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ABSTRACT

Parameter estimation based on truncated data is dealt with; the data are assumed to obey

truncated exponential distributions with a variety of truncation time—a1 data are obtained

by truncation time b1, a2 data are obtained by truncation time b2 and so on, whereas the

underlying distribution is the same exponential one. The purpose of the present paper is to

give existence conditions of the maximum likelihood estimators (MLEs) and to show some

properties of the MLEs in two cases: 1) the grouped and truncated data are given (that is,

the data each express the number of the data value falling in a corresponding subinterval),

2) the continuous and truncated data are given.

1. INTRODUCTION

We are concerned with the problem of nonexistence of the MLE and the properties of

the MLE for the truncated exponential distribution. Although similar problem has been

discussed by Deemer and Votaw (1), this is based on continuous data. In contrast, ours is

based on grouped data. Further, it is slightly more general.

Let us introduce the outline of the problem. Suppose that the industrial products in

lots are successively shipped and that only the number of failures are reported at the pre-

determined inspection time. The purpose is to estimate the parameter of the underlying

distribution dominating the number of failures.

1



Next, let us introduce some notations used in the sequel. Denote by τ and s the shipment

interval and the shipment times, respectively. Not limiting s = 1 is the reason why we said

in the above that our case is more general. In addition, denote by Tend the time passed from

the beginning of the 1st shipment to the end of the inspection.

In the next section, we will give the existence condition of the MLE and the asymptotic

variance in the groped data case. In Section 3, we will give those in the continuous data

case for comparison. In Section 4 we will give Monte Carlo experiments in both cases, and

in the last section summarize them.

2. GROUPED AND TRUNCATED DATA CASE

Divide the truncation interval [0, Tend−(i−1)τ ] in the ith shipment into non-overlapping

subintervals of length τ/g, where g is a positive integer. And denote by r
(i)
j the number of

the products failed in the subinterval ((j − 1)τ/g, jτ/g] on the ith shipment. We assume

that Tend may be expressed as ητ/g with some positive integer η (≥ (s− 1)g + 1). If time t,

which had passed by a product led to failure since its shipment, obeys a distribution whose

density function f(t; θ) depending on a parameter θ, then the log-likelihood function is the

following:

ln Ltg(θ)
def
=

s∑
i=1

η−(i−1)g∑
j=1

r
(i)
j ln


∫ jτ/g

(j−1)τ/g
f(t; θ)dt∫ Tend−(i−1)τ

0
f(t; θ)dt

 . (2. 1)

Let us consider a case, where f(t; θ) in (2. 1) is the density function of an exponential

distribution, that is, ce−ct. Here, c (> 0) is a parameter. Setting

∆t
def
= τ/g, tj

def
= j∆t, τi

def
= Tend − (i − 1)τ,

we obtain

ln Ltg(c) =
s∑

i=1

η−(i−1)g∑
j=1

r
(i)
j

{
−ctj−1 + ln

(
1 − e−c∆t

)
− ln

(
1 − e−cτi

)}
. (2. 2)

In connection with this, the following lemma holds.

Lemma 2.1 We set

ni
def
=

η−(i−1)g∑
j=1

r
(i)
j , N

def
=

s∑
i=1

ni, t̃a
def
=

1

N

s∑
i=1

η−(i−1)g∑
j=1

r
(i)
j

(
tj−1 + tj

2

)
.
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If

0 < t̃a <
1

2N

s∑
i=1

niτi,

there exists a solution of
∂ ln Ltg

∂c
(c) = 0 and it is the MLE. If not, the MLE does not exist.

Proof. From (2. 2)

∂ ln Ltg

∂c
(c) =

s∑
i=1

η−(i−1)g∑
j=1

r
(i)
j

{
−tj−1 +

∆t

ec∆t − 1
− τi

ecτi − 1

}
.

According to Lemma 2.2, the right-hand side of the equation above is a strictly decreasing

function of c (> 0) if τi > ∆t. Since

lim
c→+0

{
∆t

ec∆t − 1
− τi

ecτi − 1

}
= −1

2
∆t +

1

2
τi,

lim
c→+0

∂ ln Ltg

∂c
(c) = N

[
1

2N

s∑
i=1

niτi − t̃a

]
.

