A Cost Optimal Parallel Algorithm for Patience Sorting *

TAKAAKI NAKASHIMA

Tottori University of Environmental Studies,
Wakabadai-Kita 1-1-1, Tottori, Tottori, 689-1111, Japan

and

AKIHIRO FUJIWARA

Department of Computer Science and FElectronics
Kyushu Institute of Technology,
Kawazu 680-4, lizuka, Fukuoka, 820-8502, Japan

Received January 2004
Revised January 2006
Communicated by Selim G. Akl

ABSTRACT
In this paper, we consider a parallel algorithm for the patience sorting. The problem
is not known to be in the class NC or P-complete. We propose two algorithms for
the patience sorting of n distinct integers. The first algorithm runs in O(m(% + logn))
time using p processors on the EREW PRAM, where m is the number of decreasing
subsequences in a solution of the patience sorting. The second algorithm runs in O(logn+
nlogn 4 2 log %er log p) time using p processors on the EREW PRAM. If 1 < p < #

is satisfied, the second algorithm becomes cost optimal.
Keywords: Patience sorting, parallel algorithms, P-completeness.

1. Introduction

In parallel computational theory, one of major goals is to find a parallel algorithm
which runs as fast as possible. For example, many problems are known to have
efficient parallel algorithms which run in ©(1) or ©(logn) computational time,
where n is the input size of problems. From the point of view of the complexity
theory, the class NC' is used to denote the measure. A problem is in the class
NC if there exists a parallel algorithm which solves the problem in O(T'(n)) time
using O(P(n)) processors, where T'(n) and P(n) are polylogarithmic and polynomial
functions for n, respectively. Many problems in the class P, which is the class of
problems solvable in polynomial time sequentially, are also in the class NC. On the
other hand, a number of problems in the class P seem to have no parallel algorithm

*This research was partially supported by the Ministry of Education, Science, Sports and Culture,
Grand-in-Air for Encouragement Scientists, 14780229, 2003.

which runs in polylogarithmic time using a polynomial number of processors. Such
problems are called P-complete. A problem is P-complete if the problem is in the
class P and we can reduce any problem in the class P to the problem using NC-
reduction. (For details of the P-completeness, see [11].) It is believed that problems
in the class NC admit parallelization readily, and conversely, P-complete problems
are inherently sequential and difficult to be parallelized.

However, a number of efficient parallel algorithms have been recently proposed
for P-complete problems [4,15,16]. In the above papers, the other well-known mea-
sure, cost optimality, is used to denote parallelizability of problems. The cost of a
parallel algorithm is defined as the product of the running time and the number of
processors required in the algorithm, and a parallel algorithm is called cost optimal
if its cost is asymptotically equal to the time complexity of the fastest known se-
quential algorithm for the same problem. The above results mean that a number
of inherently sequential problems have cost optimal parallel algorithms, and we can
parallelize the problems practically.

In this paper, we consider parallel algorithms for the patience sorting, which
was invented as a practical method of sorting a deck of cards [14]. Although the
patience sorting is a primitive combinatorial optimization problem, it is not known
to be in the class NC' or P-complete, that is, no NC' algorithm has been proposed
for the problem, and there is no proof which shows the problem is P-complete.

The patience sorting has a number of important applications in computer sci-
ence. For example, the patience sorting can be reduced to the longest increasing
subsequence [2,3,5,10], which is a well-known problem in mathematics. Since the
reduction is simple, we can solve the longest increasing subsequences from the result
of the patience sorting with the same complexity.

Therefore, there are a number of papers which deal with the problem. Sequential
algorithms [2,3] show that we can solve the problem in ©(nlogn) time sequentially
in case that its input is a set of distinct integers. As for parallel algorithms, two
algorithms have been proposed for the problem [5,10]. The former algorithm is for
the linear array, which is a classical parallel computation model, and runs in O(n)
time using n processors. The latter algorithm is for the CGM (Coarse Grained
Multicomputer) model [8], which is a practical parallel computation model, and

runs in O(n + "Tf) computation time using p processors. The cost of the both

algorithms is O(n?), and the algorithms are not cost optimal.

