdidier
and Morari, 1986; Skogestad and Morari, 1989). Gen-
erally, the procedure only uses local loop information,
thus designed controllers might be simple and easy to
tune. Furthermore, the complexity of controllers is pro-
portional to that of local subsystems. On the other hand,
it is not easy to attain the best performance.

In the sequential design procedure, local loops are closed
step by step (Davison and Gesing, 1979; Bernstein, 1987;

Email address: sebe@ai.kyutech.ac.jp (Noboru Sebe).

Chiu and Arkun, 1992). Each local controller is designed
with the information of previously designed local con-
trollers. Thus, the sequential design would attain better
performance than independent design does. The draw-
back is complexities of local controllers. The later the lo-
cal controller is designed, the more complex it becomes.

As the concepts and techniques in these two approaches
are too different from each other, there have been no at-
tempts to unify the approaches. In this paper, an itera-
tive independent design procedure for decentralized con-
trol systems is proposed. The proposed procedure has
parameters to balance the difficulty and significance of
local loops. With particular selections of these parame-
ters, both the independent and sequential design proce-
dures can be implemented. Furthermore, a modification
to H∞ controller design is also discussed in this paper.

This paper is organized as follows. In Section 2, a
parametrization of plants and controllers are stated. In
Section 3, the stability condition with balancing weights
is derived. Section 4 contains the proposed design pro-
cedures with balancing weights. Design examples are
given in Section 5.

Notations. Md denotes the block diagonal part of a
matrix M , where the block diagonal structure is com-
patible with a decentralized controller. σ̄(M) denotes
the maximum singular value of a matrix M . μΔ(M) de-
notes the structured singular value of a matrix M with
respect to the block diagonal structure Δ (Doyle, 1982).
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Throughout this paper, the diagonal structure Δ is same
as that of a decentralized controller, and Δ is dropped
in many cases for the sake of simplicity. For matrices M
and N partitioned as Mij , Nij , (i, j = 1, 2), the upper
linear fractional transformation (LFT), the lower LFT,
and the star product of M and N are defined as

Fu(N,M22) = N22 + N21M22(I − N11M22)−1N12,

Fl(M,N11) = M11 + M12N11(I − M22N11)−1M21,

M � N

=

[
Fl(M,N11) M12(I−N11M22)−1N12

N21(I−M22N11)−1M21 Fu(N,M22)

]
,

respectively. The inverse LFT of M is also defined as

M− =

[
O I

I O

]
M−1

[
O I

I O

]
.

Note that M � M− =

[
O I

I O

]
, M− � M =

[
O I

I O

]
.

RH∞ denotes the set of stable transfer function matri-
ces, and ‖G(s)‖∞ denotes the H∞ norm of G(s).

2 Preliminaries

In this section, some basic results concerned with the
parametrization of stabilizing controller are given.

Lemma 1 (Youla et al., 1976) For a given plant P , there
exists Kg such that all the controllers which stabilize P
are parametrized as {K |K = Fl(Kg, Q), Q ∈ RH∞}.

Corollary 2 If a controller K is given, then there exists
Pg such that all the plants which are stabilized by K are
parametrized as {P |P = Fu(Pg, R), R ∈ RH∞}.

Then, we have the following theorem.

Theorem 3 Let P and K be a given plant and its sta-
bilizing controller, respectively. Then there exist Pg and
Kg such that

(i) The (1,1) element of Kg is K and Kg gives the
parametrization of all the controllers in Lemma 1.

(ii) The (2,2) element of Pg is P and Pg gives the
parametrization of all the plants in Corollary 2.

(iii)
Pg � Kg =

[
O I

I O

]
. (1)

PROOF. Suppose a doubly coprime factorization
(Vidyasagar, 1985) of P and K over RH∞ is given by

[
Ỹ −X̃

−Ñ D̃

][
D X

N Y

]
=

[
I O

O I

]
, (2)

P = D̃−1Ñ = ND−1, K = Ỹ −1X̃ = XY −1. (3)

Then, one of the pairs (Pg,Kg) which satisfy the three
conditions is given by

Pg =

[
−X̃D̃−1 D−1

D̃−1 P

]
, Kg =

[
K Ỹ −1

Y −1 −Ñ Ỹ −1

]
. (4)

3 Main results

In this section, the parametrization of all decentralized
stabilizing controllers is reviewed, and the stability con-
dition for decentralized control systems is derived.

