ターボポンプの系統的設計と その特性に関する研究(第2報)

――特性曲線の推定法と特性試験――

(昭和47年10月20日 原稿受理)

機械工学教室	松	永	成	徳
自然科学教室	石	橋	治	生
三井三池製作所	飛	田		雄
機械工学教室(学生)	金	子	謹 栄	治

Study on the Systematic Design of Turbo-Pump and their Performance Characteristics (2nd Report)

> ----Performance Prediction And Test On Mixed-Flow Pumps-----

> > by Shigenori MATSUNAGA Haruo ISHIBASHI Tsugio HIDA Kinichi KANEKO

To examine the design procedure of the mixed-flow pumps prepared in the 1st report, a performance prediction procedure and the experimental study were practised.

The overall performance was predicted by the synthesis of the performance characteristics of the blade elements.

The experimental study on the four pumps was practised with and without a flowstraightener at the pump inlet, making use of the variable speed electric motor.

The results of the study were compaired with each other and also with the result obtained in the design procedure shown in the previous report. The three values of the efficiency, design condition, prediction procedure and experiment, are approximately same around the design point. However the total head and power performance predicted by the synthesis rises more steeply compaired with the experimental results.

The shut off points of the performance curves from the test are approximately on a straight line respectively by the dimensionless parameter constructed from the pump dimensions.

1. まえがき

第1報の設計段階には、規定状態の水力損失を 推定し、設計寸法を修正できる過程を含んでいる が、衝突損失を無視しているため、規定状態を離 れた特性領域について評価できない。

本報では、設計における第2段階として衝突損

失を導入し,適応領域を拡大する方法を述べる。 つぎに前報で設計した4種の斜流ポンプについ て,特性曲線の推定値と特性試験の結果とを比較 検討する。

衝突損失は規定流量から離れる量に応じて増大 する。この場合ポンプ内部の流線の形状も変化す るので流路幅の大きい羽根では多少複雑になって 64

も,部分ポンプに対する特性曲線を推定し,最後 にそれらを合成して全ポンプ特性とする方法は適 切な手順であると考えられる。すなわち適正な計 算過程を定式化すれば,電子計算機の処理によっ て,複雑,多量の問題点はほとんど解消するから である。

2. 記 号 A 測定管路の断面積 a_L 負荷余裕率 B 無次元羽根幅 c ノズル流量係数 **D** 羽根重直径 **d** 直径比 g 重力の加速度 H 揚程 h, 損失水頭 h_u 急縮流および急拡大損失 h_{if} 摩擦損失 h, 衝突損失 L。 軸受およびパッキン箱での損失動力 L_d 軸動力 L。 理論動力 L, 円盤摩擦動力 L. 機械的損失動力 L_w 水動力 M₁ ノズル入口側マノメータの読み M₂ ノズル出口側マノメータの読み M_{a} ポンプ吐出し側マノメータの読み M。 ポンプ吸込側マノメータの読み m 水力平均深さ m。部分ポンプの水力平均半径 n 回転速度 n。比速度 Pa ポンプ吐出し側静圧力 ps ポンプ吸込側静圧力 Q 流量 q 漏れ流量 T 測定トルク T。 羽根車への供給トルク T。 空転トルク

u 周速度

v 絶対速度 **v**。 管内の平均流速 *v_u v*の周方向分速度 w。 w の幾何平均速度 $X l/D_2$ y_# 締切り揚程に関するポンプ無次元寸法 y_L 締切り動力に関するポンプ無次元寸法 Z 羽根数 Za ポンプ吐出し側全圧水頭 z。ポンプ吸込側全圧水頭 z ポンプ軸方向座標 α 絶対速度の方向角 β_m 平均羽根角 γ 水の比重量,前傾角 rccia 四塩化炭素の比重量 γ₈。 水銀の比重量 **Ah** ノズル水頭 5 衝突損失係数 ヵ ポンプ効率 7. 内部効率 7, 水力効率 ひ 前進角 λ 摩擦係数 π 動力係数 添 字 1 羽根車入口直前 2 羽根車出口直後 3 案内羽根入口直前 4 案内羽根出口直後 a, b, c, d, e 流線名 **D** 案内羽根 e 羽根出口 **I** 羽根車 *i* 羽根入口 m メリディアン n 規定点 0 最高効率点 p 部分ポンプ