In this paper, we propose efficient parallel algorithms for the problem and con-
sider their parallelizability. We first propose a simple algorithm for the patience sort-
ing. The algorithms consists of repetition of the prefix operations, which is a well-
known basic operation in parallel algorithms. The algorithm runs in O(m(3 +logn))
time using p processors on the EREW PRAM, where m is the number of decreasing
subsequences in a solution of the patience sorting. The complexity indicates that
the algorithms is cost optimal in case that m = O(logn) and p = O(logn). Next,
we propose another parallel algorithm, which is a little more complicated, for the
patience sorting. The second algorithm runs in O(logn+ n—l(;og—n +m?log % +mlogp)
time using p processors on the EREW PRAM. From the complexity, the algorithm
is cost optimal in case of 1 < p < 7.

The paper is organized as follows. In Section 2, we make some definitions for

the patience sorting. In Section 3, a parallel algorithm using the prefix operations
is described. In Section 4, we explain a cost optimal parallel algorithm for the
patience sorting. Finally, we summarize the paper in Section 6.

2. Preliminaries

The patience sorting is known as a traditional card game in Britain. An overview
of the game is as follows. (To simplify the description, we assume cards in a deck
are indexed 1,2,...,n.)

(1) Shuffle the deck.

(2) Turn up one card and deal into piles on the table, according to the following
rule: A card with a smaller index may be placed on a card with a larger index,
or may be put into a new pile to the right of the existing piles.

At each stage in the second step, we check the top card on each pile. If the
turned up card has a larger index than all of the top cards, it must be put into a
new pile to the right of the others. The objective of the game is to finish with as
few piles as possible.

As a matter of fact, we can achieve the objective using the following greedy
method in the second step. (Optimality of the greedy method has been proved in

[2].)

(2’) Turn up one card and deal into piles on the table, according to the following
rule: A card is placed on the leftmost possible pile, whose top card has a
larger index than the turned up card. Otherwise, the card is put into a new
pile to the right of existing piles.

Our main goal for the patience sorting is to obtain the above optimal solution for
the problem.

Now we describe a precise definition of the patience sorting. We make some
related definitions before describing the problem.

Definition 1 (Subsequence) Given a sequence S of n distinct integers, a subse-
quence of S is a sequence which can be obtained from S by deleting zero or some
integers. The subsequence is called increasing if each element of the subsequence is
larger than the previous element. Conversely, the subsequence is called decreasing
if each element of the subsequence is less than the previous element. |

Definition 2 (Cover) Given a sequence S of n distinct integers, a cover of S is
a set of subsequences of S such that every element in S is contained in one of the
subsequences. The size of the cover is the number of subsequences in it. The cover
is called increasing or decreasing if every subsequence in the cover is increasing or
decreasing, respectively. O

Using the above two definitions, the patience sorting is defined as follows.

Definition 3 (Patience sorting) Let S be a sequence of n distinct integers. The
patience sorting is a problem to compute a decreasing cover of S such that the size
of the cover is the smallest among all covers of S. a

It is worth while noticing that each element is not contained in two subsequences
of the same cover, and each decreasing subsequence of the patience sorting means
a pile in case of the card game. In addition, there may be several solutions for an
input of the patience sorting. In this paper, our objective for the problem is to find
one of the solutions. Figure 1 shows an example of the patience sorting. In the
figure, each vertical sequence denotes a decreasing subsequence of the cover.

Input sequence = (10, 8, 23, 1, 3, 37, 7, 21, 35, 13, 2, 33, 39, 4, 20, 9)

1 2 4 9 20
8 3 7 13 33
Patience sorting = 10 23 37 21 35 39

Figure 1: An example of the patience sorting.

We can solve the patience sorting using the following greedy algorithm [2]. (Cor-
rectness of the algorithm is also proved in [2].)