Let us consider a block diagonal decentralized controller,

K = diag{K1,K2, . . . ,Kn}. (5)

If a decentralized controller K stabilizes a given plant P ,
then a doubly coprime factorization (2) exists. Accord-
ing to the structure (5), we can choose the factors of K
in (2) to be block diagonal. Then, the next lemma holds.

Lemma 4 (Date and Chow, 1994) Let P and K be a
given plant and its decentralized stabilizing controller,
and their doubly coprime factorization be given by (2),
(3), where the coprime factors X, Y , X̃, Ỹ are block
diagonal. Then the coprime factors in (2) also satisfy

[
Ỹ −X̃

−Ñd D̃d

][
Dd X

Nd Y

]
=

[
I O

O I

]
. (6)

Let us define the auxiliary plant H as

H = NdD−1
d = D̃−1

d Ñd. (7)

This auxiliary plant H plays very important role in the
parametrizations of decentralized stabilizing controllers
(Manousiouthakis, 1989; Gündeş and Desoer, 1990;
Özgüler, 1990; Sebe, 2004). With this auxiliary plant,
we have the following theorem.

Theorem 5 Let P and K be a given plant and its de-
centralized stabilizing controller. Assume H be defined by
(7). Then there exist Pg and Kg which satisfy the condi-
tions below.
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(i) The set {K̂ | K̂ = Fl(Kg, Q), Q ∈ RH∞} gives the
parametrization of all the controllers which stabilize
H.

(ii) The set {P̂ | P̂ = Fu(Pg, R), R ∈ RH∞} gives the
parametrization of all the plants which are stabilized
by K.

(iii) Pg and Kg have the forms that

Pg =

[
∗ ∗
∗ H

]
, Kg =

[
K ∗
∗ ∗

]
(8)

where all the elements denoted by ∗ are block diago-
nal. Furthermore, Pg and Kg satisfy (1).

(iv) There exists R ∈ RH∞ such that

P = Fu(Pg, R), Rd = O. (9)

PROOF. With the coprime factors defined in (6), Pg

and Kg which satisfy the conditions (i), (ii) and (iii) can
be given by

Pg =

[
−X̃D̃−1

d D−1
d

D̃−1
d H

]
, Kg =

[
K Ỹ −1

Y −1 −ÑdỸ −1

]
.(10)

From (1), (2) and (6),

R =Fu(P−
g , P ) = Fu(Kg, P )

=−ÑdỸ −1 + Y −1ND−1(I − Ỹ −1X̃ND−1)−1Ỹ −1

=−ÑdỸ −1 + Y −1N

=−ÑdỸ −1(Ỹ D − X̃N) + (D̃dY − ÑdX)Y −1N

=−ÑdD + D̃dN (∈ RH∞). (11)

From (6) and the diagonal structure of Ñd and D̃d,

Rd = −ÑdDd + D̃dNd = O. (12)

This completes the proof. �

The matrix Kg gives the parametrization for the auxil-
iary plant H, not for the real P . Accordingly, unlike the
centralized case in Boyd and Barratt (1991), a candidate
controller Fl(Kg, Q) does not always stabilize P . Thus,
we have to clarify the stability conditions.

Theorem 6 Suppose Pg and Kg are defined in Theo-
rem 5 for a given P and K. Let Pgi consist of elements of
Pg corresponding to the i-th local loop. Let unimodulars
U and V be

U = diag{U1, U2, . . . , Un}, (13)
V = diag{V1, V2, . . . , Vn}, (14)

⇔⇔P�

K̂ �

Pg��

K̂ �

U

U−1V −1

V

�

�

�

�

Kg

P

��

�

Pg��

R �

K̂ �

Fig. 1. Closed loop system with P and K̂

which have diagonal structures compatible with K. Then,
a candidate controller K̂ = diag{K̂1, K̂2, . . . , K̂n} stabi-
lizes the given plant P if Fl(Pgi, K̂i) ∈ RH∞ and

σ̄
(
U−1

i (jω)Fl(Pgi(jω), K̂i(jω))V −1
i (jω)

)
< 1/r(ω) (∀ω, ∀i), (15)

where

r(ω) = μ (V (jω)R(jω)U(jω)) , (16)
R = Fu(Kg, P ). (17)

PROOF. By applying the small gain theorem to the
system shown in Fig. 1 and taking account of the block
diagonal structures of Pg, K̂, U and V , a stability con-
dition can be derived as

σ̄
(
U−1(jω)Fl(Pg(jω), K̂(jω))V −1(jω)

)
< μ−1 (V (jω)R(jω)U(jω)) , (18)

Furthermore, as from the diagonal structure,

σ̄
(
U−1Fl(Pg, K̂)V −1

)
= max

i
σ̄
(
U−1

i Fl(Pgi, K̂i)V −1
i

)
. (19)

�

The stability conditions (15) can be regarded as robust
stability conditions for the perturbed local systems de-
fined as

Fu

(
Pgi, V −1

i ΔiU
−1
i

)
, (20)

where Δi are virtual uncertainties and σ̄(Δi(jω)) <
r(ω) for all ω. Considering the virtual diagonal uncer-
tainty {Δ1, . . . ,Δn} instead of the actual uncertainty R,
Theorem 6 divides the overall stability condition into n
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individual local robust stability conditions. This enables
us to design local controllers independently.

