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A Numerical Method to Evaluate Power System
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Abstract—This paper presents a method to investigate a global
stability in a multi-machine power system with multiple dominant
power oscillation modes. The global stability boundary formed by
an unstable limit cycle is predicted by means of Hopf bifurcation
theory. The authors have investigated a numerical method to
analyze the nonlinear characteristics in power systems by ac-
quiring the power swing data where the coefficients of nonlinear
polynomial terms are determined by the least squares method.
A modified method has been also developed for the application
to large-scale multi-machine power systems with longitudinally
interconnected configuration. Numerical examples illustrate that
the influence of the modal interaction on the nonlinear structure
of the power system as well as the Hopf bifurcation characteristics
can be evaluated by the proposed method.

Index Terms—Bifurcation, limit cycles, nonlinear systems,
power system stability.

I. INTRODUCTION

APOWER system is a dynamic system, which includes
several kinds of nonlinear elements. Transient stability is

a typical example originated in the power of swing equation,
which is a sine function of rotor angle. On the other hand, the
use of nonlinear analysis method based on Hopf bifurcation
theory [1], [2] tells us the existence and the stability of a limit
cycle around an operating point. It has been investigated in the
literatures so far that the structure of limit cycles results from
some combination of AVR and the system parameter [3], the
nonlinearity of damping coefficient [4], the effect of induction
machine load [5] and oscillatory solutions of augmented swing
equations [6].

In this paper the power system global stability formed by an
unstable limit cycle, is evaluated. The limit cycle can be detected
based on Hopf bifurcation theory. The structure of limit cycles
can be calculated by analyzing the differential equations de-
scribing the whole system. The bifurcation phenomena in power
systems have been investigated in detail [7]–[9] by using a gen-
eral software for nonlinear analysis [10]. However, in general
nonlinear system analysis in a large system holds many unre-
solved problems. A direct approach to analyze the nonlinearity
of a high order system usually makes little sense since it dis-
plays fragmentary information. Therefore, it becomes important
to simplify the problem by finding out some available features
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in the large system and to carry out analysis based on it. The au-
thors have presented a numerical method of analyzing the sta-
bility region in power systems by approximating the nonlinear
characteristics near the Hopf bifurcation based on the observa-
tion of the power swing after some perturbation [11]. The ap-
proximate model relaxes the constraint resulting from a large
system scale since the bifurcations are analyzed based on the ap-
proximate model, in which parameters can be determined by ob-
serving the power swing of the original model. This method can
detect the stability of the limit cycle and the stability boundary
near the Hopf bifurcation correctly. In addition, this method
does not require trial and error like using a power system sim-
ulation package for detecting the stability boundary. Applying
to a one-machine and infinite bus system has demonstrated the
effectiveness of this method so far [11].

In multi-machine power systems, multiple swing modes
exist. When an electro-mechanical mode with a low-frequency
is dominant among the power swings, the dynamics of the
dominant mode is almost equivalent to that of a one-machine
and infinite bus system. In this case it is demonstrated that
a model with a single nonlinear vibration mode effectively
predicts the characteristics of a limit cycle. However, the limit
cycle occasionally bifurcates with changing its stability in the
case that some quasidominant modes exist in a multi-machine
system, and then the evaluation of the global stability by using
the single vibration model has a large margin of error. Thus, a
modified model is developed to include the interaction between
oscillatory modes. The swing equations of two generators
significantly participating in the dominant power swing modes
are approximated by a nonlinear coupled vibration model. The
bifurcation characteristics and the unstable limit cycle around
an operating point are investigated numerically based on the
approximate model. Some numerical analyses demonstrate the
effectiveness of the proposed method.

II. HOPF BIFURCATION AND POWER SYSTEM STABILITY

Consider a nonlinear dynamical system described by the fol-
lowing equation:

(1)

where is a parameter. A value of the parameter at
which the vector field loses its structural stability is called a
bifurcation point. If (the linearization of at ) has
a simple pair of pure imaginary eigenvalues at , with all
other eigenvalues lying off the imaginary axis, this bifurcation
is called Hopf bifurcation. The orbit structure near can
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Fig. 1. Bifurcation diagrams.

be described by (1) restricted to the center manifold [2], and the
vector field on the center manifold has the following form:

(2)

where and are nonlinear functions of and , is a
parameter, and are eigenvalues of the
corresponding linear system of the vector field. In order to an-
alyze the dynamics, (2) needs to be simplified and cast into its
normal form [2] as follows:

(3)

In polar coordinates, (3) is given by

(4)

where , , , and are constants determined by the system
structure. If , there is a bifurcation at . Since the first
equation does not depend on , we see immediately that there
are periodic orbits, . The bifurcation is said to be
subcritical if the periodic solution is unstable and supercritical
if it is stable. Fig. 1 shows an example of bifurcation diagrams
when .