Algorithm 1 (Greedy algorithm for the patience sorting)

Input : a sequence of n distinct integers S = (so, $1,...,8n—1)-

Output : a decreasing cover of S. (We assume that Do U Dy U...UD,,_; denotes
the decreasing cover of S, and each D; (0 <7 < m — 1) denotes the i-th decreasing
subsequence of the cover.)

Step 1: Set 7 = 1,4 =0, and add sg to Dy.
Step 2: Repeat the following substeps until j = n.

(2.1): Find the smallest indexed decreasing subsequence whose last element is
larger than s;, and add s; to the subsequence. If there is no such subsequence,
set i = i+ 1, create a new subsequence D;, and add s; to the subsequence D;.

(2.2): Set j =34+ 1.

We now consider the time complexity of the above greedy algorithm. It is obvious
that the number of repetition in Step 2 is n — 1. There are two methods of finding
the lowest indexed decreasing subsequence in substep (2.1). One of the methods
is to examine all decreasing subsequences in order. However, the method takes
O(n) time in the worst case and time complexity of the algorithm becomes O(n?).
The alternative method uses the characteristic of the last elements of subsequences,
that is, a feature that the last elements are ordered in increasing order. We can
execute the binary search [7] for the last elements in O(logn) time if we use any
data structure which can be accessed to the last element of each subsequences in
O(1) time. In this case, we can execute the greedy algorithm in O(nlogn) time.
Since it is shown that the lower bound of the patience sorting is Q(nlogn) [9], we
obtain the following lemma.

Lemma 1 We can solve the patience sorting in ©(nlogn) time sequentially. a

2.1. 2-3 tree

In the following sections, we use a balanced search tree, called a 2-3 tree, to
support our parallel algorithm for the patience sorting. We introduce a definition
and a lemma for the 2-3 tree.

Definition 4 (2-3 tree) A 2-3 tree is a rooted tree in which each internal node
has two or three children and every path from a root to a leaf is of same length. O

We can easily prove that the height of a 2-3 tree is @(logn) in case that the number
of leaves is n. When using a 2-3 tree as a data structure, all elements of a sorted
sequence are stored into leaf nodes from left to right, and each internal node v holds
two variables L[v] and Mv], which store values of the maximum elements in the
leftmost and the second subtrees of v, respectively. Using L[v] and M[v], we can
search any element in a 2-3 tree in O(logn) time using a similar technique to the
binary search. We can construct a 2-3 tree which stores a sorted sequence, whose
size is m, in O(nlogn) time sequentially. (See [1] for details.) Figure 2 shows an
example of a 2-3 tree.

Figure 2: An example of a 2-3 tree for a sequence (1, 3, 4, 6, 10, 17, 20)

Let T, Ty and Ty be 2-3 trees which store sorted sequences S, S; and Ss,
respectively. We use the following four operations on 2-3 trees in this paper.

(1) MIN: MIN(T) is an operation that outputs the minimum element in a 2-3
tree T'.

(2) DELETE: Let z be an element in S. DELETE(T,z) is an operation that
deletes x from a 2-3 tree T if z exists in the tree.

(3) IMPLANT: Assume each element in S; is less than every element in Ss.
IMPLANT(T,,T>) is an operation that implants 75 in T} so that T stores
the concatenated sequence S;S5.

(4) SPLIT: Let z be an element in S. SPLIT (T,) is an operation that outputs
two trees Ty and T which satisfy S1 ={y |y <z,y€ St and S ={z | z >
x,z € S}, respectively.

It is known that the above four operations can be processed efficiently on 2-3
trees [1].

