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- Numerical Instability of ‘Magnetic Damping
- Problem of Elastic Plate |

Tomoya Niho, Tomoyoshi Horie, and Yoshikazu Tanaka

Abstract—Numerical instability occurs in an analysis of a vi-

bration with magnetic damping, or an electromagnetic and struc-
tural coupled problem. In this paper, the numerical instability of
the coupledanalysis is examined by the finite element in time. It is
confirmed that the simultaneous method is unconditionally stable
-even if the magnetic field and the time increment are large. For the
staggered method, we obtain the conditions where the numerical
instability occurs. ’

_ Index Terms—Finite element methods, fusion reactors, magne-
tomechanical effects, numerical stability.

I. INTRODUCTION

N FUSION reactors and magnetically levitated vehicles,
large Lorentz force that is produced by eddy current and
magnetic field is applied to conductive thin structure. When
the structure is deformed, the electromotive force induced
by deformation velocity and magnetic field reduces the eddy
current. Therefore, electromagnetic and structural coupled
analysis is needed for the design of these components. In recent
years, various coupled analysis methods have been proposed
_ for this problem [1], [2].

In the coupled analysis, the solution diverges as a result of
numerical instability under specific conditions. A similar nu-
merical instability is encountered in the eddy current analysis
of moving conductor in magnetic field. To avoid this numerical
instability, upwind finite element schemes for electromagnetic
field problems in moving media have been proposed [3], [4]. In-

 fluences of the moving and the fixed coordinate systems on the |

numerical instability have also been investigated [5]. The sta-
bility of the numerical analyzes for this electromagnetic field
problem can be discussed by Peclet number.

- The numerical instabilities of the eddy current analysis for
moving conductor have been studied; however, little attention

has been given to the numerical instability of the analysis for -

the vibration of elastic plate with magnetic damping. In this
paper, the numerical instability of magnetic damping analysis
with elastic deformation is discussed for some coupled analysis
methods. In order to obtain the conditions where the numerical
instability occurs, the finite element in time [6] is applied to the
equations of one-degree-of-freedom coupled problem [7].
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II. METHODS OF THE ANALYSIS
A. Matrix Equation bf the Coupled Problem

In the coupled problem of a thin shell structure, the matrix
equation of the eddy current [8] including the electromotive
force is expressed using the normal component T' of the cur-
rent vector potential and the displacement u as

[UH{T} + [Cel{a} + [RH{T} = {B*} ®
where matrices [U], [R], [C.] and { B°*} are the inductance ma-
trix, the resistance matrix, the coupling sub-matrix by the elec-
tromotive force and the change of the external magnetic field, re-
spectively. The matrix equation of the structure [8] is expressed
as

- [M]{d} + [K){u} + [C.{T} = {F} 2

where [M], (K], [C,] and {F®} are the mass matrix, the stiff-
ness matrix, the-coupling sub-matrix by the electromagnetic
force and the external mechanical force, respectively.

B. Staggered Method

In the conventional coupled analysis methods, both matrix
equations (1) and (2) are solved one by one in each time step.
To solve (1) at time step n + 1, {%} at time step n is used to
evaluate [C]{u}. The solution {T'} of (1) at time step n + 1 is
substituted into [C,]{T'} to solve (2) at time step n + 1. In this
study, the Crank—Nicolson method and Newmark’s 8 method
are applied to (1) and (2) as the time integration.

C. Simultaneous Method
Combining (1) and (2), we obtain the matrix equation

el ol
[ 2] o

for the eddy current and the structural coupled system [8]. The

solution {u} and {7} can be obtained simultaneously from (3).
Newmark’s 3 method is applied to (3) for the time integration.

II. NUMERICAL INSTABILITY OF THE COUPLED PROBLEM

The coupled problem of. bending vibration is analyzed. A
copper rectangular plate rigidly clamped at one end is placed
in a transient magnetic field B, and a steady magnetic field

B as shown in Fig. 1. The interaction between the eddy cur-

rent, which is induced by the transient magnetic field B,, and
the steady magnetic field B, causes bending deformation of the
plate. While the plate is vibrating, the electromotive force by the
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Fig. 1. Schematic diagrem of a plate in electremagnetic field.
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Fig.2. Deflection of the bending plate (a) Staggered analys1s (b) Simultaneous
. analysis.

deflection velocity and the steady magnetic field B, infiuences
the eddy current and causes magnetic damping. The conditions
of this problem are the same as TEAM (Testing Electromagneuc
Analysis Methods) problem 12 [1].