On the other hand

lim
c→+∞

∂ ln Ltg

∂c
(c) = −

s∑
i=1

η−(i−1)g∑
j=1

r
(i)
j tj−1 < 0.

In addition,
∂ ln Ltg

∂c
(c) is continuous. Consequently, there exists a solution c = ctg0 (> 0)

satisfying
∂ ln Ltg

∂c
(c) = 0 if 0 < t̃a <

1

2N

s∑
i=1

niτi, and ln Ltg(c) ↑ sup
c>0

{ln Ltg(c)} as c ↓ 0 if

t̃a ≥ 1

2N

s∑
i=1

niτi. 2

Lemma 2.2 The function

g(c)
def
=

∆t

ec∆t − 1
− τi

ecτi − 1
(0 < ∆t < τi)

strictly decreases in (0,∞).

Proof. Because that

g′(c) =
1

c2

{
− (c∆t)2ec∆t

(ec∆t − 1)2 +
(cτi)

2ecτi

(ecτi − 1)2

}
,

it suffices for g′(c) < 0 (c > 0) holding that h(x)
def
=

x2ex

(ex − 1)2 is strictly increasing in (0,∞).

Since

h′(x) =
xex

(ex − 1)3 {(2 − x)ex − (2 + x)} ,
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we set u(x)
def
= (2 − x)ex − (2 + x) and investigate this. By differentiating u(x) up to twice

we can see u′′(x) < 0 for x > 0 and u′(0) = 0. Thus u′(x) < 0. In analogy, u(x) < 0.

Consequently, h(x) is strictly decreasing in (0,∞). Therefore, g(c) is a strictly decreasing

function. 2

Next, let us consider the asymptotic property of the MLE, say ĉtg.

Denote by pi(j; c) the probability that a product on the ith shipment fails in the interval

((j − 1)τ/g, jτ/g]. It is written in the form

pi(j; c) =
e−c(j−1)τ/g − e−cjτ/g

1 − e−cτi
=

e−ctj−1(1 − e−c∆t)

1 − e−cτi
(1 ≤ j ≤ η − (i − 1)g).

If we set

Ii(c)
def
=

η−(i−1)g∑
j=1

(
∂ ln pi(j; c)

∂c

)2

pi(j; c),

this can be rewritten by

Ii(c) =
(∆t)2ec∆t

(ec∆t − 1)2
− τ 2

i ecτi

(ecτi − 1)2

since
η−(i−1)g∑

j=1

pi(j; c) = 1,
∂2 ln pi(j; c)

∂c2
= − (∆t)2ec∆t

(ec∆t − 1)2
+

τ 2
i ecτi

(ecτi − 1)2
.

The number r
(i)
j in (2. 2) can be expressed as follows: assume that X

(i)
l is a random

variable, which takes a value j when the lth product on the ith shipment fails in the interval

((j − 1)τ/g, jτ/g], and denote by #A the cardinal number of a set A. Then, r
(i)
j can be

expressed by #{X(i)
l |j = X

(i)
l , l = 1, . . . , ni}.

Using these expressions, the log-likelihood function can be rewritten in the form

ln Ltg(c) =
s∑

i=1

ni∑
l=1

ln pi(X
(i)
l ; c). (2. 3)

From the likelihood equation, the expansion of
1√
N

∂ ln Ltg

∂c
(ĉtg) around c, and (2. 3), we

obtain

√
N(ĉtg − c) =

1√
N

∂ ln Ltg

∂c
(c)

− 1

N

∂2 ln Ltg

∂c2
(c̃)

=

s∑
i=1

√
ni

N

1
√

ni

ni∑
l=1

∂ ln pi(X
(i)
l ; c)

∂c
s∑

i=1

ni

N
Ii(c̃)

.
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Here, |c̃ − c| ≤ |ĉtg − c| → 0 a. s. (N → ∞).

Thus, if we assume that ni/N → γi a. s. (N → ∞) and use the notation N (a, b) that

stands for a normal distribution with mean a and variance b, we can see

√
N(ĉtg − c) → N

0,

[
(∆t)2ec∆t

(ec∆t − 1)2
−

s∑
i=1

γi
τ 2
i ecτi

(ecτi − 1)2

]−1
 in law (N → ∞).