In a power system, the Hopf bifurcation and limit cycles ap-
pear depending on the parameter values of excitation systems.
The Hopf bifurcation theory is applicable to the system with the
instability of a dominant mode. The mode becomes unstable as
the power flow of the system increases, which corresponds to
the increase of a parameter in Fig. 1. In this paper, the global
stability formed by the unstable limit cycle in longitudinally in-
terconnected power systems is investigated on phase plane.

When a power system has a supercritical Hopf bifurcation, a
stable limit cycle exists around the unstable equilibrium point
as shown in Fig. 1. Usually, the system is operated at a stable
equilibrium point, for example, at point A in Fig. 1. However,
even if operated at point B, the system does not lose the syn-
chronization and is kept to operate with a sustained oscillation,
since the system trajectory is trapped by the stable limit cycle.

On the other hand, when the system has a subcritical Hopf
bifurcation, an unstable limit cycle exists around the stable
equilibrium point. And this limit cycle forms a global stability
boundary. If the system state moves to point D, that is, the out-
side of the limit cycle by a large disturbance when the system
is operated at stable equilibrium point C, the system trajectory

is distracted from the limit cycle and finally the generator loses
the synchronization. Thus, the inner area of the unstable limit
cycle corresponds to the stable region. The region occasionally
can be much narrower than that calculated by the classical
transient stability analysis method [3], [11].

Accordingly, it is important in stability analysis to grasp the
property of the limit cycle around the operating point when the
system condition is near the Hopf bifurcation point. In partic-
ular the unstable limit cycle affects the global stability. In the
subsequent sections emphasis is placed on the numerical anal-
ysis of bifurcation characteristics in power systems.

III. A NONLINEAR VIBRATION MODEL WITH A SINGLE MODE

FOR HOPF BIFURCATION ANALYSIS

The power swing equations of generators in an -machine
system are represented by [12]

(5)

where , is the angular velocity, is the rotor
angle, is the inertia constant, is the damping coefficient,

is the mechanical input to the generator, is the electrical
output, and is the rated angular velocity. The ef-
fect of other generators and controllers is included in only
by assuming that their responses are sufficiently faster than the
responses of dominant modes. And in this system suppose that
the specific mode associated with power oscillation becomes un-
stable with variation of a parameter like the loading condition.
Here, select one generator (number j) significantly participating
in the critical dominant oscillation mode. This is obtained by
calculating the linear participation factor, which is defined in
[13]. The participation factor represents a measure of the
participation of the th machine state in the trajectory of the th
mode. It is given by

(6)

where and are right and left eigenvectors, respectively.
Then the generator swing equations are represented by

(7)

(8)

where , [ is the generator
angle at the equilibrium point]. Here, a numerical method to ap-
proximate these equations by polynomial of and is derived
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[14]. The right hand side of (7) is represented by a polyno-
mial function of and

(9)

(10)

where is the function of and . The coefficients can
be evaluated by applying the least squares method [15] to the
time series data sets of , and after a small disturbance.
The sum of the squared prediction errors of the samples is

(11)

where and are the values of and to the th sample,
respectively. The parameters which minimize are given by
the solution of the following normal equations:

(12)

where

The nonlinear characteristics can be evaluated by using the
model if the approximation is satisfactory.

The stability of the equilibrium point changes at , that
is, corresponds to the Hopf bifurcation point. When the
coefficients of approximate model are calculated, the Hopf
bifurcation characteristics are determined by the sign of rep-
resented by the following equation [11]:

(13)

When , the system has a subcritical Hopf bifurcation, that
is, an unstable limit cycle exists, while if , the bifurcation
is supercritical as shown in Fig. 1. And the size of a limit cycle
is determined by [11]

(14)

In the case of a subcritical Hopf bifurcation, the unstable limit
cycle forms a global stability boundary, which can be evaluated
by the maximum value of and . The derivation of (13) and
(14) is given in the Appendix.

