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Heat Conduction in Microstructured Materials
Koji Miyazaki, Toyotaka Arashi, Daisuke Makino, and Hiroshi Tsukamoto

Abstract—The phonon Boltzmann equation is solved numer-
ically in order to study the phonon thermal conductivity of
micro/nanostructured thin films with open holes in a host mate-
rial. We focused on the size effect of embedded pores and film
thickness on the decrease in thermal conductivity of the film.
Simulations have revealed that the temperature profiles in the
micro/nanostructured materials are very different from those
in their bulk counterparts, due to the ballistic nature of the mi-
croscale phonon transport. These simulations clearly demonstrate
that the conventional Fourier heat conduction equation cannot
be applied to study heat conduction in solids at microscale. The
effective thermal conductivity of thin films with micro/nanoholes
is calculated from the applied temperature difference and the
heat flux. In the present paper, the effective thermal conductivity
is shown as a function of the size of the micro/nanoholes and the
film thickness. For example, when the size of the hole becomes
approximately 1/20th the phonon mean free path in a film, the
thickness is 1/10th the mean free path of phonons and the effective
thermal conductivity decreases to as low as 6% of the bulk value.
The distribution of holes also affects the reduction in the effective
thermal conductivity. Thin films embedded with staggered-hole
arrays have slightly lower effective thermal conductivities than
films with aligned-hole arrays. The cross-sectional area in the
thermal transport direction is a significant parameter with re-
spect to the reduction of thermal conductivity. The results of the
present study may prove useful in the development of artificial
micro/nanostructured materials, including thermoelectrics and
low-k dielectrics.

Index Terms—Low-k dielectrics, thermoelectrics, thin films.

NOMENCLATURE

Hole size, m.
Specific heat per unit volume, Jm K .
Density of states, m s.
Statistical distribution function.
Reduced Planck’s constant, Js.
Directional-spectral phonon intensity, Wm sr s.
Boltzmann constant, JK .

Kn Knudsen number.
Film thickness, m.
Interface specularity parameter.
Heat flux, Wm .
Time, s.
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Temperature, K.
Phonon group velocity, ms .
Coordinate direction and length, m.

Greek Symbols

Mean free path of phonon, m.
Azimuthal angle, rad.
Thermal conductivity, Wm K .
Directional cosine.
Polar angle, rad.
Relaxation time, s.
Angular frequency of phonons, s .
Solid angle, sr.

Subscripts

B Bulk.
-direction.
-direction.

Spectral quantity.
0 Equilibrium.

Superscripts

Forward direction.
Backward direction.
Nondimensional.

I. INTRODUCTION

THE thermal conductivity of microstructures is attracting
increasing attention due to several important applications

of micro/nanostructures, such as the development of efficient
thermoelectric materials, porous low-k dielectrics and the
thermal management of microelectronic devices and circuits,
optoelectronic devices, data storage systems, and microelec-
tromechanical sensors [1]. In dielectrics, heat is transported by
phonons, which are quantized lattice waves. Microstructures
may reduce thermal conductivity because of the reflection of
phonons at interfaces due to acoustic mismatch between the two
materials at their interface. Although thermal conductivity re-
duction is troublesome with respect to the thermal management
of semiconductor devices, it can be useful for thermoelectric
energy conversion [2]. For example, microstructured materials
such as Bi Te /Sb Te superlattices [3] and PbTe/PbSeTe
quantum dot superlattices [4] have shown significant enhance-
ment in thermoelectric figure of merit compared to their bulk
materials due to their suppressed phonon thermal conductivity.
The effective thermal conductivity of composite, or sand-
wiched, structures has been studied extensively using a variety
of methods [5]–[9]. However, the macroscopic models devel-
oped using the Fourier heat conduction theory are not valid at
microscale due to prevailing ballistic phonon transport at such
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length scales [10], [11]. Simulations methodologies and models
for phonon transport at microscale are necessary in order to
evaluate the effective thermal conductivity of microstructured
materials. Atomic simulation approaches such as molecular
dynamics [12], [13] and lattice dynamics [14], [15] may have to
be employed for this purpose. These methodologies are limited
by computational capacity, and are used to study heat conduc-
tion in simple planar-layered structures having thicknesses of
several nanometers. The Boltzmann transport equation, which
describes particle transport in phase space (both spatial and
momentum coordinates), appears to be an ideal starting point
for the study of heat transfer for nanoscale to macroscale range
[10]–[16]. The phonon Boltzmann transport equation has been
solved to determine the thermal conductivity of superlattices
[17], nanowires [18]–[21] and nanocomposites [22]. Another
class of complex microstructured materials, which includes
nanoporous materials and nanoporous thin films, may offer
high thermoelectric efficiency and has been studied for some
time as a class of low-k dielectrics [23], [24]. Few studies have
considered the size effect on thermal conductivity, whereby
conventional models of the thermal conductivity of porous
media break down. In the present study, a two-dimensional
(2–D) phonon Boltzmann transport equation [16], [22] has
been solved in order to determine the thermal conductivity of
thin films with square holes. The effective temperature profiles
and effective thermal conductivity of microstructured thin films
have been calculated as a function of hole size, arrangement of
the holes, and the phonon Knudsen number, which is defined
as the phonon mean free path over the thickness of a thin film.