Fig. 2 shows the time history of the deflection at the free end.

of the plate by the coupled analyzes. The conditions of these
analyzes are as follows: time increment At is 9.3 x 10~* sec,
magnetic field B, is 0.5 T, the parameter § of Newmark’s
8 method is 0.25 and the parameter o of the Crank--Nicolson
- method is 0.5. In general, these time integration schemes are un-
conditionally stable when parameters § and « are set.to values
described above. Although the result obtained by the simulta-

neous method is stable, the numerical instability occurs for the -

staggered method under the same analysis conditions.

IV. INSTABILITY ANALYSIS OF THE COUPLED METHODS

The numerical instability of the coupled method is discussed
“using the finite element in time [6). Since this method is a gen-
eral form of the time integration methods, the numerical insta-
bility of various time integration methods can be examined.

A. Finite Element Analysis in Time

The equation of motion for damped vibration is generally ex-
pressed by

mi+cu+ku=0 4)
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for one-degree-of-freedom problems. Assuming -1, u, and

‘Un are solutions of (4) at time t,,—1, ¢, and ¢t,+1, and applying

the finite element in time to. (4) we obtain the residual equation
with weight like

n+1l- n+1
/ W(E)( > N(f)ul+c A
i=n—~1 i=n-—1
n+1 .
+k > N(g)u,> ¢ =0, (5)
i=n—1

‘where W (£), N;(£) and 5 are the weight funcﬁon, interpolation

function of second order and the local coordinate of finite ele-
ment in tlme, respectively. If we rewrite u,, and w43 usmg the
amplification factor A as

Up = /\'u'n—la Un+1 = Auy, = Azu’n—h 6)
(5) becomes 4
M{m + v Atc + 8 At?k)

+ A {=2m(1 - 27) Atc+ (} - 28 +7) Ak}
F{m-(1-7)Atc+ (3 +8-7) APk} =0, (7)

where «y and f are function of W (£).

From (6), the solution w is not converged when the absolute
value of A is lager than 1.0, the numerical instability occurs.
Therefore, the condition where the numerical instability occurs
can be obtained by considering the absolute value of A in (7).

B. Numerical Instability of the Simultaneous Method

In order to examine the numerical instability of the coupled
methods, we consider the coupled problem without the change
of the external magnetic field and the external mechanical force.

" Equations (1) and (2) reduce to

UT+C.e+RT =0 ' 8®)
and ‘ :
mii+ ku+ C,T =0 )

for the one-degree-of-freedom coupled problem. The numerical
instability of the coupled problem is discussed based on these
equations.

In the simultaneous method, (8) and (9) can be written as

(3912 26
[ 2)43)-12

| (10)

for the one-degree-of-freedom coupled problem. If we rewrite

the solution of (10) using A as -

(), M),
ERREIE) RERtI N

an
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and applying the finite element in time to (10), this equanon
becomes

M (m + Atk /4) A% AtC, /4 1
+A(—2m + At?k/2) +v At2C, /2
+(m + At?k/4) +At2C, /4
2 2
g | Takh )
-AtC./2 .
—-AtU/2+ At?R/4 |

7))

for § = 1/4 and v = 1/2. These values are obtained using
a specific weight function W for the finite element in time. In
this case, the time integration method derived from the finite
element in time is equivalent to Newmark’s 4 method. In order
to obtain nontrivial solutions of (12), it is necessary to sausfy
the equation
L+ X {X@2p+4g—2r+pg +8).
+ A%(2p — 4g — 27 + 3pg — 24)
+ A(~2p — 4q + 27 + 3pg + 24)
+(-2p+4g+2r+pg—8)} =0, (13)
where '

 k iR C.C
. 2 = — 2 Yels
p=At"—, ¢ At—U, r= At —r

The numerical instability of the coupled analysis for simulta-
neous method can be discussed using the solution A of (13).

C. Numerical Instability of the Staggered Mefhod

Applying the Crank-Nicolson method to (8), this equation. -

becomes to _

Tir = (Aﬂt T~ 2T - oem) (A% + }—;) (14)
for o = 1/2. Using (14) for all time steps i = 0,.1, 2, ++-, n+
1, we obtain

U R n+1
Ty = %—t ]2% To
at7g
U "R n+4l—3
) n+1 <_ - E)
-C, }: iy (15)

U R nt2—7°
(5+3)

Assuming that Tp is zero, and substituting (15) into (9), the
structural equation including the coupled effect becomes

U R\™
(m-%) .