IV. A COUPLED VIBRATION MODEL WITH CONSIDERING

THE MODAL INTERACTION

In a multi-machine power system multiple swing modes exist
and interact with each other. The single vibration model de-
scribed above is applicable when a specific oscillatory mode
becomes unstable as the power flow increases and when the in-
fluence of the other modes on this one is negligible. However,
when some modes affect the dominant mode, the modeling error
becomes large as shown in Sections V and VI. In this section

the method is extended so as to include the influence of an ad-
ditional dominant mode.

Here, a coupled vibration model with third order of polyno-
mial is considered since the Hopf bifurcation is significantly
associated with up to third order nonlinearity. The first vibra-
tion model corresponds to the dominant mode that becomes un-
stable as the power flow increases, while the other corresponds
to the second dominant mode. Two generators which contribute
to these two modes are selected, while another generator is used
as the reference of the rotor angle. The dynamics of the model
is represented by

(15)

where , ,
, , ,

, ,
, . is the rated

angular velocity, subscript denotes the reference generator,
and subscript denotes the initial value for the generator rotor
angle. The coefficients and are determined by the
least squares method, where the subscripts correspond to
the order of state variables.

Here, the Jacobian of the coupled vibration model (15) is

(16)

The matrix is transformed by

(17)

into

(18)

where and ( , 2) are the real and imaginary parts of the
eigenvalues of the matrix , respectively. Thus, the nonlinear
system (15)

(19)

is represented by

(20)

where and include second and third order of
polynomials, and . Nonlinear struc-
ture of the approximate model (20) can be investigated precisely
by using a software for nonlinear analysis [10]. Then, one pa-
rameter is required for the bifurcation analysis. Here, is se-
lected as the bifurcation parameter since corresponds to the
damping of the mode which becomes unstable as the power flow
increases, where it is supposed that the variation of , ,
and the coefficients included in is smaller than that of
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near the Hopf bifurcation. The bifurcation parameter is
related to the input power to the generator linearly as shown
in the next section. Thus, the result of the approximate model
can be compared with the original model. Transforming the ob-
tained limit cycle of the model (20) by (17), the stable region of
the original power system is evaluated.

The procedure of calculation of bifurcation characteristics
using a coupled vibration model consists of the following steps.

1) Calculate the participation factors (6) of the linearized
system, then select three generators, which participate
significantly in the dominant and quasidominant modes,
by comparing the factors associated with the rotor angle.
One of them is the reference generator, and other two are
the analyzed ones.

2) Obtain the oscillation data of these generators by using a
power system simulation program.

3) Determine coefficients and of the coupled vi-
bration model (15) by the least squares method based on
obtained data.

4) Calculate the nonlinear structure of the transformed
model (20) by using a general software for nonlinear
analysis AUTO [10]. The obtained results are trans-
formed again by (17).

5) As a result, the stability and the size of the limit cycle are
determined.

In this paper, a coupled vibration model with two dominant
electro-mechanical modes associated with angle stability is dis-
cussed. Therefore, this method is applicable in the case that a
dominant and a quasidominant modes are classified while the
generators participating in these modes are specified. A longi-
tudinal interconnected power system is the typical case where
these conditions are satisfied. In other cases, for example, a
meshed power system, this method may be simply inapplicable.
Moreover since it is a method based on the swing equations, it is
inapplicable also to the voltage instability phenomenon. On the
other hand, this method can be extended to the case expressed
in more than two dominant modes. That is, by increasing state
variables and choosing the corresponding generators according
to the number of the dominant modes. However, the number of
the coefficients of nonlinear terms increases enormously and ex-
ecution becomes practically infeasible.

V. ASSESSMENT IN A THREE-MACHINE SYSTEM

The proposed method is applied to a three-machine longitudi-
nally interconnected system. The bifurcation characteristics and
the limit cycles of the single and coupled vibration models are
compared to those of the original model.

A. Bifurcation Diagram as the Reference

Fig. 2 shows the configuration of the power system model
used in this study. The bifurcation characteristics of the system
can be calculated correctly as the reference by using a general
software for nonlinear analysis AUTO [10], since the example
system is relatively simple and small. Table I shows the system
constants. The three generators are identical for simplicity. This
setting does not lose generality to show a suitable numerical
example. Each generator is equipped with an AVR shown in

Fig. 2. Three-machine longitudinal power system.

