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Abstract

We propose the n-clique network as a powerful tool for understanding global struc-
tures of combined highly-interconnected subgraphs, and provide theoretical pre-
dictions for statistical properties of the n-clique networks embedded in a complex
network using the degree distribution and the clustering spectrum. Furthermore, us-
ing our theoretical predictions, we find that the statistical properties are invariant
between 3-clique networks and original networks for several observable real-world
networks with the scale-free connectivity and the hierarchical modularity. The re-
sult implies that structural properties are identical between the 3-clique networks
and the original networks.

Key words: Cliques, Scale-free networks, Hierarchical modularity, Real-world
networks
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1 Introduction

Cliques are highly-interconnected subgraphs (complete graphs), and appear
dominantly in networks which describe wide-ranging complex systems occur-
ring from the level of cells to society. And, the cliques are actively investigated
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in recent years because of provisions of important insights to information pro-
cessing, hierarchical modularity, and community structures. For instance, in
gene regulatory networks, small cliques correspond to the feed-forward loop
which is one of the network motifs (1). The motifs play an important role in
gene regulation (2), and are regarded as building blocks of life. Furthermore,
the cliques are a representation for clusters, communities, and groups (3; 4)
because there are edges among persons as nodes if there are friendships, part-
nerships, and etc. among the persons in social networks. Therefore, the cliques
help to detect community structures (5) in social networks. Again, in protein-
protein interaction networks, the cliques are powerful tools for understanding
evolution of proteins and functional predictions of proteins having unknown
function (5) because proteins which have same functions tend to interact.

Motivated by these breakthroughs, recent efforts have taken place to analyti-
cally evaluate the abundance of subgraphs, including cliques, based on statisti-
cal mechanics (6; 7), providing excellent knowledge about the local interaction
patterns (8) and the time evolution of the abundance of subgraphs including
cliques (9). These previous works focus on the local information such as the
subgraph and clique abundance, and the size of the giant components led by
percolation via a class of subgraphs such as the subgraph percolation (8), the
L−percolation (10), and the clique percolations (11). In recent years, however,
it has been revealed that real-world networks are constructed by overlapping
subgraphs including cliques (8; 5); thus it is important to elucidate global
structures in networks consisting of cliques. For example, dynamics of a high
order emerge by the combined network motifs in gene regulatory networks
(18; 19).

In particular, the several power-law statistical properties have been empiri-
cally found in real-world complex networks. One of the properties is scale-free
connectivity (12) which is characterized by a power-law degree distribution
P (k) ∼ k−γ with 2 < γ < 3 empirically found (13). The scale-free connectiv-
ity means that a few nodes (hubs) integrate a great number of nodes and most
of the remaining nodes do not. Another of the properties is hierarchical mod-
ularity which is characterized by a power-law clustering spectrum C(k) ∼ k−α

with α ≈ 1 empirically found, and this property suggests a hierarchical struc-
ture of the cliques (14; 15). A clustering spectrum is defined as an average
clustering coefficient of nodes with degree k, where the clustering coefficient
means the density of edges among neighbors of a node. Since these properties
reflect a global structure of a network, it is significant to clarify relationships
between these properties and the global structures of the combined cliques.

In this paper, we propose the n-clique network as a powerful tool for un-
derstanding global structures of combined highly-interconnected subgraphs.
Furthermore, we provide the theoretical predictions for well-known statisti-
cal properties of n-clique networks embedded in a complex network using the
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degree distribution and the clustering spectrum, and evaluate our theoret-
ical predictions with numerical simulations. The theoretical predictions are
established by applying the statistical method in (9). Moreover, we discuss
relationships of statistical properties which are observed between several real-
world networks and their n-clique networks.

2 n-clique networks

n-clique networks are represented as sets of nodes and edges which are con-
tained in n-node cliques, corresponding to n-node complete graphs, embedded
in an original network. Figure 1 shows a schematic diagram of n-clique net-
works. The original network [Fig. 1 (a)] has two clique networks [Figs. 1 (b)
and (c)], and the clique networks are expressed as the circled black nodes with
black edges. The gray nodes and edges are eliminated because the nodes and
edges are affiliated with no cliques. Following a procedure, n-clique networks
are extracted from an original network. In addition, original networks are
equivalent to 2-clique networks in the absence of isolated nodes corresponding
to nodes which have no edges. In this paper, we assume that the original net-
works have no isolated nodes. We utilize the algorithm based on the network
motif detection (1) to find the cliques Although finding clique abundance is
computationally intractable (NP-hard), enumeration of n-cliques in a given
network can be done in polynomial time if n is a constant (16).