s 締切り点

th 理論值

u 周方向

3. ポンプ特性の推定

第一次特性はポンプの概略寸法決定段階でも実行したが、第1報¹¹の計算により細部諸元に関して第二次特性推定が可能となる。

さらに,規定流量点だけでなく,ほかの流量点 についても,部分ポンプを並列連結して全ポンプ 特性が得られると仮定し,特性曲線を描くことが できる。

各部分ポンプの揚程は理論揚程から水力損失を 差引いて求まる。漏れに伴う損失および機械損失 を計算し,羽根車理論動力,軸動力したがって全 効率を計算し特性評価ができる。

3.1 水力損失

水力損失は羽根車および案内羽根流路の摩擦な どの水力学的諸損失である。ここでは羽根厚みに よる急縮流および急拡大損失 h_{id}, 摩擦損失 h_i, 流れの方向急変による衝突損失 h_{is} よりなるもの と考える。

まず, *h_{id}* は Kováts²⁾ に従い全揚程の 5%とし, *h_{if}* は図1に示す羽根車, および 案内羽根流路の水力平均深さ*m* および平均流速 *w_a* を用いて

図1 羽根車流路

$$h_{if} = \frac{\lambda}{4m} l \frac{w_{\infty}^2}{2g} \tag{1}$$

と表わす。λ は摩擦損失係数でレイノルズ数と表 面粗度によって異なり、 0.012~0.04 程度 であ る。

つぎに h_i は通常,規定流量点といま考えてい る流量点における絶対流入速度のそれぞれ周方向 分速度の差 *4v*, を考え

$$h_{is} = \zeta \Delta v_u^2 / 2g \tag{2}$$

で求められる。ここにくは損失係数で半径流羽根 車で 0.6~0.8 とされている。

以上により, 水力損失は

$$h_i = h_{id} + h_{if} + h_{is} \tag{3}$$

となり

$$H_{th} = H + h_{\iota} \tag{4}$$

$$\gamma_h = H/H_{th} \tag{5}$$

より水力効率が推定される。

3.2 部分ポンプの特性曲線

部分ポンプの特性曲線は次の3段階の手順に従 う。

(1) 規定流量点における特性値の計算

(2) 締切り点すなわち流量が零になった状態の揚程計算

(3) 規定点における摩擦損失より抵抗曲線式 を,締切り点の理論揚程と実験式による揚程の差 を用いて衝突損失曲線をそれぞれ定式化する。

まず規定点の特性値は第1報1と同様にして

$$\left(\frac{h_{Id}+h_{If}}{H}\right)_{I} = (1-0.25\psi) \times 0.05$$

$$+\lambda_{I} \left[0.125\frac{X_{I}}{\psi} \left(\frac{1}{m_{PI}}\right) \left(\frac{1+d-0.76\psi}{\cos\beta_{m}}\right)^{2} (6)\right]$$

$$\left(\frac{h_{Id}+h_{If}}{H}\right)_{D} = 0.25\psi \times 0.05$$

$$+\lambda_{D} \frac{0.1X_{D}\psi}{\cos^{2}\alpha} \left(\frac{1}{m_{PD}}\right) (7)$$

で損失が求まる。ただし、m,は部分ポンプの水

カ平均半径であり、図2に示すようにaおよびeポンプはケーシング面およびボス面を持ち、ほか の b, c, d ポンプは固体壁面に相当するものがな い。したがって m_b は次のように区別する必要が ある。

$$\frac{1}{m_{pl}} = \frac{0.64Z \cdot \frac{1}{2}}{(1+d)\sin\beta_{m}} + \frac{B}{1.3} \quad a, e \neq \gamma \gamma$$

$$= \frac{B}{1.3} \qquad b, c, d \neq \gamma \gamma$$
(8)
$$\frac{1}{m_{pD}} = \frac{\frac{1}{2} \times 0.27Z_{D}}{\sin\alpha} + B_{D} \quad a, e \neq \gamma \gamma$$

$$= B_{D} \qquad b, c, d \neq \gamma \gamma$$
(9)