TABLE I
SYSTEM CONSTANTS OF THREE-MACHINE SYSTEM

Fig. 3. Block diagram of AVR.

TABLE II
PARAMETERS OF AVR AND OPERATING POINTS

Fig. 4. Bifurcation diagram in case 1.

Fig. 3. Here, two cases are considered as shown in Table II,
where is the input power to the generator . An assumed
system disturbance is a three phase ground fault at near the
generator 3.

Here, the generator 1 is selected as the reference of the rotor
angle since the dominant oscillation is formed by generators be-
tween both ends in a longitudinal system. Figs. 4 and 5 show
the bifurcation diagrams depicted by changing the input power
to the generator 3 as a bifurcation parameter, where the
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Fig. 5. Bifurcation diagram in case 2.

TABLE III
THE COEFFICIENTS OF APPROXIMATE MODEL

limit cycles are represented by the maximum envelop of orbit.
In case 1, an unstable limit cycle is formed around the stable
equilibrium originating from Hopf bifurcation point at which
the stability of the equilibrium point changes from stable to un-
stable. On the other hand, in case 2 a stable limit cycle is formed
around the unstable equilibrium point. However, a cyclic fold
bifurcation occurs as the parameter varies. The stability of the
limit cycle changes from stable to unstable [8], [9], [16].

Assume that the system is initially operated at the points
shown in Table II. These operating points correspond to the
slightly stable side of the Hopf bifurcation point. These dia-
grams show that an unstable limit cycle exists around the oper-
ating point, that is, the global stability boundary is determined
by this limit cycle. In case 1, the size of the unstable limit cycle
at the operating point is and

. In case 2, the size is
and .

B. Analysis Using the Single Vibration Model

The nonlinear characteristics of the system are investigated
by using the model with a single vibration. Table III shows
the coefficients of (9) determined by the least squares method
using the system swing data when a three phase ground fault for
0.01 s is applied to the system operated at the points described
in Table II. The residual sum of squares in both cases are also
shown in Table III. The calculation time for obtaining oscilla-
tion data using a power system simulation package comprises a

Fig. 6. Bifurcation diagram of the single vibration model in case 1.

Fig. 7. Bifurcation diagram of the single vibration model in case 2.

significant percentage of creating the approximate model. How-
ever, it does not take so much time. In this case, the CPU time re-
quired to obtain the oscillation data is 1.4 s on a PC with Celeron
1.2 GHz. The sign of calculated by (13) tells us that the system
has subcritical Hopf in case 1, and supercritical Hopf in case 2.
Figs. 6 and 7 show the bifurcation diagrams of the single vi-
bration models in both cases. These diagrams are depicted by
changing as a parameter. Since is the real part of eigen-
values of the linearized system of (9), that is, corresponds
to the system damping. Therefore, it is adequate to select
as a parameter of the single vibration model in the bifurcation
analysis.

On the other hand, the parameter of the bifurcation diagram
was the mechanical input in the previous section. Thus, the
relation between and is calculated for easy comparison
of the results. The eigenvalues have been analyzed by linearizing
the original model, then the relation between the real part of the
eigenvalues and the mechanical input near the Hopf bifur-
cation point has been calculated. The relation between and

is determined by the fact that the real part of the eigen-
values is equal to . Fig. 8 shows the result in case 1. The
relation is almost linear. In case 2 the same result was obtained.
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Fig. 8. Relation between the parameter k and the generator input P .

Fig. 9. Variation of eigenvalues when the input power to the generator 3
increases.

Fig. 10. Mode swing in case 1.

In Figs. 6 and 7, the parameter has been transformed to
by using the linear correlation.

In case 1 the result is correct on the whole. The size of the
unstable limit cycle at the operating point can be calculated
by (14). The result is and

. These values coincide well with those
of the original model. The differences between original and
approximate models are 4.4% to and 1.4% to . On
the other hand, in case 2 shown in Fig. 7 the fact that a stable

Fig. 11. Mode swing in case 2.

TABLE IV
THE COMPARISON OF RESIDUAL

Fig. 12. Mode swing of the approximate model.