II. MODEL DEVELOPMENT

Heat conduction in semiconductors and dielectric materials
mainly occurs by phonon transport. The physics of phonons
has been well documented in the literature of conventional solid
state physics [25], [26]. In the present study, phonon transport
is simulated using the phonon Boltzmann transport equation,
which is often used to model the transport of particles such as
electrons, dilute gas molecules, phonons and photons [16]

(1)

where is the distribution function, which depends on time ,
particle position , and phonon velocity . For simplicity, the
scattering term on the right-hand side of (1) is often approxi-
mated by the frequency independent relaxation time [10], [11],
[16]–[20], [22]

(2)

where is determined by the Bose–Einstein distribution of
phonons and depends on the local equilibrium temperature.
In nanostructures, however, local equilibrium cannot be es-
tablished, and thus the obtained temperature should not be
treated as the local equilibrium temperature. Existing theories
concerning the frequency dependence of relaxation time con-
tain large uncertainties because they are based on numerous
approximations and rely on fitting parameters obtained from

Fig. 1. Schematic diagram of the coordinate system showing the phonon
intensity and the various angles of interest.

experimental data [27], [28]. Therefore, for simplicity, we will
use frequency-independent relaxation time approximation.

Phonon number through unit area during unit time multiplied
by energy of a single phonon corresponds to energy flow in heat
conduction of phonon. Here, energy flow is defined as phonon
intensity. In the present study, the direction of energy propaga-
tion is described in spherical coordinates, and the phonon inten-
sity is given as

(3)

where is the polar angle and is the azimuthal angle, as shown
in Fig. 1. In (3), the phonon intensity is integrated over fre-
quency. We have implicitly assumed that the phonon intensity is
independent of frequency. In the present study, only the effects
of phonon ballistic transport on heat conduction are included
at each position, which simplifies the numerical analysis of the
governing equations. Phonon intensity is analogous to photon
intensity. Therefore, the techniques used to solve the Boltzmann
equation for photons can be applied to the present study. Mul-
tiplying (1) by and using the definition of intensity
from (3), the following phonon intensity equation is obtained:

(4)

where the local equilibrium intensity corresponds to the
local equilibrium temperature, which has spatial dependence.
When the size of the numerical domain is reduced, the prop-
erties should be averaged over a longer time to define local
temperature. We have assumed steady-state conditions in the
present study because the transient results are artificial in the
nanoscopic region

(5)

We have assumed local equilibrium, enabling local definition of
temperature, specific heat, and heat flux. The phonon intensity
corresponds to the heat flux. The temperature can be calculated
by dividing the phonon intensity by the heat capacity. At the
atomic scale, the temperature fluctuates with time, and so the ef-
fective temperature is calculated by averaging over a long time.
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Fig. 2. Schematic diagram of heat transfer in a dielectric microstructured film
of thickness L.