3 Degree distribution

We consider degree distributions from n-clique networks P (k(n)). The degree
distribution is defined as the existence probability of nodes with degree k(n)

which is the number of edges at a node in a n-clique network. In addition,
P (k(2)) denotes the degree distribution P (k) from an original network because
k(2) = k.

(a) original network (b) 3-clique network (c) 4-clique network

Fig. 1. Schematic diagram of n-clique networks embedded in the original network
(a). The n-clique networks [(b) and (c)] are expressed as the circled black nodes
with black edges.
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Fig. 2. Degree distributions of n-clique networks embedded in the BA network with
N = 3, 000 and 〈k〉 = 16 (shifted for clarity). 〈k〉 means the average degree. The
symbols correspond to the numerical results, and the dashed lines are theoretical
predictions given by Eq. (3). The solid lines show P (k) ∝ k−3.

In order to establish a theoretical prediction on the degree distribution of n-
clique networks, we propose an approximation method based on the statistical
method in (9). We assume that the clustering spectrum C(k) corresponds to
the probability that two neighbors of a node with degree k (≥ 2) are linked.
First, we consider the probability φn(k) that an edge on a node with degree k is
eliminated due to the extraction of n-clique networks from an original network.
For simplicity, we assume that the probability of an edge to be eliminated from
a node is independent from the probability of another edge to be eliminated
from the same node and the probability of the same edge to be eliminated
from a neighbor. This assumption is a suitable approximation in the case of
random graphs (17) because the probability that there is an edge between
two nodes is constant. We show that the approximation is also suitable in
the case of arbitrary large-scale graphs (networks) for large k with numerical
simulations. Here, we focus on a subset which consists a node with degree k,
neighboring nodes and edges among these nodes. Then, the edge on the node
with degree k belongs to

(

k−1
n−2

)

n-cliques which are formed with the probability

C(k)np, where np = (n − 1)(n − 2)/2. That is, the probability that the edge

is not contained in one of
(

k−1
n−2

)

n-cliques is [1 − C(k)np]. Since the edge is
eliminated if the edge is contained in no n-cliques, from the assimptation of
independence, the probability φn(k) can be written as

φn(k) = {1 − C(k)np}(
k−1
n−2) . (1)

Next, we characterize the conditional probability that the degree shifts from k
to k(n) due to the extraction of n-clique networks using the probability φn(k).
The conditional probability can be expressed using the bimodal formula, and

4



we have

Φn(k(n)|k) =

(

k

k(n)

)

[1 − φn(k)]k
(n)

φn(k)(k−k(n)). (2)

The degree distribution from an n-clique network P (k(n)) is proportional to
the sum of P (k)Φn(k(n)|k) for k = k(n), k(n) + 1, · · · , kmax. Therefore, the
degree distribution is finally described as

P (k(n)) =
N

Nn

kmax
∑

k=k(n)

P (k)Φn(k(n)|k), (3)

where N and Nn correspond to the total number of nodes in an original
network and in a n-clique network, respectively. Using P (k) and C(k), the
total number of nodes in the n-clique network can be estimated by

Nn = N
kmax
∑

k=n−1

P (k)
[

1 − {1 − C(k)np}(
k

n−1)
]

. (4)

In order to confirm the theoretical predictions, we performed numerical simu-
lations for the Barabási-Albert (BA) network (20), which provides power-law
degree distribution; P (k) ∼ k−γ with the degree exponent γ = 3. Figure 2
shows the degree distributions of n-clique networks embedded in the BA net-
work. As shown in Fig. 2, our theoretical predictions are in good agreement
with the numerical results, indicating that the approximation is suitable. In
addition, the different degree distributions are observed between the n-clique
networks and the original network.