λ₁ は開放羽根車であることを考慮して 0.014, λ₀ は 0.019 として 4 種のポンプに共通の値を採用し てある。なお規定点においては衝突損失は無視で きると仮定して,理論揚程および水力効率は次の ようにして求められる。

$$H_{ihn} = H_n + h_i \tag{10}$$

$$\gamma_{hn} = H_n / H_{thn} \tag{11}$$

つぎに締切り点における 揚程 H_s と理論揚程 H_{ihs} を考える。この場合流れはきわめて複雑となり、推定式の信頼性は少なくなるが、 H_s に対して次の実験式²⁾を用いることにする。

$$\frac{H_{s}/H_{ths} = 1/2(1 - (D_{1}/D_{2})^{2})}{+K_{s}v_{m3}/u_{2}\sin\alpha_{3}}$$
(12)

理論揚程は単純に

$$H_{ths} = u_2^2/g \tag{13}$$

とする。

つぎに流量を変数とし, h,を関数表示すること を考える。

 h_{if} は摩擦損失 であるから $Q_{p=0}$ で零, $Q_{p=}$ Q_{pm} において前に求めた値となり, Q_{p}^{*} に比例す る。したがって次の表示をうる。

$$h_{lf} = h_{lfn} (Q_p / Q_{pn})^2$$
 (14)

 h_{is} は衝突損失で通常式 (2)で表現されている。 締切り状態の損失 $H_{ihs} - H_s$ はすべて h_{is} である と仮定し、 Q_{pn} において $h_{is} = 0$ とすれば

$$h_{is} = h_{iss} (1 - Q_p / Q_{pn})^2$$
 (15)

と定式化できる。

 $h_{id} = 0.05 H$ と仮定しているから、以上により 全損失 h_i を各部分ポンプについて求めた。 Q_p に 対する H_{ih} , H および h_i の一例を図3に示す。

3.3 部分ポンプ特性の合成と動力および効率 前項で部分ポンプの特性曲線を得たので、その 合成を考える。

部分ポンプを並列接続した場合、その特性は図

4に示すように、一定の揚程に対する流量加算で 決まる。小流量では、部分ポンプに逆流を発生し うる状態が考えられるが、その領域の合成はこの 段階では考えないことにする。

つぎに漏れ量qについて考える。規定流量にお けるqは通常のシュラウド付きの場合に類似して 計算できるが、本試作の場合、体積効率 $q_n/Q_n=$ 0.97 として、一定値を用いた。この規定点漏れ 量は揚程が変化すると次の関係で変化するものと する。

 $q = q_n (H/H_n)^{1/2}$ (16)

H-Q 特性は以上によって確定した。

ポンプの動力について、水動力 L_w , 理論動力 L_e はそれぞれ次のようになる。

$$L_e = \gamma Q_t H_{th} \tag{18}$$

$$Q_t = Q + q = Q/\gamma_v$$
(19)
$$H_{th} = H + h_i = H/\gamma_h$$
(20)

機械的損失動力 L_m として円盤摩擦動力 L_f お よびベアリング・パッキンなどの摩擦動力 L_b を 算定し,機械効率 η_m , ポンプ全効率を η とすれ ば, 軸動力 L_d は

$L_d = L_e + L_m$	(21)
-------------------	------

となり,

$\Sigma_m \Sigma_j + \Sigma_b$ (25)	$L_m = L_f + I$	⊿Ъ	(22)
-------------------------------------	-----------------	----	------

- $\gamma_m = L_e/L_d \tag{23}$
- $\gamma = \gamma_h \gamma_v \gamma_m \tag{24}$

によって特性曲線が完成する。

4. 実験的研究

本研究計画は前述の広い比速度にわたる4種の 斜流ポンプ試作試験,および内部流動状態の実験 解析などターボポンプの基本問題に関係するの で,可能な限り大形ポンプを計画し,試験装置も 流量測定範囲,回転数設定範囲において高精度の 測定を期した。