Lemma 2 Let T, Ty and Ty be 2-3 trees whose sizes are O(n). We can ezecute
each of four operations MIN, DELETE, IMPLANT and SPLIT in O(logn) time
sequentially. O

3. First algorithm using prefix operations

In this section, we describe our first algorithm, which consists of repetition of pre-
fix minima and prefiz sum operations, for the patience sorting. The prefix minima of

a sequence (zg, Z1,...,Z,—1) is defined as the sequence (pmg, pm1,...,pm,_1) such
that pmy, = min{z;, |0 < h < k}, and the prefix sum of a sequence (zo, 1, ..., Zn_1)
is defined as the sequence (psg, psi,--.,psn—1) such that ps; = Z',izo Th-

The algorithm uses the prefix minima operation as follows. Let S = (so, $1,---,Sn—1)

be an input sequence for the patience sorting. We first compute the prefix minima
of S, select elements whose input values are equal to the results of the prefix min-
ima, and store the selected elements in an array D. In case of the sequential greedy
algorithm (Algorithm 1), an element s, is added to the first decreasing subsequence
Dy if s, is smaller than the last element of Dy. Therefore each element s; in Dy
satisfies sy = min{s, | 0 < h <k}, and D is equal to Dy. We repeat the prefix min-
ima operation for the remaining elements, and the other decreasing subsequences
are obtained in the same way.
The followings are details of the algorithm.

Algorithm 2 (Algorithm using prefix operations)

Input: a sequence of n distinct integers S = (so, $1,---,Sn—1)-

Output: a decreasing cover of S. (We assume that Do U Dy U...U D,,_1 denotes
the decreasing cover of S, and each D; (0 <i < m — 1) denotes the i-th decreasing
subsequence of the cover.

Step 1: Set i = 0.
Step 2: Repeat the following substeps until s = 51 = ... = 5,1 = 0.

(2.1): Compute the prefix minima of S, and store the result in an array @ =
(‘ZO;Qla R qn—l)-

(2.2): For each j (0 < j < n—1),if s; = ¢; # oo set r; = 1, otherwise set
rj = 0. Then, compute the prefix minima of R = (r9,r1,...,7—1), and store
the result in the same array R.

(2.3): Foreach j (0 < j <n-—1),if s; = qj # oo, set d;,, = s;, and then set
S; = OQ.

(2.4): Set i =i+ 1. O

Now we discuss the complexity of the above algorithm. Let m be the number of
decreasing subsequences of the cover. Obviously, all of substeps in Step 2 consist of
a constant number of primitive operations and the prefix operations. Using a known
parallel algorithm for parallel prefix [13], we can compute the the prefix operation
of n elements in O(% + logn) time using p processors on the EREW PRAM. Since
the number of repetition of Step 2 is m, we obtain the following theorem.

Theorem 1 Algorithm 2 solves the patience sorting of n elements in O(m(% +
logn)) time using p processors on the EREW PRAM. |

In respect to time complexity, Algorithm 2 is usually not efficient because the
optimal sequential time complexity of the problem is O(nlogn). However, the

algorithm becomes cost optimal when m = O(logn) and p = O(logn).

4. Second algorithm for the patience sorting

4.1. Qutline of the algorithm

In this section, we describe the second parallel algorithm for the patience sorting
on the EREW PRAM. We assume that DoUD;U...UD,, 1 denotes the decreasing
cover of S, and each D; (0 < i < m — 1) denotes the i-th decreasing subsequence
of the cover. We also assume that P; (0 < j < p— 1) denotes the j-th processor on
the PRAM and 1 < p < n. The algorithm basically consists of m repetitions of a
procedure. In the i-th procedure, we compute the i-th decreasing subsequence D;.

An outline of the algorithm is as follows. Let S be an input sequence. First,
we divide S into p blocks whose sizes are %, and assign the j-th block to the j-th
processor. Then, on each processor, we compute the patience sorting sequentially
for each block. We assume that DjoU D; U, ..., UDj m; —1 denotes a result of the
patience sorting for a block assigned to a processor P;.