In Theorem 6, the U and V act as weights to balance
the difficulty and significance of local loops, as in Sebe
and Kitamori (1995). Here, brief explanation about the
‘balancing weights’ U and V is given. With V = I and
U = I, the stability conditions are

σ̄(Fl(Pgi, K̂i)) < 1/μ(R)

for all local loops. Let us modify U to

Ui = bI, Uj = I (j �= i),

where b > 1. Please note that

μ(R) ≤ μ(Rb) ≤ μ(b · R) = b · μ(R),

where Rb = V RU . Then the stability conditions become

σ̄(Fl(Pgj , K̂j)) < 1/μ(Rb) (≤ 1/μ(R)) (j �= i),

σ̄(Fl(Pgi, K̂i)) < b/μ(Rb) (≥ 1/μ(R)).

The above inequalities imply that the virtual uncertainty
of i-th local loop becomes smaller while those of the other
local loops become larger. In other words, we can de-
sign K̂i with less consideration of robustness against the
virtual uncertainty. In Section 5, the numerical example
demonstrates the advantage of the balancing weights.

However, the stability condition (15) depends on Pg, i.e.,
on H. As mentioned before, there exist decentralized
controllers which stabilize P but do not stabilize H. This
fact indicates that we have to find a preferable Pg for
designing controllers. Accordingly, in the next section,
iterative design procedures which systematically update
Pg are proposed.

4 Design procedure

In this section, an iterative design procedure base on
Theorem 6, is stated below. Here, Pg, U and V are not
assigned explicitly. In subsection 4.1, the particular se-
lections of U (l) and V (l) to implement the conventional
independent and sequential design procedures are given.
In subsection 4.2, with the modification to Pg, a design
procedure for standard H∞ control problem is given.

Design procedure.
Let (l) denotes the variables used at the l-th iteration.

(i) Assume that a decentralized stabilizing controller
K(0) exists and is given.

(ii) With K(l), choose P
(l)
g , K

(l)
g which have the diago-

nal structure defined by (8) and satisfy

P (l)
g � K(l)

g =

[
O I

I O

]
, K(l)

g =

[
K(l) ∗
∗ ∗

]
. (21)

Also choose diagonal unimodulars U (l) and V (l).
(iii) Design local controller K

(l+1)
i for each perturbed

local system given by (20).
(iv) If K(l+1) attains sufficient performance, stop the

procedure. Otherwise go to (ii).

4.1 Unification of independent and sequential designs

Let us discuss about the conventional independent de-
sign. The stability conditions in Grosdidier and Morari
(1986) and Skogestad and Morari (1989) can be derived
by choosing the pairs (P (0)

g ,K
(0)
g ) and (U (0), V (0)) as

P (0)
g =

[
O Pd

I Pd

]
, K(0)

g =

[
O P−1

d

I −I

]
, (22)

U (0) = I, V (0) = I. (23)

(Strictly, Pd must be a unimodular.) Note that the above
choice of (P (0)

g ,K
(0)
g ) means that K(0) = O (zero ma-

trix), and the plant P is modeled as the nominal model
Pd with the multiplicative uncertainty R(0). The inde-
pendent design procedures proposed in those papers de-
sign decentralized controllers for the above perturbation
model. Conversely, with (22) and (23), the first itera-
tion of the above design procedure is exactly same as the
conventional independent design procedures.

Now, let us consider the other particular selection below.

P (l)
g =

[
∗ ∗
∗ H(l)

]
, (24)

U
(l)
i = I, U

(l)
j = εI (j �= i), (25)

V
(l)
i = I, V

(l)
j = εI (j �= i), (26)

where H(l) is defined by (7) with P and K(l), and ε(>
0) is sufficiently small. Let Q̂i be the parameter which
represents the candidate of i-th local controller K̂i, i.e.