4 Shift of the degree

The degree at a node shifts due to the extraction n-clique networks from an
original network. Here, we consider the theoretical predictions for the shifts
with the statistical properties from an original network. Using the probability
φn(k) [Eq. (1)] that an edge is eliminated due to the extraction of n-clique
networks, the expectation value of the degree at a node in a n-clique network
can be written as

k(n) = k [1 − φn(k)] . (5)

The probability φn(k) is dependent on the clustering spectrum C(k) as shown
in Eq. (1). Since it is empirically found that the spectrum follows the power
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Fig. 3. Shift of the degree at a node due to the extraction of n-clique networks from
the BA network with N = 3, 000 and 〈k〉 = 16. The symbols correspond to the
numerical results, and the dashed lines are given by Eq. (5). The solid lines show
k(n) ∝ k.

law in most complex networks (14), we assume the power-law spectrum; hence
C(k) = C0k

−α. Moreover, we use the feature of Napier’s number, e−c = (1 −
c/k)k for large k, to rewrite the probability φn(k) [Eq. (1)]. In doing such we
have

φn(k) = exp

[

−
C

np

0

(n − 2)!
kζn

]

, (6)

where

ζn = n − npα − 2. (7)

In particular, the probability φn(k) is independent of the degree k when ζn = 0,
and the proportional relationship between k(n) and k is satisfied.

In order to confirm the theoretical prediction, we performed numerical simula-
tions for the BA network. Figure 3 shows the shift of the degree at a node due
to the extraction of the n-clique networks. As shown in Fig. 3, our theoretical
prediction is in good agreement with the numerical results. Figure 4 shows the
probability φn(k) which is obtained from the extraction of n-clique networks.
Assume that C(k) = C0k

−α, C0 and α are about 0.02 and 0.1 with least-square
method, respectively. We give the theoretical prediction with these values. As
shown in Eq. (6), φk declines exponentially with k, indicating that a degree
of a high-degree node tends to stay. The prediction is in agreement with the
numerical results.

In the case of n = 4, however, the agreements are weak in Fig. 3 and 4.
There are two reasons. One is the assumption of independence. In scale-free
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Fig. 4. Probability φn(k) is obtained from the extraction of n-clique networks from
the BA network with N = 3, 000 and 〈k〉 = 16. The symbols correspond to the
numerical results, and the dashed lines are given by Eq. (6).

Table 1
Network sizes, average degrees, and characteristic exponents of the investigated real-
world networks and the BA network. The exponents γ and α are extracted using
the maximum likelihood estimation (22) and the analytical approximation (8); thus
C(k) = C0/{1 + (k/k0)

α}, respectively.

Network N 〈k〉 γ α Ref.

Internet (AS level) 7,832 4.38 2.4 0.75 (23)

Metabolic (E. coli) 1,273 2.15 3.0 1.0 (24)

Protein interaction (Yeast) 1,485 2.62 2.2 1.3 (25)

Barabási-Albert 3,000 16.0 3.0 0.0 (20)

network, low-degree nodes tend to connect to high-degree nodes. As shown in
Fig. 4, the probability that an edge on the high-degree node is eliminated is
very small. For this reason, real φn(k) for small k tends to be smaller than
Eq. (6). Therefore, real k(n) tends to be larger than our theoretical prediction.
Another is fluctuation in clustering spectra C(k). In the case of scale-free
networks, the fluctuation is large for small k, and is contrary small for large k
because of heterogeneous connectivity. And, the probability that a n-clique is
formed is described as C(k)np. That is, the error increases with np. Therefore,
our theoretical prediction tends to be in weak agreement in the case of large
n and small k.

The clustering spectrum of the BA network is independent of the degree k
(21). That is, α ≈ 0. According to Eq. (7), we predict that the shifts of the
degree follow the nonlinear relationship because of the nonzero ζn; for example,
ζ3 = 3 − 2 = 1 and ζ4 = 4 − 2 = 2. As shown in Fig. 3, our prediction is in
agreement with the numerical results.
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Fig. 5. Degree distributions of n-clique networks embedded in the investigated net-
works (shifted for clarity). The solid lines show ∝ k−γ in the each main panel. The
exponents γ are provided from Table 1, respectively. The each inset shows the shift
of the degree due to the extraction of 3-clique network. In the each inset, the solid
lines correspond to ∝ k. (a) Internet (AS level), (b) Metabolic network of E. coli,
and (c) protein-protein interaction network of yeast.

5 Invariance of statistical property

We discuss statistical properties of n-clique networks embedded in a network
with power-law statistical properties. Here, we focus on the scale-free con-
nectivity which is one of the well-known power-law statistical properties and
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is defined as a power-law degree distribution, P (k) ∼ k−γ. In networks with
scale-free connectivity, we predict that forms of the degree distributions are
invariant between the 3-clique and the original network when ζn = 0. This
is because the proportional relationship between the degrees at nodes in the
original network and in the n-clique networks, is satisfied under this condition.