Next, we compute the first decreasing subsequence Dy using the above results.
We can prove that Dy is a subset of DgoU D1 U...UD,_ 0, that is, a subset of
the first decreasing subsequences of the divided blocks. We can compute Dy from
DyoUD;oU...UD, 1,0 using the prefix minima operation. (Correctness and de-
tails of this substep are shown in the following subsection.) After computing Dy, we
remove elements in Dy from each block, and reconstruct a decreasing cover for each
block. Then, we can compute remaining decreasing subsequences D1, Ds, ..., D1
by repeating the above procedure m — 1 times. However, a simple implementation
of this step makes time complexity of the algorithm O(m(% log 1)) since recon-
struction of a decreasing cover of each block needs O(% log %) computation time.
To reduce the complexity, we use 2-3 trees as a data structure which store a de-
creasing cover of each block. We assume that each decreasing subsequence D,
which is the k-th decreasing subsequence for processor P, is stored into a 2-3 tree
T} r- Since we reconstruct a decreasing cover on each processor efficiently using 2-3

trees, we can reduce the complexity of the algorithm sufficiently. (The details of
the reconstruction are also described in the following subsection.)
We now summarize an outline of the algorithm.

Algorithm 3 (Second algorithm for the patience sorting)

Input: a sequence of n distinct integers S = (sg, S1,- - -,8n—1)- (For simplicity, we
assume that n = kp where k is an integer.)

Output: a decreasing cover of S. (We assume that Do U Dy U...U D,,_; denotes
the decreasing cover of S, and each D; (0 <i < m — 1) denotes the i-th decreasing
subsequence of the cover.)

Step 1: Divide S into p blocks S; (0 < j < p—1) of size %.

Step 2: On each processor P; (0 < j < p — 1), compute a decreasing cover of
S; sequentially. (We assume that DjoU Dj; U... U Dj ;-1 denotes the
decreasing cover for S;.) Then, store each decreasing subsequence D;, in a
2-3tree T (0 <k <mj—1).

Step 3: Set i = 0, and repeat the following substeps until Sp =51 =... =S5p,_1 =
0.

(3.1): Compute the i-th decreasing subsequence D; from a set of decreasing sub-
sequences Do gUD; gU...UD,_1 . On each processor P; (0 < j < p—1), ele-
ments in D§ = D;NDj o are stored in a new 2-3 tree Tji, and the other elements
in Dj o — D; are stored in T} o again. (A set of elements DyUD}{U...UD}_,
is equal to D;.)

(8.2): On each processor P; (0 < j < p—1),set S; = Sj — D}, and reconstruct
2-3 trees T} 0,Tj 1, -, Tj,m;—1 so that the set of 2-3 trees denotes a decreasing
cover of Sj.

(3.3): Set i =i+ 1.

Step 4: Execute the following substeps to obtain D; (0 < i < m — 1) from
Dj, Di,...,Di_,.
(4.1): On each processor P; (0 < j < p — 1), extract all leaf elements of Tji
(0 <i<mj;— 1) and store the elements into an array C; with a key index ¢.

(4.2): Sort elements Cp U Cy U...U Cp_;1 with the key indices and their values,
and store the elements with the key index ¢ into D;. |

We now consider the complexity of the above algorithm on the EREW PRAM.
Step 1 can be easily executed in O(%) time using p processors. In Step 2, we
can compute the decreasing cover on each processor in O(% log %) using sequential
algorithm [12] since the number of elements of each block is O(3), and store the
results into 2-3 trees with the same complexity using a sequential algorithm for
construction of a 2-3 tree [1]. In Step 4, the substep (4.1) can be executed in

O(% log %) time using MIN and DELETE operations for a 2-3 tree % times on

each processor, and the substep (4.2) can be executed in O(logn + "—l(f—n) using a
well-known sorting algorithm [6]. Let T5(n) be the time complexity of substeps (3.1)
and (3.2). Since the number of repetition of Step 3 is m, where m is the number of
decreasing subsequences of the cover, complexity of the algorithm becomes O(log n+
n—l(;,g—n + mTs(n)). In the following two subsections, we consider complexities of
substeps (3.1) and (3.2), respectively.