本節では特性試験について述べる。

4.1 実験装置および実験方法

実験装置全体の骨組を図5に示す。ポンプ駆動 用原動機として、三相分巻整流子電動機(東洋電 機製造KK. ASモーク、SB34-117, 220V,

図5 斜流ポンプ配管装置図

37 kW, 1200~400 rpm 可変) を使用した。1200 rpm 以上の回転数は Vプーリ車を変更して増速 した。

回流路はポンプ,吐出し管,せき,落水槽,整 流タンクを含む,自由表面を持つ流路の場合と, ポンプ,吐出し管,整流タンクよりなる密閉管路 方式とに切替えることができ**る**。

流量測定はせきによって検定された 400mm 吸 込ノズル, 250 mm 吐出し管ノズルを使用し特に 小流量の場合 100 mm 管ノズルを用いた。

全揚程は吸込管および吐出し管の壁面圧4個を 平均して,それぞれの差圧を水銀マノメータで測 定した。

回転速度はポンプ軸に取り付けた回転円盤と光 電式ピックアップ(小野測器KK. PP-3型) およびトランジスタ式ディジタルカウンタ(小野 測器KK. QA-5B型)により計数した。回転 円盤は周上に360個の小孔をあけ,精度よく回転 速度の検出ができる。

回転トルクは、既知の荷重とアームにより静的

に検定したトルクメータ(新興通信工業 KK. TM/30型)を静歪計(同上, PS7/H型)と併 用して計測した。

実験は回転速度を数段階に設定して, 弁操作に より流量を変える場合, 弁を多くの設定位置に固 定し, 回転速度を変えた場合, の両方法を適当に 組み合わせて行ない, さらに各比速度のポンプに ついて, 吸込整流板を付けた場合と無い場合につ いて特性試験を実施した。

実験値の処理は次の諸式によった。

(1) 流量計算式

 $Q = Av_0 = Ac\sqrt{2g\Delta h}$ (25)

 $\Delta h = (\gamma_{ccl_4}/\gamma - 1)(M_2 - M_1)$ (26) 表1にノズル特性を示してある。

表1 ノズル仕様

種類		m²	c 測定範囲 m ³ /min
250ø /	ズル 0.	0491 0.	840 3~12
400¢ /	ズル 0.	1257 0.	912 8 以上

(2) 全揚程計算式

$$H = z_{d} - z_{s} + (p_{d} - p_{s})/\gamma + (v_{d}^{2} - v_{s}^{2})/2g$$
(27)

 $(p_d - p_s)/\gamma = (\gamma_{Hg}/\gamma - 1)(M_s - M_d) \quad (28)$

ここに z_d-z_s は 測定管が水平のため零,速度水 頭差は吸込管および吐出し管の断面積 A_s , A_d に より計算される。 $A_s=0.1046 \text{ m}^2(D_s=0.365 \text{ m})$, $A_d=0.1103 \text{ m}^2(D_{de}=0.400, D_{da}=0.140 \text{ m})$ であ る。

(3) 動力と効率

動力、効率は次式により計算する。

 $L_d = \omega T / 102 = 1.027 \times 10^{-3} Tn \quad kW \quad (29)$

$$L_w = \gamma Q H / 102 \qquad kW \quad (30)$$

$$L_e = \omega (T - T_a) / 102 = \omega T_e / 102 \ kW \ (31)$$

$$\eta = L_w/L_d \tag{32}$$

$$\gamma_e = L_w / L_e \tag{33}$$

4.2 特性試験の結果

特性試験はそれぞれの比速度のポンプについて 実施し,規定回転速度を含む数種の回転速度をパ ラメータとして整理して,特性曲線図を作成,無 次元表示による相似法則の検討,実験操作あるい は流量測定用ノズルの計測精度など広範な検討が なされた。たとえば,流量調整弁を開方向と閉方 向の両場合で特性を調べ,その差が無視できるこ とを確認,回転速度を変更して試験する場合,回 転増の場合と減の場合,測定時間間隔を2分程度 にとれば両者に差が認められないことなども確認 された。