In order to verify our prediction, we investigate the degree distributions from
n-clique networks embedded in several real-world networks with scale-free
connectivity: the autonomous system representation of the Internet (23), the
metabolic network of Escherichia coli (24), and the protein-protein interaction
network of yeast (25). These real-world networks have hierarchical modularity,
indicating the power-law clustering spectra; hence, C(k) ∼ k−α with α ≈ 1
(14). In addition, we also consider the BA network, which does not have hi-
erarchical modularity, for comparison. We summarize the networks size, the
average degrees, and the exponents characterizing each network in Table 1.

The exponents α from the real-world networks with hierarchical modularity
are almost one (14) (see also Table 1). Therefore, we expect that the forms
of the degree distributions are invariant between the 3-clique and the original
network because ζ3 ≈ 3 − 1 − 2 = 0. Figure 5 shows the degree distributions
of n-clique networks embedded in the real-world networks. As expected, the
forms of the degree distributions are invariant between the original and the
3-clique network because of the proportional relationship between k and k(3)

(see the insets in Fig. 5).

In contrast, the exponent α from the BA network is equivalent to zero (21)
(see also Table 1) because of there is no hierarchical modularity. Therefore
we predict that the power-law degree distribution from an original network is
variant due to the extraction of the 3-clique network (because ζ3 = 3 − 2 =
1). Figure 2 shows the degree distributions of n-clique networks embedded
in BA networks. As expected, the form of the degree distribution is variant
between the 3-clique network and the original network because of the nonlinear
relationship between k and k(3) (Fig. 3).

6 Discussion and conclusion

In this paper, we have provided theoretical predictions using the approxima-
tion method for the degree distribution of a n-clique network and the shifts
of the degree due to the extraction of the n-clique network. Moreover, we per-
formed numerical simulations and show that the numerical results are in good
agreement with our theoretical predictions, indicating that the approximation
method is suitable.
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Furthermore, we have found that the power-law degree distributions are iden-
tical between the 3-clique and the original networks in the scale-free networks
with hierarchical modularity using our theoretical predictions. We have only
focused on the power-law degree distributions in this paper. However, because
of the proportional relationship between k and k(3), the converse holds for
the other power-law statistical properties which are observed in real-world
networks: the hierarchical modularity (14) and the assortativity (26).

We have confirmed that the power-law statistical properties are invariant be-
tween the 3-clique networks and the original networks, although there is no
space for the showing of the data. The invariance of the statistical properties
implies that structural properties are identical between 3-clique and original
networks. In addition, from these results, we expect that the 3-clique net-
works are constructed by the same mechanisms as the original networks with
hierarchical modularity.

In contrast, we have found that the 3-clique network embedded in the BA
network which does not have hierarchical modularity has different statistical
properties from the original network. That is, the structural properties are
different between 3-clique and original networks in the BA network.

We believe that these results provide new insights into global structures of
combined network motifs, community structures (5; 27) in social and bio-
logical networks. In this paper, expressly, we found structural properties are
identical between 3-clique networks and original networks. This lets us expect
that 3-clique networks are constructed by the same design principles as the
original networks with hierarchical modularity, and it implies that the clique
networks help to understand design principles and global structures of com-
bined significant subgraphs which reflect community and functional modules
in networks.

For example, it is believed that most real-world networks are constructed by
the preferential attachment (12; 13). Because of a structural identity between
3-clique networks and original networks, we expect that the clique networks
are also constructed by the same preferential attachment as the original net-
works. This mechanism suggests the preferential attachment of cliques (15).
Actually, it is reported that there is a preferential attachment of community in
social networks (28). In biological networks, furthermore, cliques correspond
to functional modules such as network motifs. In particular, 3-node clique,
which denotes the network motifs such as the feedforward loop and so on,
appears frequently. From our result, we expect that a network which consists
of network motifs only is constructed by the same preferential attachment as
an original network. If so, the motifs may concentrate on hubs. Actually, the
concentration of motifs has been found by the network analysis (8).
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In this manner, we believe that we can find new structural properties and new
insights into design principles of networks via an analysis of clique networks.
And, our theoretical predictions may help the analysis and its interpretation.
In biological networks, especially, since it is difficult to discuss network forma-
tion processes because of no ancestral networks, we believe that the analysis
help to understand design principles of networks. In addition, we may establish
more realistic growing network models via the analysis.
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