Since the steady state is assumed, the effective temperature can
be obtained even for a nanoscale solution. The computed tem-
perature should not be treated in the same way as bulk tempera-
ture, and it corresponds to a measure of the local energy density.
We use the effective temperature to reflect the local energy den-
sity inside the medium. Assuming a constant specific heat, the
effective temperature is given by

(6)

Substituting (5) into (4), we obtain the following equation for
the steady state:

(7)

A rigorous phonon transport analysis should take into account
the frequency dependence of the phonon relaxation time, group
velocity and interactions between phonons. This requires solu-
tion of the phonon Boltzmann transport equations over a wide
range of frequencies. However, previous research has shown
that the average mean free path model of the scattering term is a
good approximation for thermal conductivity calculation of the
microstructure [10], [11], [16]–[20], [22]. Here, we use the fre-
quency-independent phonon mean free path, , for simplicity.
The phonon mean free path is estimated from thermal conduc-
tivity, specific heat, and speed of sound, as stated by the stan-
dard kinetic theory. The estimated phonon mean free path in Si
is on the order of 250 to 300 nm at room temperature [29], [30].
To numerically solve (7), it is convenient to separate the inten-
sity into a forward component and a backward component

, depending on the direction of the phonon intensity (Refer
to Fig. 2). The integral in (7) is approximated by Gaussian–Leg-
ender quadrature as

(8)

where and are weighting functions. A value of 120
is adequate in the evaluation of the quadrature for each integral.
Equation (7) is solved using a finite volume method, and a grid
size of 31 31 has been found to be adequate for a relative
error of 1 10 in calculating the phonon intensity between
two successive iterations. Effective temperature and heat flux
are then calculated using the resulting intensity values. The heat
fluxes in the -direction can be written as

(9)

The effective thermal conductivity is calculated using the unit
cell concept, in which the average heat flux in the -direction
on the -plane may be calculated as

(10)

The boundary conditions in the -direction are

(11)

(12)

The effective thermal conductivity, , of the unit cell is given by

(13)

The effective temperature distribution is symmetric in the -di-
rection. When we use instead of in (13), the same
result is obtained.

The use of the isothermal boundary condition in (11) and (12)
amounts to using the semi-sphere distribution of phonon inten-
sity. The reflectivity and transmissivity of phonons are not de-
fined at the boundary. The phonon intensity cannot be measured
experimentally. For these reasons, the heat conduction in the
thin film is computed using the well-known boundary conditions
of the phonon intensity. If the structure is not a thin film, other
boundary conditions should be considered [22]. In the -direc-
tion, specular reflection of phonons is assumed. Specular reflec-
tion of phonons at the boundary conserves phonon momentum
and therefore does not impose any resistance to heat transport
at the boundary. When the boundary scattering is completely
specular, the reflected phonon can be replaced by an image of
the incident phonon (see Fig. 2). The film boundaries in the -di-
rection can essentially be removed and heat transport along the
film can be studied as a plane-parallel medium between dif-
ferent temperatures. The following dimensionless parameters
have been introduced:

(13)

The phonon Knudsen number is defined as , where
is the phonon mean free path and is the film thickness. Phonon
transport becomes ballistic at large phonon Knudsen numbers.
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Fig. 3. Nondimensional effective temperature distributions of thin films
without structures calculated by solving 2-D Boltzmann equations of phonon
transport: (a) Fourier, (b) Kn = 0.1, (c) Kn = 1, and (d) Kn = 10.

Fig. 4. Non-dimensional effective temperature distribution of thin film in one
dimension.