Fig. 13. Bifurcation diagram of the coupled vibration model.

limit cycle exists near the Hopf bifurcation point is correctly
derived. However, the characteristics in the region away from
the equilibrium point, that is, the existence of an unstable
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Fig. 14. Unstable limit cycle and system responses on the phase plane. (a) Stable case. (b) Unstable case.

Fig. 15. IEEJ WEST10-machine system model.

limit cycle cannot be evaluated by the single vibration model.
The eigenvalues and eigenvectors of the system have been
calculated by linearizing the differential equations describing
the power system. The result tells us that the generator 3
oscillation mainly participates in the eigenvalue pair closest to
the imaginary axis, which we call mode 1, and the generator 2
oscillation mainly participates in the second closest pair, which
we call mode 2. Fig. 9 shows the variation of eigenvalues when
the input power to the generator 3 increases. In case 1, only
mode 1 is dominant. On the other hand, in case 2, the location
of mode 2 is very close to the imaginary axis, that is, two modes
are easy to interact.

Figs. 10 and 11 show the swing of the two modes decomposed
by using the eigenvectors, when the fault is cleared at 0.054 s in
case 1 and at 0.2 s in case 2. In Fig. 10, the participation of mode
2 is little. Therefore, the approximation by the single vibration
model is satisfactory as shown in Table III. On the other hand,
Fig. 11 shows that the influence of mode 2 appears considerably.
As a result the single vibration model inherits the error in case 2.

C. Analysis Using the Coupled Vibration Model

The proposed method has been applied to both cases. In case
1, the obtained characteristics have coincided with those of the
original model as obtained by using the single vibration model.
In case 2, the results have been different considerably from

those of applying the single vibration model. Table IV shows
the residual in the least squares method when and are ap-
proximated by the single vibration model and by the coupled
vibration model. The residual of the coupled vibration model
is much smaller than that of the single vibration model. On the
other hand, the accuracy of the coupled vibration models with
fourth and fifth order of polynomial is not improved so much.
Therefore, the coupled vibration model with third order of poly-
nomial proposed in this paper is used in this study.

Fig. 12 shows swings of the modes decomposed by using the
eigenvectors of the Jacobian matrix of model (16). The result
reflects the trend shown in Fig. 11, thus the approximate model
proficiently represents the interactive characteristics of the orig-
inal power system. Fig. 13 shows the bifurcation diagram of the
approximate model depicted by changing as a parameter. The
bifurcation characteristic of the single vibration model shown in
Fig. 7 coincides with the original model around the Hopf bifur-
cation. However, it has a problem with the stability transition of
the limit cycle. On the other hand, as a result of including the
modal interaction in the coupled vibration model, the stability
transition of limit cycle is correctly reflected, though the cyclic
fold is predicted with a certain amount of error. However, it is
a significant result that the method using a coupled vibration
model can detect the stability transition by a cyclic fold bifur-
cation as shown in Fig. 13. In particular, unstable limit cycles,
which determine the global stability of the system, appear by



1932 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 19, NO. 4, NOVEMBER 2004

TABLE V
SYSTEM CONSTANTS OF WEST10-MACHINE SYSTEM

Fig. 16. Block diagram of AVR.

the cyclic fold in this case. It is very important information on
the transient stability.

The size of the unstable limit cycle of the approximate model
is and
at the operating point. The differences between original and
approximate models are 9.2% to and 2.4% to .
Fig. 14 shows the unstable limit cycle determined by the cou-
pled vibration model and the system responses after the fault
projected on the phase plane. When the fault is cleared at 0.2 s,
the system state is inside of the limit cycle. The trajectory after
the fault converges into the origin. When the fault is cleared at
0.21 s, the system state goes outside of the limit cycle then the
generator loses the synchronization. Thus, the stable region is
evaluated correctly by this limit cycle. In this case the influence
of the modal interaction is properly evaluated by the proposed
method based on the coupled vibration model. Note that the state
space is of dimension four, therefore the stable manifold of the
unstable limit cycle forms the boundary of the global stability
in the strict sense. However, as long as the stability associated
with the electro-mechanical mode is discussed, the projection of
system trajectory on the phase plane gives a good approxima-
tion in a physical meaning. Therefore, we discuss the transient
stability determined by the limit cycle on the phase plane.