U R n+2—1
(m+3)

- n+1
Milp+1 + kun+1 C.C, Z Uj—1

i=1

(16)
Comblmng (16) for time step 7 and that for n + 1, we obtain

(_U_ _ E)
At 2
m'iln+1 + kun+1 - (—U———-R—>(mun + kun)

AT2

(12)
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Applying the finite element in time (8 = 1/4, T= 1 / 2)to (17),
the residual equation is expressed by

2 (2p + 4 + pg + 8)
+ A2(2p — 4g — 47 + 3pg — 24)
+ A(~2p—4q+3pg +24)
+(-2p+4qg+4r+pg—8)=0. (18)

The numerical instability of the coupled analysis for the stag-
gered method can be discussed using thé solution A of (18).

V. RESULTS AND DISCUSSION

To verify that the numerical instability of the coupled
methods can be described by the absolute values of A in (13)
and (18), numerical analyzes of the coupled problem of Fig.
1 were performed. For the problem of the rectangular plate,
values of k/m, R/U and C.C,/mU can be determined for
each mode using the finite element analysis [7]. Substituting
these values into (13) and (18), we obtain the value of ) for
each method. Fig. 3 shows the dependence of the absolute value
of A" on time increment, which is normalized by the natural
period 7 of the plate, for the first structural mode. For the

_ simultaneous method, the absolute value of ) is always smaller

than 1.0 for this condition. According to (13), the absolute
value of A approaches to 1.0 when the magnetic field or -
time increment becomes infinity. Therefore, the simultaneous
method is unconditionally stable for the coupled analysis. -

The absolute value of A of the first structural mode, however,
is larger than 1.0 for the staggered method as shown in Fig. 3.
The numerical instability occurs when At/7 > 0.465 for B, =
0.5 T and At/ > 0.150 for B; = 1.0 T'. To confirm these
conditions of the numerical instability, numerical calculations
for B, = 0.5 T were performed. The deflection of the plate is
shown in Fig. 4, which was obtained by the time integration of
(2) for the first structural mode and the time integration of (1) .
for all eddy current modes. The numerical solution for At/ =
0.408 (At = 0.0382 sec), which was predicted to be in the
stable region, is stable. The numerical instability occurs for the
case of At/r = 0.533 (0.0501 sec), which was predicted to be

.-in unstable region. Therefore, it is confirmed that the conditions
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Fig.-4. Deflection of the plate for different time incrcment'by staggered
analysis. ‘ .
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Fig. 5. » Change of the spectral radius for six structiral modé (B =05 T1)
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to predict the occurrence of numerical instability are obtained
from (18). ’ . .

Since several vibration modes are needed in general in the
mode superposition method to obtain dynamic response for
the vibration problem, numerical instability analysis for the
problem with more than one mode should be examined. Fig. 5
shows || for six structural modes in the staggered method for

B, =0.5 T. Since all |\| for six structural modes are smaller

than 1.0 when At/ is smaller than 0.0404 (At < 0.110x 10~3
sec), all vibration modes are predicted to be stable under this
condition_ for this problem. To verify this condition, finite

IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 4, JULY 2000

| " Ati=0.035]
08, 12 16 20
Time (sec)
(a)
0.8 1.2
Time (sec)
®

Fig. 6. Deflection of the plate by the staggered method using six structural
modes (B, '= 0.5 T) (a) At/ = 0.035 (At = 0.095 x 102 sec) (b)
At/T = 0.081 (At = 0.219 x 10~2 sec).

element analyzes with six structural modes and all eddy current
modes were performed for the cases with At/ of 0.035 (stable
region) and 0.081 (unstable region). The deflection of the plate

"is shown in Fig. 6. The numerical instability occurs in the case

of At/ = 0.081 because of the instability of solution of mode
6. Therefore, it is required that |A| of all modes should be
smaller than 1.0 to obtain the stable solution of the vibration
problem with magnetic damping.

VI. CONCLUSIONS

The numerical instability” analysis of time integration
methods using finite element in time can be applied to the
vibration problem with magnetic damping. The simultaneous
method is unconditionally stable even if the magnetic field or
the time increment is large. As for the staggered method, the
conditions in which the numerical instability occurs can be
obtained by this instability analysis. '
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