4.2. Computation of the i-th decreasing subsequence

In this subsection, we explain details of the substep (3.1), which computes the
decreasing subsequence D; from a set of the first decreasing subsequences of each
block Doyg U Dl,O U...uU Dpfl’o.

First of all, we prove that each element in D; is in one of the first decreasing
subsequences of each block, that is, D; is a subset of DgoU D1 oU...UDy,_1 . Let
S = (s0,81,---,8,—1) be an input sequence. We first consider the case of i = 0. We
assume that Do = (Siy,Siys -5 Sipy---,8i,) and s;, is an element which is not in
DooUDjoU...UDp, 1. From the first algorithm we described in Section 3, s;,
satisfies,

sip, =min{sp | 0 < h <ig}.
Now we also assume that s;, is in a block S; and sj, is the first element of S;. From
the above expression, we obtain the following expression directly.

Si, = min{sh | Jo < h< Zk}

The expression implies s;, is in Dj o, and the fact is in contradiction to the hypoth-
esis. We can prove D; is a subset of Dy gUD; oU...UD,_jpincaseof 1 <i<m-—1
in the same fashion.

Next, we explain how to compute D; from Do, Diyp,...,Dp—1,0. As we de-
scribed in Section 3, we can compute D; using the prefix minima operation for
Doo,D1y0,...,Dp—1,0. Since each Djp (0 < j < p—1) is a decreasing sequence
which is stored in a 2-3 tree, we can compute the prefix minima efficiently from the
following reason.

For simplicity, we assume that E; denotes D;o and E denotes D;. As we
described above, an element s;, in E; is in E if and only if the following condition
holds.

sj, =min{s, | 0 < h <ji}

Let s;,.;, and sj, be the smallest and the first elements in E;, respectively. We can
modify the above condition using s;,,;, and sj,.

sj, = min{min{sg,,., | 0 < g <j— 1}, min{sy | jo <h < ji}}
Since each E; is a decreasing sequence, the latter expression sj, = min{s | jo <
h < jr} always holds. Therefore,we finally obtain the following condition.
i, <minfsy,.., |0<g<j—1)

Once we can find such an element s;, in Ej;, the following elements in E; are also in
E since Ej is a decreasing sequence. We can use the SPLIT operation to compute
the set of elements because each decreasing sequence is stored in a 2-3 tree.

Based on the above idea, we obtain the following simple procedure.

Procedure 1 (Computation of the i-th decreasing subsequence)

Input: A set of decreasing subsequences Ey, E, ..., E, ;. Each decreasing subse-
quence E; (0 <j <p-—1)isstored in a 2-3 tree T}, and its size is O(%).

Output: The first decreasing subsequence E such that E = EyUE U...UE,_;
and E} C Ej for each j (0 < j <p—1). (Elements in Ej} are stored in a new 2-3
tree 77, and the other elements E; — E7 are stored in T} again.)

Step 1: On each processor P; (0 < j < p—1), find the smallest element in the tree
T}, and store the element into g;.

Step 2: Compute the prefix minima of the array @ = (go,¢1,---,qp—1), and store
the result into the same array Q.

Step 3: On each processorP; (0 < j < p—1), split T} into two 2-3 trees T} and T}
using g;_1. O

The complexity of Procedure 1 is as follows. Step 1 can be executed in O(log %)
time using MIN operation for a 2-3 tree in parallel. Step 2 can be executed in
O(logp) time using O(log p) processors using a parallel prefix algorithm [13]. Step

3 can be executed in O(log %) time using SPLIT operation for a 2-3 tree. Thus
the procedure can be executed in O(logp + log %) time using p processors.

4.8. Reconstruction of 2-3 trees

In this subsection, we explain details of the subsection (3.2), which executes
reconstruction of 2-3 trees. For each processor P;, an input of this substep is a set
of decreasing subsequences Dj o, Dj1,...,Djm,,; such that each D ; is stored in a
2-3 tree T} ;. Since the reconstruction is executed on each processor in parallel, we
describe a sequential procedure for one processor, and assume that F; (0 < 1 <
m — 1) denotes D;; and a 2-3 tree T} stores F;.