III. RESULTS AND DISCUSSIONS

A. Heat Conduction in Solid Dielectric Thin Film

The validity of the current 2-D model was checked by com-
puting the effective temperature distribution in solid thin film
using existing 2-D Boltzmann transport codes. In these simula-
tions, specular reflection is assumed in the -direction to simu-
late one-dimensional (1-D) thin films. Specular reflection con-
serves phonon momentum. Therefore, constant effective tem-
perature distributions in the -direction are expected in the thin
film. The computed isothermal lines are shown in Fig. 3. The ef-
fective temperature distributions in Fig. 3 are the same as those
obtained for the 1-D calculation, as shown in Fig. 4, which val-
idates the 2-D simulation. When the Kn number is large (i.e.,
the film is thin compared to phonon mean free path), phonon
transport becomes more ballistic, as shown by the small slope
of the gradient at 10 in Fig. 3. In the simulations, the tem-
perature jumps at the boundaries become more significant for a
large Kn number. The effective thermal conductivity decreases

Fig. 5. Effective thermal conductivities of thin films calculated by the gradient
of the nondimensional effective temperature at x = 0.

logarithmically, increasing Kn to approximately 10% of the bulk
thermal conductivity at 10, as shown in Fig. 5. A recent
experiment to examine the reduction of the effective cross plane
thermal conductivity of SiO thin film shows a similar trend
with respect to the decrease in thickness of the thin film [31],
[32]. Unfortunately, it is difficult to quantitatively compare the
calculated results to the currently available experimental results,
because the experimentally measured effective thermal conduc-
tivity includes the thermal resistance at the surface or interface.
For precise prediction of the thermal conductivity of thin film, a
detailed boundary condition with reflectivity and transmissivity
should be included in the model. However, the results show the
same behavior regarding the thermal conductivity with respect
to the thickness of the thin film. The thermal conductivity of the
Si thin film has also been measured to be smaller than the bulk
value caused by phononinterface scattering [29], [33]. The mea-
sured effective thermal conductivity is half of the bulk value.
The reduction mechanism of the effective thermal conductivity
of thin film in semiconductors and insulators can be explained
by this model.

B. Thermal Conductivity of Microstructured Materials

The validated 2-D model given by (7) uses the heat conduc-
tion of microstructured materials and microstructured material
with a microhole to represent the microstructure. The partially
diffuse and partially specular scattering condition has been
applied at the interface of these holes. The interface specularity
parameter, , is very important for the reduction of thermal
conductivity [17] and should be fitted to experimental data or
to molecular dynamics simulation results [34], for example.
We used a value of 0.3 for in the present study, because
the interfacial phenomena are too complex to consider herein.
Heat conduction in thin films has been investigated for the fol-
lowing range of hole sizes: 0.16L (5/31L), 0.35L (11/31L), and
0.55L (17/31L). The corresponding nondimensional effective
temperature profiles of the microstructure are shown in Fig. 6
as gray-scale contour plots. Darker areas represent high-tem-
perature areas, and brighter areas represent low-temperature
areas. Thermal energy is transferred from left to right in the
figures. When the phonon transport is purely diffusive (i.e., is
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Fig. 6. Nondimensional effective temperature distributions of thin films with
a microhole (p = 0.3): (a) Fourier, (b) Kn = 0.1, (c) Kn = 1, and (d) Kn = 10.

Fig. 7. Effective thermal conductivities of microstructured films under various
Knudsen numbers (various film thicknesses).

considered to follow Fourier Law), as shown in Fig. 6(a), the
nondimensional effective temperature just behind the hole is
0.33 for the 0.16 L hole. When the phonon transport becomes
ballistic, as shown in Fig. 6(b)–(d) at high Kn, ballistic phonons
are strongly reflected at the interfaces of the hole. For the 0.16 L
hole, the nondimensional effective temperature just behind the
hole is less than 0.1 at Kn 0.1, 1, and 10. As a result of
ballistic transport of phonons, a low-temperature area appears
behind each hole (as a shadow), as shown in Fig. 6(b)–(d), as
is the case in photon transport. The increased low-temperature
area indicates a reduction in thermal transport. At high Knudsen
numbers, the thermal transport is reduced by the hole, resulting
in a reduction of effective thermal conductivity by microstruc-
tures such as the microhole. In order to evaluate the effects
of the hole on heat transfer, effective thermal conductivities
of microstructured materials are calculated. When the hole
size becomes approximately 1/20th of mean path of phonons

10 L 0.55 , the effective thermal conductivity
decreases to 6% of the bulk value. A two-order of magnitude
reduction in thermal conductivity of porous silicon prepared by
anodization of silicon wafer, as compared to regular silicon, has
been measured experimentally at room temperature [24]. The
present computations agree qualitatively with the experimental
trends (see Fig. 7).