3. CONTINUOUS AND TRUNCATED DATA CASE

In Section 2 we discussed the case in which data were given by only the number r
(i)
j of

products failed. In this section we consider the case in which failure time is given.

Denote by t
(i)
l (l = 1, . . . , ni) failure time of the products failed by τi in the ith shipment.

The log-likelihood function is defined by

ln Lt(θ)
def
=

s∑
i=1

ni∑
l=1

ln


f(t

(i)
l ; θ)∫ Tend−(i−1)τ

0
f(t; θ)dt

 . (3. 1)

Let us consider of a case again, where f(t; θ) in (3. 1) is the density function of an

exponential distribution. Setting

t̄(i)
def
=

1

ni

ni∑
l=1

t
(i)
l ,

we obtain

ln Lt(c) =
s∑

i=1

ni

{
ln c − ct̄(i) − ln

(
1 − e−cτi

)}
. (3. 2)

In connection with this, the following lemma holds.

Lemma 3.1 We set

t̄a
def
=

1

N

s∑
i=1

nit̄
(i).

If

0 < t̄a <
1

2N

s∑
i=1

niτi,

there exists a solution of
∂ ln Lt

∂c
(c) = 0 and it is the MLE. If not, the MLE does not exist.

Proof. From (3. 2)

∂ ln Lt

∂c
(c) = N

[
s∑

i=1

ni

N

{
c−1 − τi

ecτi − 1

}
− t̄a

]
.
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According to Lemma 3.2, the expression in { } on the right-hand side of the equation above

is a strictly decreasing function of c (> 0).

Since

lim
c→+0

{
c−1 − τi

ecτi − 1

}
=

1

2
τi,

lim
c→+0

∂ ln Lt

∂c
(c) = N

[
1

2N

s∑
i=1

niτi − t̄a

]
.

On the other hand

lim
c→+∞

∂ ln Lt

∂c
(c) = −Nt̄a < 0.

In addition,
∂ ln Lt

∂c
(c) is continuous. Consequently, there exists a solution c = ct0 (> 0)

satisfying
∂ ln Lt

∂c
(c) = 0 if 0 < t̄a <

1

2N

s∑
i=1

niτi, and ln Lt(c) ↑ sup
c>0

{ln Lt(c)} as c ↓ 0 if

t̄a ≥ 1

2N

s∑
i=1

niτi. 2

Lemma 3.2 The function

v(c)
def
=

1

c
− τi

ecτi − 1
(τi 6= 0)

strictly decreases in (0,∞).

Proof. By differentiating v(c) we obtain

v′(c) =
ecτi {2 + (cτi)

2 − (ecτi + e−cτi)}
c2 (ecτi − 1)2 .

Using Maclaurin expansion of ex, we can easily show that { } part on the right-hand side of

the equation is negative. Thus, v(c) is a strictly decreasing function in (0,∞). 2

Next, let us consider the asymptotic property of the MLE, say ĉt. A similar discussion

as in Section 2 leads us to

√
N(ĉt − c) → N

0,

[
1

c2
−

s∑
i=1

γi
τ 2
i ecτi

(ecτi − 1)2

]−1
 in law (N → ∞).

4. Monte Carlo Studies

The purpose in this section is to indicate some properties of the MLEs by means of Monte

Carlo simulation experiments. Before it, however, we state about easy iterative schemes to

calculate the maximum likelihood estimates.
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4. 1. Iterative Schemes

Setting
∂ ln Ltg

∂c
(c) = 0 and using (2. 1) and f(t; θ) = ce−ct, we obtain

1

c
=

1

N

s∑
i=1

η−(i−1)g∑
j=1

r
(i)
j E[T |(j − 1)τ/g < T ≤ jτ/g] +

s∑
i=1

ni

N

τi

ecτi − 1
. (4. 3)

From this, we can get an iterative scheme

1

c(k+1)
=

1

N

s∑
i=1

η−(i−1)g∑
j=1

r
(i)
j Ec(k) [T |(j − 1)τ/g < T ≤ jτ/g] +

s∑
i=1

ni

N

τi

exp[c(k)τi] − 1
. (4. 4)

Here, E[·|·] and Ec(k) [·|·] mean the conditional expectations, in particular, the latter clearly

shows that c = c(k). Similarly, (3. 1) gives an iterative scheme

1

c(k+1)
=

1

N

s∑
i=1

ni∑
l=1

t
(i)
l +

s∑
i=1

ni

N

τi

exp[c(k)τi] − 1
. (4. 5)

In both schemes, the second terms in the right-hand side arise from the fact that the data

are truncated.