The simplest implementation of this substep is to compute the decreasing cover
for Fo U F1 U ... U F,,_1 again. However, computation of a decreasing cover needs
O(%log%) computation time, and the algorithm does not become cost optimal.
To avoid this, we reconstruct the decreasing subsequences using the following idea.

(Fy, F{,...,F),_, denote reconstructed decreasing subsequences.)

(1) Let spin be the smallest element in Fy. Split Fy into Fy and Fj so that every
element in F is larger than s, and every element in F{ is less than $p,.
(Note that Fjj and Fj are decreasing sequences.)

(2) Concatenate Fy and Fj). (The concatenated sequence is stored in F.)
(3) Repeat (1) and (2) for F; and Fi41 (1 <i<m—2).

Figure 3 shows an example of the above idea. We assume that the following
sequence S is an input for the example on a processor.

S=(10, 8, 23, 1, 3, 37, 7, 21, 35, 13, 2, 33, 39, 4, 20, 9)

We also assume that elements 1,8 have been removed in (3.1) of Algorithm 3.
Then, s, = 10, and elements 2,3 are moved from F; to Fy. After repetition of
the reconstruction, the obtained decreasing subsequences are the decreasing cover
of the remaining elements.

1 4 9 20 2 9 20
8 |3 7 13 33 3 7 13 33
10 23 37 21 35 39 10 23 37 21 35 39
kK F F, F Fi Fs kK F F F F, F;s
(a)i=0 (b)i=1
2 4 9 20
37 13 33

10 23 37 121 35 39
F F F F F Fs

(c)i=2
9 9
2 4 13 20 2 4 13 20
37 21 33 37 21 33
10 23 37 35 39 10 23 37 35 —39
P F F F FF F F F F F F
(d)i=3 (e)i=4
9

2 4 13 20

3 7 21 33
10 23 37 35 39
kK F F F F

(f) The result of the
reconstructions

Figure 3: An example of reconstructions of 2-3 trees

For the correctness of the above idea, we prove F] only consists of elements in
F; and F;11. We first consider the case of i = 0, and assume that there exists an
element s, € F} which is not in Fy U Fy. Since Fy, Fh,. .., Fy—1 is the decreasing
cover before (3.1) of Algorithm 3, there exists an element s, € F; which satisfies
sp < 84 and h < g. (Recall S = (so,81,...,5,—1) is the input sequence of the
patience sorting.) Then, the existence of s; contradicts to the condition of s, €
Fj because each element s in the first decreasing subsequence must satisfy s, =
min{s; | 0 < i < k}. We can prove in case of 1 < i < m — 2 inductively.

Since each decreasing subsequence is stored in a 2-3 tree, implementation of the
above idea is not difficult. We show details of the procedure as follows.

Procedure 2 (Reconstruction of 2-3 trees on a processor)
Input: A set of decreasing subsequences Fy, F1, ..., Fy,—1 obtained for a processor

after the substep (3.1) of Algorithm 3. Each decreasing subsequence F; (0 < j <
m — 1) is stored in a 2-3 tree Tj.

Output: A set of decreasing subsequences Fj, F|,..., F/ _; such that the set of
decreasing subsequences is the decreasing cover of Fy U Fy U ... U F,,_1. Each
decreasing subsequence F; (0 < j < m — 1) is stored in a 2-3 tree 7.

Step 1: Set k = 0, and repeat the following substeps until £k =m — 1.
(1.1): Find the smallest element in the tree T}, and store the result in s,

(1.2): Split Ty41 into T}, and Tyq1 using Spms, so that every element in Fyiq is
larger than s,,,;, and every element in F} is no more than s,n.