K̂i = Fl(K
(l)
gi , Q̂i) or Q̂i = Fl((K

(l)
gi )−, K̂i). (27)

From Theorem 6, the stability conditions are

σ̄(Q̂i) < 1/μ
(
V (l)R(l)U (l)

)
(28)

σ̄(Q̂j) < ε2/μ
(
V (l)R(l)U (l)

)
(j �= i) (29)
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for all ω. As R
(l)
d = O and ε 
 1,

μ
(
V (l)R(l)U (l)

)
≈ ε μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

O R
(l)
1i O
...

R
(l)
i1 · · · O · · ·R(l)

in
...

O R
(l)
ni O

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

From (30), the right hand side of (28) grows at O(1/ε),
while that of (29) converges at O(ε). As ε → 0, Q̂i can
be freely chosen while Q̂j are fixed to O. In other words,
as ε → 0, the selection (24), (25), (26) makes the design
procedure as a conventional sequential design procedure.
Note that fixing the controllers K

(l)
j permits ε = 0 and

a complete sequential design can be implemented.

We give two particular selections of P
(l)
g , U (l) and V (l),

which implement the conventional independent and se-
quential design procedures.

4.2 H∞ controller design

In this subsection, a suitable selection of Pg is proposed
for H∞ control problem, as in Sebe (1998).

Design procedure for H∞ control problem.

(i) Suppose K(0) is a decentralized stabilizing con-
troller for P , and attains the performance index γ.
Select a guaranteed upper bound γ(0) (≥ γ).

(ii) Assign P
(l)
g to the parametrization matrix of all

the plants which attain performance index γ(l) with
K(l) (Doyle et al., 1989). Note that the (1, 1) ele-
ment of (P (l)

g )− is K(l). Also select diagonal uni-
modulars U (l) and V (l), such that∥∥∥(U (l)

i )−1
∥∥∥
∞

≤ 1,
∥∥∥(V (l)

i )−1
∥∥∥
∞

≤ 1, (∀i) (31)

r(l)(ω) < γ(l) (∀ω). (32)

(iii) With a performance index γ(l+1) (≤ γ(l)), design
K

(l+1)
i for the perturbed plant model given by (20).

Note that this design step is solving the robust per-
formance problem and it is hard to get exact solu-
tions. However, K(l) attains performance index less
than (or equal to) γ(l). And from (31) and (32),

∥∥∥(V (l)
i )−1Δi(U

(l)
i )−1

∥∥∥
∞

< γ(l). (33)

From this inequality and the fact that P
(l)
g is the

parametrization matrix for K(l), the controller K(l)

is a tractable solution to the robust performance
problem. Thus, this design step always improves the

upper bound of the performance index γ(l+1), i.e.
γ(l+1) ≤ γ(l). The basic concept of this performance
improvement is proposed in Sebe (1999).

(iv) If K(l+1) attains sufficient performance, stop the
procedure. Otherwise go to (ii).

Remark 7 The procedure can be applied to problems
where the performance measures have also the diagonal
structure compatible with K (Sebe, 1998).

Remark 8 As Pg gives the parametrization of all plants
whch attain γ(l) with K(l), ‖R(l)‖ < γ(l). This implies
that r(l)(ω) = μ(R(l)(jω)) < γ(l), where U

(l)
i and V

(l)
i are

selected as identity matrices. This ensures the existence
of U

(l)
i and V

(l)
i which satisfy (31) and (32).

Remark 9 Although R
(l)
d �= O in the above procedure,

appropriate selections of U , V implement the sequential
H∞ controller design. Suppose Uj =I, Vj =I (j �= i), and
select Ui and Vi such that σ̄(U−1

i (jω)) and σ̄(V −1
i (jω))

are as small as possible within (31) and (32). Then as
r(ω) → γ, Kj (j �= i) become the only admissible so-
lutions to the robust performance problems at step (iii),
and Kj are fixed. On the other hand, the constraint (33)
becomes loose, and Ki can be updated more freely. This
implements the sequential design procedure.

5 Numerical example

Let us consider the mixed sensitivity minimization prob-
lem in Chiu and Arkun (1992). The plant, the weights
for multiplicative uncertainties and those for the sensi-
tivity functions are given below, respectively.