When the assumption in Lemma 2.1 is satisfied, the successive approximations generated

by (4. 4) converge linearly to 1/ĉtg. This can be shown as follows. Since that ĉtg satisfies (4.

3) and

Ec(k) [T |(j − 1)τ/g < T ≤ jτ/g] =
∆t

1 − exp[c(k)∆t]
+ (j − 1)∆t +

1

c(k)
,

1

c(k+1)
− 1

ĉtg

=

1 − 1

N

s∑
i=1

η−(i−1)g∑
j=1

r
(i)
j

(c̃∆t)2ec̃∆t

(1 − ec̃∆t)2 +
s∑

i=1

ni

N

(c̃τi)
2ec̃τi

(1 − ec̃τi)2

 (
1

c(k)
− 1

ĉtg

)
.

Here,

∣∣∣∣∣1c̃ − 1

ĉtg

∣∣∣∣∣ <

∣∣∣∣∣ 1

c(k)
− 1

ĉtg

∣∣∣∣∣. This equation and the property of h(x) in Lemma 2.2 yield

∣∣∣∣∣ 1

c(k+1)
− 1

ĉtg

∣∣∣∣∣ < K

∣∣∣∣∣ 1

c(k)
− 1

ĉtg

∣∣∣∣∣ (K is a constant such that 0 < K < 1).

In analogy, when the assumption in Lemma 3. 1 is satisfied, the successive approximations

generated by (4. 5) converge linearly to 1/ĉt.

4. 2. Simulation Conditions

Case 1: The shipment times, s, was fixed at 2, and the shipment interval τ was fixed at 0.5.

The two variables Tend and ∆t were set at 1 and 0.1, respectively. The properties of the
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MLEs were investigated for a variety of combinations of sample size and the limiting ratio γ1

of n1 to N . The combinations involved seven sample sizes (10, 20, 40, 80, 160, 640, 2560)

and three ratios (.7, .6, .5).

Case 2: The shipment interval τ was fixed at 0.4. The properties of the MLEs were in-

vestigated for a variety of combinations of ∆t and the shipment times. The combinations

involved three values of ∆t (0.1, 0.2, 0.4) and four sorts of the shipment times (1, 2, 3, 4).

Corresponding to each shipment times, the limiting ratios of ni to N were set as Tab. 1.

Table 1: Limiting ratios of ni to N

s 2 3 4

γ1, . . . , γs .63, .37 .44, .35, .21 .34, .29, .23, .14

Common settings: In each experiment, 10000 independent pseudo-random samples were

considered, except the samples where the MLE did not exist.

4. 3. Simulation Results

Almost all the results are expressed in tabular form. The numbers in parenthesis indicate

the results for grouped data. Three notations MSE, NE rate and n̄i stand for mean square

error, non-existence rate of the MLE, and the average of ni, respectively. In Tab. 4, CO

means the continuous case.

Case 1: The results concerning the MLEs are shown in Tab. 3. It indicates the following:

when N is 10 or 20, the biases of the MLEs are positive and the non-existence rate of the

MLE are about 20%. When N >= 640, the values of N×MSE are nearly equal to the

asymptotic variance (Tab. 2).