Fig. 8. Nondimensional effective temperature distributions of thin films with
staggered microholes (p = 0.3): (a) Kn = 0.1, (b) Kn = 1, and (c) Kn = 10.

Fig. 9. Effective thermal conductivities of microstructured films with
staggered-hole arrays under various Knudsen numbers (various film
thicknesses).

C. Thermal Conductivity of Microstructured Materials With
Staggered Holes

Numerical analysis shows that ballistic phonons are reflected
at the interfaces of micro/nano holes at high phonon Knudsen
numbers. When the cross sectional area of holes with respect to
the thermal transport direction is increased, heat conduction is
suppressed by the reflection of ballistic phonons at the interfaces
of the hole, as mentioned in a previous session. In this section,
the effects of staggered holes on heat conduction are considered
for the following hole sizes: 0.033 L (1/30 L), 0.1 L (3/30 L),
and 0.167 L (5/30 L). The total cross-sectional areas of each unit
cell are maintained constant and equal to those of the previous
simulations for materials with one microhole. The nondimen-
sional effective temperature profiles obtained from these simu-
lations are shown in Fig. 8, and the effective thermal conduc-
tivity is shown in Fig. 9. A low-temperature area is computed
behind staggered holes as shown in Fig. 8, and thermal transport
is found to be reduced by the microstructure. In the previous
simulation, periodic microstructures with aligned-hole arrays
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are considered because the periodic boundary condition is ap-
plied in the -direction, as shown in Fig. 2. Therefore, the effects
of staggered-hole arrays on effective thermal conductivity can
be evaluated. Thin films embedded with staggered-hole arrays
have slightly lower effective thermal conductivity than thin films
with aligned-hole arrays. For example at Kn 10, the effective
thermal conductivity of a thin film with staggered 0.033 L holes
is 11% of its bulk value, whereas that of a thin film with a single
0.16 L hole is 13% of its bulk value. The effective thermal con-
ductivities of thin films with 0.033 L, 0.1 L or 0.167 L stag-
gered holes are smaller than those with a single 0.16 L, 0.35 L,
or 0.55 L hole, respectively, as shown in Figs. 8 and 9 for Kn
0.1, 1, and 10. Therefore, the effective thermal conductivity of a
thin film with staggered holes is smaller than that of a thin film
with aligned holes for holes of the same cross-sectional area.
The staggered arrangement of holes may reduce the effective
phonon thermal conductivity more than the aligned arrangement
of holes.

IV. CONCLUSION

The 2-D phonon Boltzmann equation was numerically
solved in order to calculate the heat transfer in dielectric solid
thin films and thin films embedded with aligned or staggered
grids of square micro/nanoholes. In addition, a 2-D model
validated using existing codes was outlined. The 2-D model
was employed to compute temperature profiles in thin films and
films with micro/nanosquare holes. The results demonstrate
that the effective temperature distributions are very different
from those of the conventional heat diffusion equation-based
solutions due to the ballistic phonon transport at microscale.
When the size of the holes is reduced and/or the Knudsen
number is increased (i.e., the film thickness is decreased),
ballistic phonon effects become dominant. In such cases, most
ballistic phonons are reflected at the hole interfaces, and the
heat flux is significantly decreased, which reduces the thermal
conductivity. For example, when the size of the hole is on the
order of 1/20th of the phonon mean free path of phonons in a
thin film with a thickness of only 1/10th of the phonon mean
free path, the effective thermal conductivity can be decreased to
as low as 6% of its bulk value. We investigated the effects of the
arrangement of holes on the effective thermal conductivity. The
total cross-sectional area of the holes is a significant parameter
that affects the reduction of effective thermal conductivity. In
addition, the staggered arrangement of small holes may reduce
the effective phonon thermal conductivity further. The simula-
tion results obtained in the present study may prove useful in
the development and application of microstructured materials,
in which thermal conductivity is an important indicator.
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