(1.3): Implant T}, in T}, and then, set k =k + 1. m|

The complexity of each substep in the above procedure is O(log 2) because all
of the substeps consist of a constant number of MIN, IMPLANT, and SPLIT
operations described in Section 2. Since the number of repetition is at most m, the
time complexity of the above procedure is O(m log 7).

4.4. Complexity of the algorithm

As we described in Subsection 4.1, complexity of the algorithm is O(logn +
"—I‘I’Dg—” +mT3(n)), where T3(n) is the time complexity of substeps (3.1) and (3.2). In
addition, complexities of (3.1) and (3.2) are O(logp + log 2*) and O(mlog 7') from
Subsections 4.2 and 4.3, respectively. Then, T3(n) = O(logp + mlog %).

In consequence, we obtain the following theorem.

Theorem 2 Algorithm 8 solves the patience sorting of n elements in O(logn +
% +m? log% + mlogp) time using p processors on the EREW PRAM. a

From the above theorem, the complexity of the algorithm becomes O(”—I‘I’Dg—”) in

case of % > m?, namely 1 < p < Z. In other words, we can solve the patience

m2
1—2¢

sorting cost optimally if m = n® and 1 < p < n where € is a constant which

satisfies € < 1.

5. Conclusion

In this paper, we have proposed two algorithms for the patience sorting. The first
algorithm is a parallel algorithm which consists of repetition of the prefix operations.
The second one is a parallel algorithm which improves the complexity of the first
algorithm, and runs in O(logn+ n—l(;,g—n +m?log % +mlogp) time using p processors
on the EREW PRAM. The algorithm is cost optimal in case of 1 <p < —.

Although P-completeness of the problems has not been proven yet, the proposal
of an efficient parallel algorithm for the problem is not easy. We are now considering
parallelizability of a number of problems which have similar properties.

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[2]

(3]
[4]

[5]

A. Aldous and P. Diaconis. Longest increasing subsequences: From patience sorting to
the baik-deift-johansson theorem. BAMS: Bulletin of the American Mathematical
Society, 36:413-432, 1999.

S.N. Bespamyatnikh and M. Segal. Enumerating longest increasing subsequences and
patience sorting. Information Processing Letters, 76(1-2):7-11, 2000.

C.D. Castanho, W. Chen, K. Wada, and A. Fujiwara. Polynomially fast parallel algo-
rithms for some P-complete geometric problems. In Proc. Workshop on Computa-
tional Geometry, 2000.

C. Cerin, C. Dufourd, and J. F. Myoupo. An efficient parallel solution for the longest
increasing subsequence problem. In Fifth International Conference on Computing
and Information (ICCI’93), pages 220-224. IEEE Press, 1993.

R. J. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770-785, 1988.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithm.
The MIT Press, second edition, 2001.

F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel computational geometry for
coarse grained multicomputers. In ACM Symposium on Computational Geometry,
pages 298-307, 1993.

M. L. Fredman. On computing the length of longest increasing subsequences. Discrete
Mathematics, 11:29-35, 1975.

T. Garcia, J.F. Myoupo, and D. Semé. A work-optimal CGM algorithm for the longest
increasing subsequence problem. In The 2001 International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA’01), pages 563~
569, 2001.

R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to Parallel Computation: P-
Completeness Theory. Oxford university press, 1995.

D. E. Knuth. Sorting and Searching. Volume 3 of The Art of Computer Programming.
Addison-Wesley, 1973.

R.E. Ladner and M. J. Fisher. Parallel prefix computation. Journal of ACM, 27:831-
838, 1980.

C.L. Mallows. Patience sorting. Bulletin of the Institute of Mathematics and its
Applications, 9:216-224, 1973.

T. Nakashima and A. Fujiwara. Parallelizability of the stack breadth-first search prob-
lem. In The 2001 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’01), pages 722-727, 2001.

R. Uehara. A measure for the lexicographically first maximal independent set prob-
lem and its limits. International Journal of Foundations of Computer Science,
10(4):473-482, 1999.