Table 2: Asymptotic variance

γ1 .70 .60 .50

Asymptotic variance 16.2(16.4) 17.9(18.2) 20.0(20.4)
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Table 3: Properties of the MLE when s = 2

γ1 N bias variance N×MSE NE rate

.70 10 +.551(+.582) 1.27(1.29) 15.8(16.3) .22(.23)

20 +.233(+.244) .631(.649) 13.7(14.2) .13(.14)

40 +.080(+.087) .348(.356) 14.2(14.5) .07(.07)

80 +.017(+.021) .132(.186) 14.6(14.9) .03(.03)

160 −.022(−.018) .106(.108) 17.1(17.4) .01(.01)

640 −.035(−.032) .023(.024) 15.8(15.5) .00(.00)

2560 −.036(−.033) .005(.005) 16.1(15.9) .00(.00)

.60 10 +.610(+.651) 1.39(1.41) 17.7(18.3) .23(.25)

20 +.267(+.288) .687(.701) 15.2(15.7) .15(.16)

40 +.098(+.106) .371(.379) 15.2(15.6) .08(.08)

80 +.024(+.029) .197(.201) 15.8(16.2) .04(.04)

160 −.019(−.015) .114(.116) 18.3(18.6) .01(.01)

640 −.036(−.033) .026(.027) 17.4(17.8) .00(.00)

2560 −.037(−.034) .006(.006) 17.6(17.3) .00(.00)

.50 10 +.687(+.731) 1.58(1.60) 20.5(21.3) .25(.26)

20 +.318(+.337) .764(.786) 17.3(18.0) .17(.17)

40 +.111(+.126) .411(.418) 16.9(17.4) .08(.09)

80 +.029(+.033) .219(.225) 17.6(18.0) .04(.04)

160 −.016(−.011) .123(.126) 19.8(20.1) .02(.02)

640 −.039(−.035) .028(.029) 19.1(19.4) .00(.00)

2560 −.039(−.036) .006(.006) 20.3(19.8) .00(.00)

Case 2: We show the results concerning the MLEs in Tab. 4. In this table we can see that all

the variates decrease as s increases or ∆t decreases. Besides, the table indicates the tendency

that the difference between grouped and continuous cases becomes smaller as s increases or

∆t decreases. Note that the increase of s means the prolongation of Tend because that τ is

fixed.
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Table 4: Properties of the MLE when s = 1, 2, 3, 4

s ∆t bias variance N×MSE NE rate

1 .4 ∗ ∗ ∗ 1

.2 +.891 1.41 88.1 .313

.1 +.616 1.12 59.8 .276

CO +.542 1.10 55.6 .247

2 .4 +.378 .815 38.3 .183

.2 +.217 .539 23.4 .141

.1 +.188 .521 22.3 .125

CO +.174 .511 21.7 .120

3 .4 +.101 .392 16.1 .066

.2 +.081 .325 13.3 .064

.1 +.077 .316 12.9 .063

CO +.066 .321 13.0 .056

4 .4 +.046 .249 10.1 .031

.2 +.031 .230 9.23 .023

.1 +.030 .223 9.06 .023

CO +.029 .226 9.07 .023

5. SUMMARY

We first stated the conditions under which the MLEs may be given for grouped and

truncated data or continuous and truncated data when shipment occurs repeatedly, and

second investigated asymptotic properties of the MLEs and their properties in finite samples.

With respect to the case where products are shipped only one time, serious estimating

problems in an exponential distribution have been discussed by Deemer and Votaw (1), and

those in a Weibull distribution have been discussed by Mittal and Dahiya (2). Deemer and

Votaw have given a condition about the existence of the MLE: Let Tr be the truncation

time, t̄ the average of failure time. Then, the MLE exists if 0 < t̄ <
1

2
Tr, and the MLE does

not exist if t̄ ≥ 1

2
Tr. On the other hand, Mittal and Dahiya have given a conjecture about

such a condition.

Comparing this with the results in Section 2 or Section 3, we explain about them. The
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expression
1

N

s∑
i=1

niτi is the average of truncation time because that ni and τi are the total

number of failed products and the truncation time on the ith shipment, respectively. If
tj−1 + tj

2
is chosen as the representative value of failure time in the subinterval, t̃a means

an approximate value to the average of failure time. On the other hand t̄a is the average of

failure time on all the shipments since t̄(i) is the average of failure time on the ith shipment.

Summarizing the things above, we can say as follows: if we replace the truncation time

in Deember’s result with the average one, we obtain the result in Section 3. Besides the

replacement, if we replace the average of failure time with the approximate value, we obtain

the result in Section 2.
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