P (s) =

⎡
⎣ 1.66

1+39s
−1.74(1−s)

(1+4.4s)(1+s)
0.34(2−s)

(1+8.9s)(2+s)
1.4(2−s)

(1+3.8s)(2+s)

⎤
⎦ , (34)

li(s) = 0.07, Wsi(s) =
1 + 7s
28s

. (35)

Design 0 This design is an ordinary independent de-
sign where R(0) is modeled as an additve uncertainty,
and is only for comparison. As the given plant is stable,
let us choose K(0) = O and γ(0) = ∞. Also choose an
additive uncertainty model without balancing weights,

P (0)
g =

[
O I

I Pd

]
, K(0)

g =

[
O I

I −Pd

]
, (36)

U (0n) = I, V (0n) = I, (37)

where (0n) denotes the first iteration without balancing
weights. The magnitude of uncertainty r(0n)(ω) defined

11



by (16) is shown in Fig. 2. Then, local controllers are
obtained by solving H∞ optimization problems:

K
(1n)
1 =

687.5866(s + 0.02564)(s + 0.1597)
s(s + 80.89)

, (38)

K
(1n)
2 =

140.8682(s + 0.1597)(s + 0.2632)(s + 2)
s(s + 0.1116)(s + 418.8)

. (39)

As shown in Table 1, the achieved performance indexes
are 1.22 and 0.3586. Although these indexes are achieved
for the auxiliary plant Pd, the difference between these
indexes suggests that the first local loop is much more
difficult to control than the second local loop is. Note
that the guaranteed performance with the decentralized
controller diag{K(1n)

1 ,K
(1n)
2 } is γ(0) = ∞. Thus, there is

no inconsistency between the overall (real) index 0.7789
and the first local index 1.22.

Design 1 This design demonstrates the efficiency of
the balancing weights. Instead of (37), let us choose

U (0) = I, V (0) = diag{2.5, 1}. (40)

With these balancing weights, the magnitude of uncer-
tainty r(0) is also shown in Fig. 2. Note that 0.4r(0)(ω) <
r(0n)(ω) < r(0)(ω). These inequalities imply that the
first local loop can be designed more freely than the sec-
ond local loop. The designed local controllers are

K
(1)
1 =

286.2518(s + 0.02564)(s + 0.1597)
s(s + 19.49)

, (41)

K
(1)
2 =

177.9925(s + 0.1597)(s + 0.2632)(s + 2)
s(s + 0.0727)(s + 382.5)

. (42)

With the balancing weights (40), the difficulty in design-
ing local controllers are balanced and the overall perfor-
mance index is much improved from 0.7789 to 0.4568.

Design 2 This design demonstrates the efficiency
of the iterative improvement and the implementa-
tion of the sequential design. Following Design 1,
let us choose γ(1) = 0.5 (> 0.4568). With this γ(1)

and K(1) = diag{K(1)
1 ,K

(1)
2 }, assign P

(1)
g to the

parametrization matrix of plants which attains γ(1)

with K(1), and define K
(1)
g = (P (1)

g )−. The balancing
weights are selected as

U (1) = I, V (1) = diag{1.25, 1}. (43)

The magnitude of uncertainty r(1)(ω) is shown in Fig. 3.
Then, the designed local controllers are

K
(2)
1 =

286.5025(s + 0.02888)(s + 0.1623)
s(s + 19.37)

, (44)

K
(2)
2 =

178.0887(s + 0.1602)(s + 0.2636)(s + 2)
s(s + 0.0727)(s + 382.1)

. (45)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

frequency

r(
ω

)

r(0)

r(0n)

0.4r(0)
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Table 1
Achieved performances. (Performance indexes #1, #2, and
overall index are the achieved indexes of the first and second
auxiliary local loops and the overall system, respectively.)

Design balancing
weight U2

performance
index #1

performance
index #2

overall
index

0 {1, 1} 1.2200 0.3586 0.7789

1 {2.5, 1} 0.6007 0.6561 0.4568

2 {1.25, 1} 0.3833 0.4763 0.4318

The overall performance index is improved again. Notice
that K

(1)
2 and K

(2)
2 are almost same. As r(1)(ω) ≈ γ(1)

and from Remark 9, this design step should update only
the first local loop, and the sequential design procedure
should be implemented.

6 Conclusions

This paper proposes an iterative independent design pro-
cedure for decentralized control systems, and introduces
a new notion of balancing weights. The weights bal-
ance the difficulty and significance of local loops, and
are very important and effective. Also, the balancing

12



weights unify the independent and sequential design ap-
proaches. The design procedure which guarantees the
improvement of H∞ performance is also proposed.

Compared with approaches base on matrix inequalities,
the proposed procedure has disadvantages in computa-
tion and attainable performance. Contrarily, as shown in
the example, the procedure has advantages in identify-
ing bottlenecks in control design, and making strategies
for performance improvement. Note that the strategies
are still important, as decentralized control problems are
described by bilinear matrix inequalities.
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