多数の測定結果のうち,通常示される特性曲線 について,規定点,低流量域,締切り点に焦点を しぼり以下に述べる。

図6(a)~(d) は規定回転速度 で与えられた特 性曲線である。細線は前節の特性推定計算による ものである。

規定点における特性値,特性推定値および,試 験結果の三者の比較,さらに試験結果の最高効率

図6(d) 斜流ポンポ特性曲線

69

此 n, rpm,	速度 m ³ /min.m	条件				特性量	流量 Om ³ /min	揚程 Hm	軸動力 La kw	効 率
			設			計	15.0	6.0	15.4	84
	相守占汇应		推			定	15.0	5.8	18.4	77
700	成化品红伤	実	設	i	計	点	15.0	5.2	16.6	76
700		験	最	高	効	率 点	16.0	4.7	16.1	76
	締切り占		推			定		9.2		
	MID 93 9 MA		実			験	1 a.	10.6	24.0	
			設			計	15.0	6.0	15.6	83
	相完占近俸		推			定	15.0	5.4	19.0	69
900	MAC MILLIS	実	設	ĺ	計	点	15.0	5.2	10.8	74
		験	最	高	劾	率 点	1 3. 0	5.4	14.5	79
	締切り占		推			定		8.9		
	114 7J J AN		実			験		13.3	23.6	
1100	規定点近傍		設			計	15.0	6.0	15.6	83
			推			定	15.0	6.2	19.4	77
		実	設	Î	計	点	15.0	5.0	15.6	75
		験	最	高	劾	本 点	14. 0	6.1	17.5	78
	締切り点		推			定	·	9.8		
			実			験		18.3	39.4	
1300	規定点近傍		設			計	15.0	6.0	15.8	83
			推			定	15.0	5.8	1 7. 5	8 0
		実	設	Î	計	点	15.0	5.2	17.2	74
		験	最	高 3	边	率点	14.0	5.8	17.7	76
	締切り点		推			定		9.4		
			実			験		10.8	26.0	

表2 設計,推定および実験における特性量の比較

点の諸特性値を表2に示した。なお締切り点の揚 程と軸動力も表中に示してある。

締切り点特性として、 L_{as} の増大は、起動操作 上、また原動機容量に関しても好ましくないが、 n_s 1300 の例は他の比速度のものと比較して明ら かなように、羽根の前傾角の効果と解される良好 な結果を示しており、規定点の設計要因以外の調 整要素として前傾角を付けることが有効な手段を 与えるものと了解される。図7は締切り特性に及 ぼす諸要素の影響を示すもので、この試験の範囲 では、揚程比 H_s/H_0 および動力比 L_{as}/L_{ao} は横座 標に対してほぼ直線と見てよい。

ここの横座標は揚程に関する $a_L y_H - 0.40 \vartheta_{e(rad.)}$ 軸動力に関する $a_L y_L - 0.45 \vartheta_{e(rad.)}$ を表示してあ

る。 y_{H} , y_{L} はそれぞれポンプ形状を示す無次元数で, 図8を参照して次のように定義する。

$$y_{II} = \{ (D_{es}^{2} - D_{ia}^{2}) + (D_{ee}^{2} - D_{is}^{2}) \} / D_{ia}^{2} \quad (34)$$

$$y_{L} = (D_{es}^{2} - D_{ia}^{2}) (D_{es} - D_{ia})^{2} (z_{ea} - z_{ia}) / D_{ia}^{5}$$

$$+ (D_{ee}^{2} - D_{is}^{2}) (D_{ee} - D_{is})^{2} (z_{is} - z_{ie}) / D_{ia}^{5}$$

$$(35)$$

 $a_{\scriptscriptstyle Le} = (Zl)_{\scriptscriptstyle e}/(Zl)_{\scriptscriptstyle ereq}$