VI. INVESTIGATION IN A TEN-MACHINE SYSTEM

The stable region of IEEJ WEST10-machine system [17]
shown in Fig. 15 is investigated. In this case, it is practically
impossible to apply a straightforward analysis, that is, to an-
alyze the nonlinear structure of the whole system by using a
general software. Therefore, the numerical method proposed
in this paper has to be a useful tool for nonlinear structure
analysis. Table V shows the system constants. Each generator is
equipped with an AVR shown in Fig. 16. The rated capacity and
output of the generators are shown in Table VI. In this study,
the software for the simulation of power system dynamics,
EUROSTAG, is used for the time domain simulation.

TABLE VI
GENERATOR RATED CAPACITY AND OUTPUT

Fig. 17. Participation factors associated with generator angle.

TABLE VII
COMPARISON OF THE RESIDUAL

Fig. 18. Bifurcation diagram of the approximate model.

In such a longitudinally interconnected power system, the
mode associating with the low-frequency oscillation between
both end generators tends to become unstable when the inter-
connected line is heavily loaded. Here, the load of node 2 and
the power of generator 1 are increased by 1600 (MW) so that
the line between nodes 1 and 2 is heavi ly loaded. This results
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Fig. 19. Unstable limit cycle and system responses on the phase plane. (a) Stable case. (b) Unstable case.

Fig. 20. Comparison of mode swings. (a) Original model. (b) Approximate model.

in the destabilization of the quasidominant mode (mode 2) in
addition to the dominant mode (mode 1).

Fig. 17 shows the linear participation factors corresponding
to the generator rotor angle. This result shows that generators 1,
5, and 10 participate principally in modes 1 and 2. Therefore,
the coupled vibration model is composed of generators 1 and 5
with generator 10 as the reference. In this paper, the linear par-
ticipation factors corresponding to generator angle are used for
selecting generators. In this case, it is sufficient for the following
analysis. In a certain kind of case, nonlinear participation fac-
tors based on normal form analysis [18] may be needed to eval-
uate the effective participations, however, the calculation will
be quite complicated. Table VII shows the residual in the least
squares method, which demonstrates that the coupled vibration
model can represent the original dynamics more precisely than
the single vibration model.

Figs. 18 and 19 show the bifurcation diagram and the limit
cycle on the phase plane, respectively, calculated by using the
coupled vibration model. In Fig. 19 the system trajectories are
also depicted when the system keeps the stability and when
the system becomes unstable, where three phase ground faults
cleared at 0.01 s and at 0.011 s are applied, respectively. As
shown in the figure, the global stability is bounded by the cal-

culated unstable limit cycle, and the system becomes unstable
when the system state moves outside of the limit cycle. Fig. 20
shows swings of the modes decomposed by using the eigenvec-
tors of the original and approximate model, respectively. Each
figure coincides well with the other. These results show that
the proposed method can evaluate correctly the characteristics
around the operating point also in this case.

VII. CONCLUSION

In this paper, a numerical method to evaluate the Hopf
bifurcation characteristics in multi-machine power systems
is developed. The single vibration model has been modified
to include the modal interaction. The swing equations of two
generators significantly participating in dominant and second
dominant modes are approximated by a nonlinear coupled
vibration model.

The method has been applied to the analysis of nonlinear dy-
namics in a three-machine longitudinally interconnected power
system. The obtained results have been compared to the char-
acteristics of the original model. As a result, it has been seen
that the interaction in a coupled vibration model affects the
limit cycle significantly. And the characteristics of this model
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have coincided well with those of the longitudinal power system
model. The method has been also applied to the analysis of the
stability associated with a low frequency oscillation in a ten-ma-
chine longitudinally interconnected system. Correct evaluation
has been demonstrated in numerical studies.

APPENDIX

DERIVATION OF (13) AND (14)

The system (9) changes the stability of equilibrium at ,
that is, corresponds to the Hopf bifurcation point. In the
following discussion we assume that , which corresponds
to the status around the Hopf bifurcation. Applying a linear co-
ordinate change of

(21)

to (9) at , then

(22)

(23)

where , which is the system angular velocity at
. Here, the coefficient in (4) is related with the nonlinear

function in (22) as (see [1])

(24)

where

Substituting the detailed form of functions and expressed
in (23) into (24), is represented as (13).

In the linearized system of (4), is the real part of eigen-
value and is that in the linearized system of (9). Therefore,
the size of limit cycle is written as

(25)

Substituting and into (21), the size of
limit cycle is represented as (14).
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