 $\vartheta_{e(rad)}$:羽根出口における前進角 (ラジアン) ただし n_s 1100 の場合, $D_{is} \ge D_{es}$ はそれぞれ D_{ia} および D_{ee} で置き替えて計算する。

つぎに低流量特性³⁾ に着目する。 n_s 700 および n_s 900 はそれぞれ $Q/Q_0=0.5$, 0.6 の流量で失 速特性を示したが, n_s 1100 および 1300 は失速し なかった。吸込側に十字と円筒を組合わせた整流 板(写真1)を取付けた結果は,整流板なしの場 合と無次元表示により比較した。これを \boxtimes 9(a) (b)(c)に示す。

写真1 整 流 板

失速した n_s 700, 900 は整流板によって失速特 性は消滅した。 n_s 1100 と 1300 は失速特性を示さ ず,第1報¹¹ 図3の a_L すなわち負荷余裕率をボ ス側で小にしたことが有効であったと思われる。 また前述のように n_s 1300 は前傾角を大にして締 切り動力の低減を実現しているが、負荷余裕率と の相関など詳細については未知である。

0.05

図9(b) 無次元特性曲線

整流板な! • 整流板付

ø

ø

0.15

0.10

図9(c) 無次元特性曲線

4.3 特性推定結果と実験結果との比較

図 6 (a)~(d) と表 2 にまとめて示したよう に,設計流量における揚程は,設計値および推定 値に対して、4~15%程度低いが、軸動力も低下 しているので、効率は良好に推定されている。揚 程および軸動力の推定曲線のこう配が実験した特 性のそれよりも大きくなっているが、これは締切 り理論揚程 H_{ths} を u_2^2/g としたことが要因の一つ であろう。

締切り揚程は通常比速度によって変るが、本研 究の場合, n. 1300 はやや特殊な設計としたため. 締切り揚程、軸動力の増大が避けられている。こ れは l_m が小さく,前傾角 r_i および r_e が大きい ために低流量域の流れが良好になったためと考え られる。

5. 結 論

広範囲の特性領域に適応する4種の斜流ポンプ の設計に続いて、その規定点を含む特性曲線を部 分ポンプの特性曲線の合成として予測する方法を 述べ、その結果を実験値と比較して、かなり良好 な結果が得られた。

規定点特性値について、厳密には問題点も残る が,ある程度の流量範囲にわたり,特性曲線を合 理的に推定しうることが判明した。

つぎに規定設計諸元以外の要素を適正に調整す れば,失速特性や,締切り点の特性も良好なもの となしうる可能性が明らかになった。これは最近 特に重要視される自動運転に適したポンプの設計 資料として有効であり、さらに今後設計計算に電 子計算機を併用して能率化し予測精度の向上を期 待しうるものと思われる。

最後に本研究の進行に当り,懇切なご助言をい
 ただいた九州工業大学学長葛西泰二郎先生、およ びご援助とご協力をたまわった三井三池製作所常 務取締役飯田寿之, 同技術開発部副部長飯野富士 雄,同三池工場産業機械設計課長高松暎,以上の 各氏に厚くお礼申し上げる次第である。なお卒業 研究テーマとして熱心に特性試験を実施,成果を 上げた本学卒業生今林敏,鶴田三郎,宮脇修二, 高崎忠信, 今村正和 (昭42年度), 田中一栄, 原 勝幸, 安部訓愛, 小田新一(昭43年度), 武居哲 郎, 靏崎 展 (昭44年度), 一柳克己, 村上生吾 (昭45年度)の諸君,また実験データの一部は本 学電子計算機センターで処理した。その関係者各

80 0.1

601

40

20

位、以上の方々に謝意を表する。

文 献

1) 松永,飛田,ほか2名:九州工業大学研究報告

(工学) No.26 (1973-3) p.11.

- 2) Kováts, A. De., Pumps, Fans & Compressors, 1966, BLACKIE & SON.
- 3) 葛西, 松永, 石橋: 日機論, 27—177(昭36—5) p. 699.